A1 - Hącia Lechosław
PB - OWN
N2 - Integral equations in space-time play very important role in mechanics and technology. Particular cases of these equations called mixed integral equations or Volterra-Fredholm integral equations arise in the heat conduction theory [4, 6] and the diffusion theory. Moreover, a current density in electromagnetism is determined by the Volterra-Fredholm integral equations [4]. Nonlinear counterparts of the equations studied in [1] are mathematical models of the spatio-temporal development of an epidemic (the spread of the disease in the given population). Some initial-boundary problems for a number of partial differential equations in physics are reducible to the considered integral equations [2- 3, 6], In this paper the general theory of these equations is used in the projection methods. Presented methods lead to a system of algebraic equations or to a system of Volterra integral equations. The convergence of studied algorithm is proved, the error estimate is established. The presented theory is illustrated by numerical examples.
L1 - http://lib.psnc.pl/Content/532/10.12921_cmst.2002.08.02.13-26_Hacia.pdf
L2 - http://lib.psnc.pl/Content/532
CY - Poznań
ER -
UR - http://lib.psnc.pl/dlibra/docmetadata?id=532