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I.  INTRODUCTION 
 

 Creation and propagation of ultrashort laser pulses (in 
fs) in a medium has been intensively researched (both 
theoretically and experimentally) on the course of the last 
few years [1, 3, 17, 20]. Modern lasers can generate pulses 
as short as a few optical cycles, with durations on the order 
of 10–15 seconds. The short duration of these pulses allows 
us to look at very fast events, such as molecules vibrating, 
or charge transfer in biological systems. One can also 
manipulate the shape of the pulse and use it to control 
precisely the quantum phenomena, such as the formation of 
molecules from cold atoms (noncrystalline structure), or 
the initiation of a quantum phase transition in a solid. The 
ultrashort pulse could be used as a photonic reagent in 
different chemical reactions. Short pulse with a large 
energy focused by lens gives us a very high peak intensity 
which leads to several potential applications as in creation 
of unusual states of matter (plasmas) by reaching very high 
temperatures, or using it as an energy source for X-ray 
lasers.  
 During the propagation of ultrashort pulses in the 
medium, several new effects have been observed in the 
comparison with the propagation process of short pulses (in 
ps), namely the effects of dispersion and nonlinear effects 

of higher orders. Under the influence of these effects, we 
have complicated changes both in amplitude and spectrum 
of the pulse. It splits into constituents and its spectrum also 
evolves into several bands which are known as optical 
shock and self-frequency shift phenomena [1, 3, 11, 16]. 
These effects should be studied in detail for future concrete 
applications of ultrashort pulses, especially in the domain 
of optical soliton communication. 
 We have recently developed a powerful method of de-
riving a general equation for short-duration intense pulses 
[8, 14, 15]. This method is based on a consistent and 
mathematically rigorous expansion of the nonlinear wave 
equation, which treats the nonlinear processes involved in 
the problem as perturbations. Using this method for the 
Kerr medium in the consideration of the delayed nonlinear 
response of the medium, induced by the stimulated Raman 
scattering and the characteristic features of both the 
spectrum and the intensity of the pulse, in Sec. II we will 
obtain an approximate equation in the most condensed 
form, which describes the propagation of the ultrashort 
pulses, called the generalized nonlinear Schrödinger 
equation (GNLS). In the general case it is very difficult to 
find analytic solutions for this equation. A review of 
analytic methods is given in [5]. We consider a normalized 
form of this equation and demonstrate its general features. 
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We will analyze in detail the influence of the third-order 
dispersion (TOD), the self-steepening and the self-shift 
frequency for the ultrashort pulses in some special cases. 
When the higher-order terms are included, the pulse 
propagation equation becomes very complicated [9]. Under 
some conditions its solutions in the form of dark and bright 
solitons are obtained [12]. We will use the developed 
Jacobi expansion formalism introduced there in finding 
analytic solutions for the case when the fourth-order 
dispersion (FOD) is also included. But generally we should 
use different numerical methods to solve it. In Sec. III we 
present three efficient methods, the Split-Step Fourier, the 
fourth order Runge-Kutta and the imaginary-time methods. 
We investigate a very interesting phenomenon in Sec. IV, 
namely the collapse of solitons. Sec. V contains conclu-
sions. 
 

 
II.  PROPAGATION  EQUATION   

FOR  ULTRASHORT  PULSES 
 
II.1. General pulse propagation equation in the non-

linear dispersion medium 

 The Maxwell equations can be used to obtain the 
following nonlinear wave equation for the electric field [1, 
2, 4, 15]: 
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where ( )lP r ,t
G G  and ( )nlP r ,t

G G  are the linear and nonlinear 
polarization, respectively. 
 The electric field E

G
 is treated as a superposition of 

monochromatic constituents with different frequencies and 
wavevectors centered at their central values 0ω  and 0k .

G
 

We limit ourself only to considering the propagation of the 
electric field in an arbitrary direction, say Oz (usually 
chosen as the direction of 0 ),k

G
 so we can write 
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where xG  is the unit vector of the x axis perpendicular to the 
propagation direction, A(z, t) is the complex envelope func-
tion, c.c denotes the complex conjugate of the first term. 
 For the homogeneous isotropic medium the linear pola-
rization vector of the medium is expressed as follows 
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where * denotes the convolution product which displays 
the causality: the response of the medium in time t is 
caused by the action of the electric field in all previous 
times t’. The quantity ( )1χ  is the susceptibility of the me-
dium. It is a scalar. 
 The nonlinear polarization vector is generally expressed 
as follows  
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where ( )1 2
n

nt t ,t t , ,t tχ − − −…  is the n-order nonlinear 
susceptibility. For the homogeneous isotropic medium, 
because of the spatial inversion symmetry the elements of the 
even-order nonlinear susceptibility ( )2

