A1 - Hoover Wm. G.
A2 - Hoover C.G, Posch H.A.
PB - OWN
N2 - We consider an harmonic oscillator in a thermal gradient far from equilibrium. The motion is made ergodic and fully time-reversible through the use of two thermostat variables. The equations of motion contain both linear and quadratic terms. The dynamics is chaotic. The resulting phase-space distribution is not only complex and multifiactal, but also ergodic, due to the time-reversibility property. We analyze dynamical time series in two ways. We describe local, but comoving, singularities in terms of the "local Lyapunov spectrum" {λ}. Local singularities at a particular phase-space point can alternatively be described by the local eigenvalues and eigenvectors of the "dynamical matrix" D=Əv/Ər=∆v. D is the matrix of derivates of the equations of motion r=v(r). We pursue this eigenvalue-eigenvector description for the oscillator. We find that it breaks down at a dense set of singular points, where the four eigenvectors span only a three-dimensional subspace. We believe that the concepts of stable and unstable global manifolds are problematic for this simple nonequilibrium system.
L1 - http://lib.psnc.pl/Content/515/10.12921_cmst.2001.07.01.55-65_Hoover.pdf
L2 - http://lib.psnc.pl/Content/515
CY - Poznań
ER -
UR - http://lib.psnc.pl/dlibra/docmetadata?id=515