Nie masz uprawnień do wyświetlenia tego obiektu. Aby poprosić o dostęp do niego, wypełnij poniższe pola.
Hoover Wm. G.
artykuł
Hoover C.G, Posch H.A.
We consider an harmonic oscillator in a thermal gradient far from equilibrium. The motion is made ergodic and fully time-reversible through the use of two thermostat variables. The equations of motion contain both linear and quadratic terms. The dynamics is chaotic. The resulting phase-space distribution is not only complex and multifiactal, but also ergodic, due to the time-reversibility property. We analyze dynamical time series in two ways. We describe local, but comoving, singularities in terms of the "local Lyapunov spectrum" {λ}. Local singularities at a particular phase-space point can alternatively be described by the local eigenvalues and eigenvectors of the "dynamical matrix" D=Əv/Ər=∆v. D is the matrix of derivates of the equations of motion r=v(r). We pursue this eigenvalue-eigenvector description for the oscillator. We find that it breaks down at a dense set of singular points, where the four eigenvectors span only a three-dimensional subspace. We believe that the concepts of stable and unstable global manifolds are problematic for this simple nonequilibrium system.
Poznań
OWN
application/pdf
oai:lib.psnc.pl:515
eng
2014-07-29
2014-05-22
130
https://lib.psnc.pl/publication/611
RDF
OAI-PMH
Hoover Wm. G. Hoover C.G., Kum O., Castillo V.M.
Hoover Wm. G. Hoover C.G.
Hoover Wm. G. Hoover C. G.
Ta strona wykorzystuje pliki 'cookies'. Więcej informacji Rozumiem