1 2
k

kt t , ,t tχ − −…  dis-
appear [1, 2, 4]. In the expression (5) we have only the 
nonlinear polarizations of odd orders. We consider in detail 
only the third-order nonlinear susceptibility (the Kerr 
medium). Then the tensor ( )3χ  has 34 = 81 elements (as 
a matrix with 3 lines and 27 columns), but only 21 of its 
elements are different from zero and three are independent 
[1]. We have therefore 
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 In the hierarchy of the magnitudes, the nonlinear po-
larization is much smaller than the electric field and the 
linear polarization  

  0( , ) ( , ) , ( , ) ( , ) ,nl l nlP z t P z t P z t ε E z t
G G G G

� �  

so it can be considered as a perturbation and we have the 
approximate formula [15]: . ( , ) 0.E z t∇ ≈

G
 Substituting these 

results into (1) we obtain the following scalar wave equation                        
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 Using the method introduced in [8] we obtain the 
following equation: 
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are higher-order perturbations, F and F–1 denote the Fourier 
and the inverse Fourier Transforms. The notations ( )0' ;β ω  

( )0'' ;β ω ( ) ( )0 0' ; '' ;n ω n ω …  are first-order and second-
order derivatives of the respective functions, calculated at 
the value 0.ω  We will further use Eq. (7) to describing 
different optical phenomena in the subsequent sections. 
 
II.2. Solitons 

 Equation (7) with the concrete form for the nonlinear 
polarization (5) and the initial condition for the input pulse 
permit us to consider the pulse evolution in the propagation 
within the medium. It is the most general form for the one-
dimensional case because it contains all orders of the 
dispersion and the nonlinearity. This equation is very 
complicated and finding a general analytic method (given 
for example in [5]) for this equation is practically “mission 
impossible”, so we should reduce it to a simpler appro-
ximate form. It may be worthwhile to look at some simple 
solutions to the general nonlinear partial differential 

equation (NPDE) before starting the big machine of any 
general analytic or numerical scheme for solving it. 
Without a detailed study of symmetries, we may expect 
that, among others, our integrable equations will have 
solutions in the form of a travelling wave. The travelling 
wave is a solution of the form  

  ( ) ( ), ,u x t U z z x Vt= = −  (9) 

for equations in which the variable may be interpreted as 
a real wave function. When the wave consists of a single 
travelling bump (a displacement from an unperturbed state) 
or a travelling shock (kink) we call it a solitary wave. This 
name is extended to the solutions of equations like the 
nonlinear Schrödinger (NLS), which describe evolution of 
an envelope of fast oscillations and it is only the envelope 
of a (usually complex) wave function which has the form 
of a travelling wave (9). Finally, two or more solitary 
waves may travel at the same time with different velocities; 
if they travel towards each other, they would “collide” 
sooner or later. If they get through the collision unchanged 
(except for a possible shift in their positions and phases), 
they are called solitons.  
 For the special case when the medium is isotropic and 
the medium is of the Kerr type we obtain the cubic 
nonlinear Schrödinger equation (NLS) which describes 
the propagation of light pulses in fibers [4, 8]. Optical 
soliton in fiber exists because of the exact balancing 
between the group velocity dispersion (GDV) and its 
counterpart self-phase modulation (SPM). SPM is the 
nonlinear effect due to the lowest dominant nonlinear 
susceptibility in silica fibers. One of the most famous 
physicists working in this domain wrote that the 
parameters of fiber are a gift from God and that it is a sin 
not to use solitons in telecommunication! But generally 
we should take into account the higher order contributions 
[8, 13, 14].  
 In some other cases we can also find soliton solutions 
in an analytic way [5]. In our works on the equations 
which describe interaction of higher harmonics with the 
fundamental mode in a laser beam [6, 7] we applied the 
Hirota scheme to the systems of equations 
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for the 3-rd, where the U and u are the amplitudes of the 
fundamental frequency modes, while the W and w are the 
amplitudes of the 2-nd and 3-rd harmonics, respectively 
(all of them rescaled to reduce the number of coefficients). 
The equations describe propagation of these nonlinearly 
interacting modes along a waveguide.  
 We have found that the Hirota scheme worked merely 
for the exact resonance cases, i.e. not only had the 
frequencies of the higher harmonics found to be multiplies 
of the fundamental one, but also the ratio of the dispersion 
coefficients had to be equal to the ratio of frequencies. 
Moreover, the only solitary wave solutions of that type 
were single travelling waves. For the amplitudes of 2-nd  
harmonic we found a new equation of the NLS type which 
they satisfy, namely 

  2 0.z ttiU U U U+ ± =  (12) 

 In the case of the ultrashort pulses, with the use of 
specific properties of their spectrum and intensity, we can 
simplify the Eq. (7) through neglecting the higher-order 
nonlinear perturbations and merely preserving the linear 
and the nonlinear terms with their lower-order derivatives. 
Before doing this we should consider below in more detail 
the nonlinear polarization of the medium in the propagation  
of the ultrashort pulses. 

 
II.3. Raman response function 

 The nonlinear polarization of the medium is given by 
(5), where the property of the medium is characterized by 
the quantity ( ) ( )3

1 2 3xxxx t t ,t t ,t t .χ − − −  Apart from its de-
pendencies of the microscopic structure of the molecules 
and their ordering in the medium, it depends also on the 
characteristics of the propagating pulses. The microscopic 
processes have usually the characteristic time of femto-
seconds (the characteristic time for the electron response is 
of the order 0.1 fs, for the nuclei and lattice 10 fs [17]). For 
the picosecond pulses the nonlinear response of the 
medium can be considered as instantaneous. In this case the 
nonlinear susceptibility can be written as follows [2, 3, 17] 
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 Here ( )3χ is a real constant of the order 10–22 m/V2 and 
( )iδ t t−  (i = 1, 2, 3) are the Dirac functions. The reduced 

equation obtained in this case from (7) is the well-known 
NLS equation [1, 2, 4, 11]. It describes perfectly the 
experimental observations for the propagation process.  
 When input pulses are shorter than 4-5 ps (tens or hun-
dreds fs) the assumption of the instantaneous response of 

the medium is no longer valid because the time width of 
the pulses is comparable with the characteristic times of the 
microscopic processes. Some additional terms describing 
the delayed response of the medium should be included in 
the expression (13). This delayed response is related to the 
reduced Raman scattering on the molecules of the medium 
[15, 20]. Using the Lorentz atomic model in the adiabatic 
approximation [1, 15, 17] we can present the nonlinear 
susceptibility of the medium in the form [3, 17]: 
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 In the expression for the nonlinear susceptibility (14) 
we have two contributions, one of the electron layer and 
one of the nuclei plus the crystal lattice. The electron 
response is considered as instantaneous, and the delayed 
response of the nuclei and the lattice is characterized by the 
function ( )Rh t  called the Raman response function. It 
has the following form [2, 15, 17]: 
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 The Raman response function satisfies the normaliza-
tion condition ( )

0
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∞
=∫  The constants 1,Rf τ  and 2τ  

depend on the medium. The Fourier Transform of the 
( )Rh t  (called also the Raman response function, but at the 

frequency )ω ) has the following form 
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 The imaginary part of ( )g ω  is called the Raman 
amplification function [17, 18, 20].  

 
II.4. Generalized Nonlinear Schrödinger Equation 

 Substituting the expression (14) into (5), after expand-
ing the terms containing the powers of the intensity of the 
electric field and neglecting the high-order harmonics 
(because the phase-matching condition is not fulfilled), we 
obtain the following expression for the nonlinear polariza-
tion:  
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 The physical properties of the medium do not depend 
on the choice of the beginning of the time scale, so the 
second term in (17) can be rewritten in the form: 

)

 ( ) ( )2 2
1 1 1 1 1
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R Rh t t A z t dt h t A z t t dt
∞

−∞
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 Expanding to the first order of the square of the module of 
the envelope under the integral sign in (18) and using the nor-
malization condition for the function ( )Rh t  lead to the result 
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where T is the characteristic time for the Raman scattering 
effect: 
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 From these results we can write the nonlinear polariza-
tion in the form: 
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 As it has been recognized above, the general Eq. (7) is 
very complicated, so we should reduce it into an 
approximate form. It is worth noting that the time and 
intensity characters of the ultrashort pulses are quite dif-
ferent in comparison to that of the short pulses. It follows 
that their spectrum is much broader and the pulse power is 
larger, so in the Eq. (7) we should consider the third-order 
dispersion terms [2, 3, 11] and the first-order term of the 
Kerr nonlinearity [1, 4].  
 Substituting the expression for the nonlinear polariza-
tion (21) into (7), after omitting the fast oscillating terms 
and neglecting the high-order derivatives of the nonlinear 
term we obtain the following simplest approximate pulse 
propagation equation: 
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Using the new parameters and variables 
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where 0τ  and P0 stand respectively for the time width and 
the maximal power at the top of the envelope function, we 
can rewrite the Eq. (22) in the normalized form: 
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 The Equation (25) is the lowest-order approximate form 
when we consider the higher-order dispersion and non-
linearity effects in the general propagation Eq. (7). It is one 
of the most useful approximate forms describing the 
propagation process of the ultrashort pulses, called the 
generalized nonlinear Schrödinger equation (GNLS) [3, 11, 
16, 17]. It has a more complicated form than the nonlinear 
Schroedinger equation describing the propagation of the 
short pulses [1, 2, 4, 11] as it contains the higher-order 
dispersive and nonlinear terms. The parameters characte-
rizing these effects: 3 , , Rδ S τ  govern respectively the 
effects of TOD, self-steepening and the self-shift fre-
quency. In the formulas (24) we see that when 0τ  
decreases, i.e. the pulse is shorter and the magnitude of 
these parameters increases, the higher-order effects should 
be considered (see Subsection II.5). 
 Under the influence of TOD both the pulse shape and 
the spectrum change in a complicated way. When the 
propagation distance is larger the oscillation of the 
envelope function is stronger, creating a long trailing edge 
to the later time, and the spectrum is broadened to two 
sides and splits into several peaks [2, 11]. 
 Self-steepening of the pulse leads to the formation of 
a steep front in the trailing edge of the pulse, resembling 
the usual shock wave formation. This effect is called the 
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optical shock. The pulse becomes more asymmetric in the 
propagation and its tail finally breaks up [1, 4, 11, 16]. 
 In the stimulated Raman scattering the Stokes process is 
more effective than the anti-Stokes process [2, 20]. This 
fact leads to the so-called self-shift frequency of the pulse. 
As a result the spectrum is shifted down to the low-
frequency region. In other words, the medium “amplifies” 
the long wavelength parts of the pulse. The pulse loses its 
energy and undergoes a complex change when it enters 
deeply into medium. 
 For the ultrashort pulses with the width 0 50 fsτ ≈  and 
the carrier wavelength 0 1 55μm,.λ =  the higher-order para-
meters in (24) during their propagation in the medium SiO2 
have the values of 3 0 03 0 03 0 1R. , S . , . .δ τ≈ ≈ ≈  These 
values are smaller than one, so the higher-order effects are 
considered as the perturbations in comparison with the Kerr 
effect. Therefore, when the pulse propagates in a silica 
optical fiber, the self-shift frequency effect dominates over 
the TOD and the self-steepening for the pulses with the 
width of hundreds and tens femtoseconds. The self-
steepening becomes important only for the pulses of nearly 
3 fs [2, 11]. 
 When t has the value of picoseconds or larger, the 
values of 3 ,Sδ  and Rτ  are very small and they can be 
neglected. Equation (25) reduces to the well-known NLS 
equation for the short pulses [1, 2, 4]. As it has been 
recognized above, NLS can be solved by the Inverse 
Scattering Method [5], but this Method cannot be applied 
to the Eq. (25) any more. The problem of finding a general 
analytic method for this equation is practically a “mission 
impossible” except some special cases, when some specific 
conditions should be satisfied. A review of some analytic 
methods as the Inverse Scattering Method, Hirota’s Method 
and Painleve’s Test is given in [5]. We describe below two 
very useful methods which are not considered there, namely 
the developed Jacobi elliptic function expansion and the 
variational method. Presentation of several numerical 
methods of finding approximate solutions of the Equation 
(25) is the subject of Section III. 
 
II.5. Developed Jacobi elliptic function expansion 

 Following [12] we consider a nonlinear partial differen-
tial equation in a general form 

 
2 2 2

2 2 0F F F F FN F , F , , , , , .
t x x tt x

⎛ ⎞∂ ∂ ∂ ∂ ∂ =⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠
"  (26) 

 We seek the traveling wave solutions of the form 

  ( ) ( )
0

kx tF u e , cx t x ,ωξ ξ λ− −= = − +  (27) 

where u(ξ) is a real function, λ is a constant parameter and 
k and ω denote the wave number and the frequency, 
respectively. Substituting (27) into (26) we obtain an ordi-
nary differential equation 

  
2 3

2 3, , , , 0.du d u d uN u
dξ dξ dξ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
"  (28) 

 We take the ansatz of the solution in the form of a finite 
series of Jacobi elliptic functions cn(ξ,m) (or sn(ξ,m)), i.e.    

  ( ) ( )
0

.
n

j
j

i
u ξ a cn ξ

=
=∑   (29) 

Here ja  are constants which will be determined later, and 
the highest degree of the function u is   

  ( )( ) .O u ξ n=  (30) 

 It follows from properties of Jacobi elliptic functions 
that the highest degree of derivatives is taken as 

  ( )( ) .p pO d u ξ dξ n p= +   (31) 

n in (29) is selected in such a way that the highest degree of 
derivatives is equal to the degree of the nonlinear term. 
Substituting (29) into (28) and equating the coefficients of 
all power of cn(ξ). sn(ξ), dn(ξ) to zero leads to a set of 
algebraic equations for aj. By solving these equations, we 
obtain the final result for u in the form (29). We will apply 
this method below to find the soliton solutions in two 
cases: for the Eq. (12) and GNSE. 
 
II.5.1. Equation (12) for the second harmonic 

 We look for the soliton solutions for the Eq. (12) intro-
duced above: 

  2 0.z ttiU U U U+ ± =  (32) 

 Performing the transformation 

 ( ) ( )[ ] 0exp ;U V ξ t kz ωt ξ ct λz z= − = − +  (33) 

we have  

  

( ) ( ) ( )

( ) ( ) ( )

[ ] ( )

( )

2
2 2

2

2

' ,

' ,

'' 2 ' ,

,

i kz ωt i kz ωt

i kz ωt i kz ωt

i kz ωt

i kz ωt

U V ikV e λV ikV e
z z

U V iωV e cV iωV e
t z

U c V iωcV ω V e
t

U U V e

− −

− −

−

−

∂ ∂⎡ ⎤= + = − +⎢ ⎥∂ ∂⎣ ⎦

∂ ∂⎡ ⎤= − = −⎢ ⎥∂ ∂⎣ ⎦

∂ = − −
∂

=

 (34) 
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where for the sake of simplicity we assume .V V=  Substi-
tuting the expressions (34) to Eq. (32) leads to the system 
of equations 

  
( )2 2 2

2

'' 2 0.

λ ωc

c V V ω k V

=⎧⎪
⎨
⎪ + − + =⎩

 (35) 

We look for the solution of (35) in the form 

  ( ) ( )2
0 1 2 .V a a cn ξ a cn ξ= + +   (36) 

Solving (35) for the case m = 1 we obtain 

  

( )

2 2
2 1 0

2 2

2 2
0

3 2; 0; 2 2 ;

, ; 4 ;

2 2 3 2 sec .

a c a a c

c c ω ω k c ω

V c c h ct kz z

= = = −

= = = − −

= − + − +

 

 We draw below in Figs. 1 and 2 the solutions (36) for 
the values c = ˝ and c = Ľ, respectively. 
 

 
 

Fig. 1. Solution (36) with c = 1/2 

 
Fig. 2. Solution (36) with c =1/4 

 
 
II.5.2. GNLS with the four-order dispersion 

 As it has been emphasized above, in the case of 
ultrashort light pulses (femtosecond pulses which have 

much potential for future technology), in comparison with 
the nonlinear Schrödinger equation (NLS), higher-order 
terms should be taken into account. For this reason, we 
consider the GNLS in the form 

  
( )

2 4 3
2

1 2 3 42 4 3

2 2

5 63 ,

E E E Ei α α α E E α
z t t t

E E Eα α E
t t

⎛ ⎞∂ ∂ ∂ ∂= + + + +⎜ ⎟
∂ ∂ ∂ ∂⎝ ⎠

∂ ∂+ +
∂ ∂

 (37) 

where the real parameters ( )1, ,6iα i = …  have the 
following physical interpretations: 1α  corresponds to the 
group velocity dispersion (GVD), 2α  to the four-order 
dispersion (FOD), 3α  to self-phase modulation (SPM), 4α  
to third-order dispersion (TOD), 5α  to self-steepening (SS) 
and 6α  to the self frequency shift (SFS) arising from 
stimulated Raman scattering (SRS). Thus in comparison 
with Eq. (25), the FOD is included. In order to find 
traveling wave solutions of Eq. (37), we use the developed 
Jacobi elliptic function expansion method described above. 
Firstly, we look for the electric field in the form           

     ( ) ( ) ( )[ ] 0, exp , .E z t u ξ i kz ωt ξ ct λz z= − = − +   (38) 

Substituting (38) into (37) we obtain 

( )

( ) ( )

( )

4 4 2 2 3 3
2

2 2 3 2 3
1 3 5

3 2 3 2 2
4 6

'

"" 6 '' 4 ' "'

" 2 ' 3 '

"' 3 ' 3 " 2 '.

λu iku

iα c u ω u c ω u i cω u c ωu

iα c u icωu ω u iα u α cu u iωu

α c u cω u i ω u c ωu α cu u

− + =

⎡ ⎤= + − + − +⎣ ⎦

+ − − + − +

⎡ ⎤+ − + − +⎣ ⎦

(39) 

 Separating the real and imaginary parts of this equation 
leads to the following system of equations 

( ) ( )

( )

2 3
3 4 2 4 1 2

2
5 6

4 ''' 3 2 4 '

3 2 ' 0,

c α α ω u λ a cω α cω α cω u

α α cu u

+ + − + − +

+ + =
(40a) 

 
( )

( ) ( )

4 2 2 2 2
2 1 2 4

2 4 3 3
1 2 4 3 5

"" 6 3 "

0.

c α u c α α c ω c ωα u

k α ω α ω α ω u α α ω u

+ − − +

+ − − + + + − =
 (40b) 

 Now we calculate the highest degree of derivative 
( )( )4 4 4O d u ξ dξ n= +  and the degree of the nonlinear 

term ( )( )3 3 .O u ξ n=  Equating these numbers leads to n = 2. 
It follows that the function ( )u ξ  can be found from the 
form 

  ( ) ( ) ( )2
0 1 2 .u ξ a a cn ξ a cn ξ= + +  (41) 
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 For the sake of simplicity, we suppose that 0 1 0,a a= =  
then ( ) ( )2

2 .u ξ a cn ξ=  Substituting this expression into 
Eq. (40b) gives   

  ( ) ( ) ( )6 4 2
6 4 2 0 0,A cn ξ A cn ξ A cn ξ A+ + + =  (42) 

where coefficients iA  contain different parameters invol-
ved in the problem. Equating the coefficient of the first 
term in 42 to zero leads to 4 4

6 2 248A α c a m= +  
4 2

2 224 0.α c a m =  Because a2, m, c should be different from 
zero, we have a2 = 0. This means that if the term FOD is 
taken into account, the traveling wave solutions do not 
exist. We conclude that for the existence of solutions in this 
type, the orders of dispersion higher than three should not 
be taken into account. Then we can rewrite (40a) and (40b) 
in the form (with 2 0)α =  

  
( )

( )

3 2
4 4 1

2
5 6

3 2

3 2 0

c u''' c c u'

cu u' ,

α λ α ω α ω

α α

+ − + +

+ + =
 (43a) 

 

       
( ) ( )

( )

2 2 2 3
1 4 1 4

3
3 5

3

0

c c u'' k u

u .

α ωα α ω α ω

α α ω

− + − − + +

+ − =
   (43b) 

 Differentiating two sides of Eq. (43b) with respect to 
the ξ gives us  

  

( )
( )
( )

( )

2 3
1 4

2 2 4
1

3 5 2
2 2

1 4

3

3 0
3

k
u''' u'

c c

u u' .
c c

α ω α ω

α ωα

α α ω

α ωα

− − +
+ +

−

−
+ =

−

 (44) 

 Comparing (44) with (43a) leads to formulas for ω and 
k:  

 ( ) ( ) 1
1 5 6 3 4 4 5 63 2 3 6 ,ω α α α α α α α α −= + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   (45) 

 ( )2 2 3
4 1 1 4

4

1 3k c c .
c

λ α ω α ω α ω ω α
α

= − − + − +   (46) 

 Then Eqs. (43a), (43b) reduce to 

  3 0u'' Au Bu ,+ + =   (47) 

where  

  
2

5 61 4
2 2

4 4

3 22 3
;

3
A B .

c c
α αα ω λ α ω

α α
++ −

= =   (48) 

 Now, we use the formalism described above for 
Eq. (47). Firstly, we calculate ( )2 2 2O d u d nξ = +  and 

( )( )3 3O u n.ξ =  Then n = 1 and we can write ( )u ξ  in the 
following form: 

  ( ) ( )0 1u a a cn .ξ ξ= +   (49) 

 Substituting (49) into (47) and equating the coefficients 
of all powers of cn(ξ) to zero yields the values of unknown 
parameters a0, a1, c, λ. We have performed this step by 
MAPLE and obtained: 

  
4

0 1
6 5

2 2 2 2
4 1 4 4

60
2 3

2 2 3

a , a mc,

m c c ,

α
α α

λ α α ω α α ω

= =
+

= − − + +

,  (50) 

while c is an arbitrary constant and m is the modulus 
number of the Jacobi elliptic functions. Then the traveling 
wave solutions of the propagation Eq. (37) have the 
following form  

( ) ( )

( )

4

6 5

2 2 2 2
4 1 4 4 0

6 exp
2 3

2 2 3

E z,t mc. i kz t

cn ct m c c z z ,

α ω
α α

α α ω α α ω

= −⎡ ⎤⎣ ⎦+

⎡ ⎤− − − + + +⎣ ⎦

 (51) 

where the expressions for k, ω are given by (45) and (46). 
When m tends to 1, we obtain a bright soliton solution 

  
( ) ( )

( )

4

6 5

2 2
4 1 4 0

6 exp
2 3

sech 2 3

E z,t c i kz t

ct c z z .

α ω
α α

α α ω α ω

= −⎡ ⎤⎣ ⎦+

⎡ ⎤− − − + +⎣ ⎦

 (52) 

Now instead of (49) we use the ansatz  

  ( ) ( )0 1u a a snξ ξ= + . (53) 

By substituting (53) into (47) we obtain 

   
4

0 1
6 5

2 2 2 2
4 1 4 4

6
0 ,

2 3

2 3 ,

a , a mc

c m c

α
α α

λ α α ω α α ω

−
= =

+

= − + +

  (54) 

while c is also an arbitrary constant. Then the solution of 
Eq. (37) has the following form: 

 
( ) ( )

( )

4

6 5

2 2 2 2
4 1 4 4 0

6 exp
2 3

2 3

E z,t mc. i kz t

sn ct c m c z z ,

α ω
α α

α α ω α α ω

−= −⎡ ⎤⎣ ⎦+

⎡ ⎤− − + + +⎣ ⎦

 (55) 

where the expressions for k, ω are given by (45) and (46). 
When the modulus number m tends to 1 we have a dark 
soliton solution in the following form: 

( )

( ) ( )

4

6 5

2 2
4 1 4 0

6
2 3

tanh 2 2 3 exp

E z,t c

ct c z z i kz t .

α
α α

α α ω α ω ω

−=
+

⎡ ⎤− − + + −⎡ ⎤⎣ ⎦⎣ ⎦

 (56) 
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Fig. 3. Bright soliton (52) with c = 2, α1 = –0.5, α3 = 1, α4 = 1/24, 

α5 = 0.8, α6 = 0.5 and z0 = 0 
 

 Fig. 4. Bright soliton (52) with c =3, α1 = –0.5, α3 = 1, α4 = 1/24, 
α5 = 0.8, α6 = 0.5 and z0 = 0 

  

 Fig. 5. Dark soliton (55) with c = 2, α1 = –0.5, α3 = 1, α4 = –1/24, 
α5 = 0.8, α6 = 0.5 and z0 = 0 

 

 
Fig. 6. Dark soliton (55) with c = 3, α1 = 0.5, α3 = 1, α4 = –1/24, 

α5 = 0.8, α6 = 0.5 and z0 = 0 

 Our expressions (52) and (56) are just the results pre-
viously obtained by several authors (e.g. the formulas (9), 
(12) in [12] and (56), (58) in [31]). We demonstrate these 
for some values of parameters involved in Figures 3-6.  
 
II.6. Variational Method 

 The Variational Method (VM) is a powerful tool in 
finding multidimensional soliton solutions of nonlinear 
optical systems or Bose-Einstein condensations. In the 
some problems considered here, we present the good 
agreement between predictions of variational method and 
direct numerical calculations. It is interesting to note that  
the estimate obtained from a simple variational model can 
be in good agreement with numerical results even for 
complicated systems.  
 The main idea of the variational method is to replace 
the nonlinear partial differential equation (we illustrate this 
following the example of the Nonlinear Schrödinger 
equation – NLS which is derived above and becomes one 
of the basic equations of modern mathematical physics) 
with a system of ordinary differential equations (ODEs) – 
which are much easier in considerations. In the case of 
multidimensional system the original NLS is even very 
hard to solve numerically, so that the VM is used for giving 
us brief information about the system and a good hint for 
performing numerical confirmation. The VM used for 
finding optical solitons has been initiated by the papers of 
Anderson et al. [32] and reviewed perfectly by Malomed 
[33]. Within Lagrangian formalism, the evolution equation is 
derived from minimal principle of the action functional S:  

  S Ldt= ∫  (57) 

where 

  L dxdy.= ∫I  (58) 

L is known as Lagrangian while I  is called Lagrangian 
density, t is evolution variable and x, y are spatial variables. 
The Lagrangian density is functional of the wave-function 
(or the slowly varying amplitude in nonlinear optics) of the 
system, its partial derivatives with respect to above 
variables and their corresponding complex conjugates:  

  ( )t t x x y y, *, , *, , * , * .ψ ψ ψ ψ ψ ψ ψ ψI =I  (59) 

The condition of extremum of the action äS/äř∗ = 0 leads 
to Euler-Lagrange equation of the form: 

  0
t x y

.
t * x * y * *ψ ψ ψ ψ

∂ ∂ ∂ ∂ ∂ ∂ ∂+ + − =
∂ ∂ ∂ ∂ ∂ ∂ ∂

I I I I   (60)  
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 Tis equation is the evolution equation of our system 
(NLS).  
 The VM is applied when we manipulate directly the 
Lagrangian L instead of solving Eq. (60). The variational 
calculation begins with postulating a trial function (ansatz). 
The ansatz contains a set of variational parameters Xi(t) 
that are functions of the evolution variable t.  
     The perspective ansatz is substituted into the Lagrangian 
density, and the effective Lagrangian ( )( )eff iL X t  is ob-
tained by doing integration. Substituting the effective 
Lagrangian into Equation of the type (60) we obtain finally 
a set of ODEs:  

   eff eff 0
it i

L Ld .
dt X X

∂ ∂− =
∂ ∂

             (61) 

Therefore, the VM reduces complex dynamics described by 
NPDE to a relatively simple system of ODEs governing 
evolution of the variational parameters.  
 VA provides a convenient framework to study stationary 
solutions that correspond to the fixed points of the Eq. (61). 
The fixed points can be found by setting 0idX dt =  and 
reducing the ODEs to a system of algebraic equations. 
Stability of fixed points against small pertubations that can 
be determined by linearization of Eq. (61) around the fixed 
points, provides an indication of the stability of the 
corresponding stationary solutions.  
 We illustrate this general formalism by showing varia-
tional calculations for one dimensional NLS equation 
which plays the role of a background for another calcula-
tions in several papers of nonlinear optics.  
 The NLS equation reads (this equation is written in 
“non-optical” notation with the interchange between 
temporal and spatial variables, we consider attractive inter-
action, so that g1D > 0):  

  2
1

1
2t yy Di g ,ψ ψ ψ ψ= − −  (62) 

where we assume that norm of the wavefunction is equal to  

  2 dy N .ψ
∞

−∞

=∫  (63) 

By doing proper rescaling one can easily prove that, in this 
case, there is only one governed parameter ë1D = g1DN.  
 The Lagrangian density has the following form:  

  ( ) 2 4
1

1
2 t t y D

*i * g .ψ ψ ψ ψ ψ ψ⎡ ⎤− − +⎢ ⎥⎣ ⎦
I =  (64) 

We introduce an ansatz of the Gaussian form  

( ) ( )
( )

( ) ( )
2

2
1exp

2
yy,t A t ib t i t ,

V t
ψ ϕ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (65) 

with variational parameters: amplitude A(t), chirp b(t), over-
all phase ( )tϕ  and width V(t). By substituting ansatz (65) 
into our Lagrangian density and integrating over y we 
obtain the effective Lagrangian 

  
3 2 3 2

2 11
4 4 4 2 2

DbV b V g A VL A V .
V

π ϕ
⎡ ⎤

= − − − − +⎢ ⎥
⎣ ⎦

�
 (66) 

 It leads to the Euler-Lagrange equations of variational 
parameters: 

  

2
1

2

1
3 2

1
42 4

1
2

D

D

g A VV ,
V

gV ,
V V

Vb .
V

ϕ

π

= − −

= −

=

��
�

�

�

 (67) 

 The Equation (62) conserves the total norm, therefore 
we have additional equation which interprets this fact:  

  2 constA V ,=  (68) 

and which is related to the norm of the ansatz 

  2 2 Ndy A V N A .
V

ψ π
π

∞

−∞

= = ⇒ =∫  (69) 

 In the case of stationary solutions, we set 0V V .= =�� �  
These conditions can be satisfied when 

  
1

2

D
V

g N
π=  (70) 

and b = 0.  
 Here we should notice that for the stationary solutions 
one can write:  

  ( ) ( ) ( )1exp Dy,t y i tψ ϕ μ= − , (71) 

where µ1D stands for eigenvalue of the solution. In non-
linear optics this eigenvalue corresponds to the wave-
vector of soliton and in the theory of Bose-Einstein 
condensates it becomes chemical potential. Here the soliton 
is a bound state so that its eigenvalue should be negative. 
From the Euler Lagrange Eq. (67) we can immediately 
evaluate such eigenvalue. By substituting V into the 
equation for phase we obtain  
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2 2
1

1
3

8
D

D
g N .ϕ μ

π
= − =�     (72) 

Finally, within VM the soliton solution reads: 

 ( )
2 2 2 2

1 21 13exp
4 82

D D DN g N g g Ny,t y i t .ψ
π ππ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
    (73) 

 As it has been emphasized above, the one dimensional 
NLS equation is fully integrable. It can be solved exactly 
by means of the inverse scattering technique [5]. The single 
soliton solution has the form: 

 ( )
2 2

1 1 1sech exp
2 2 8

D D DN g Ng g Ny,t y i t .ψ
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (74) 

Obviously, the Euler-Lagrange Equations (67) enable us to 
investigate dynamics of the system if the initial values of 
variational parameters A(0), b(0), φ (0) and V(0) are given. 
The VM which is using Lagrangian density (64) and ansatz 
(65) is known as dynamical approach. It can be applied to 
more complicated processes, for example, soliton collisions 
(for example in [33], Chapter IV) .  
 If we are only interested in the static case, it means that 
we search for stationary solutions (71) and their stability, 
then instead of using Lagrangian density (64) and ansatz 
(65) one can adopt simpler Lagrangian density  

  
22 4

1 1
1 1
2 2D y Dgμ ψ ψ ψℑ = − +  (75) 

and ansatz:  

  ( )
2

12exp
2 D
yy,t A i t .
V

ψ μ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

  (76) 

 Strictly speaking, the functional (75) is not full 
Lagrangian density but a potential energy. Here the kinetic 
term is dropped out because we are not interested in 
dynamics. The chemical potential µ1D plays a role of 
Lagrange multiplier. Based on the minimal principle of 
action one can easily proof that the functional (75) leads to 
the stationary NLS equation:  

  2
1 1

1
2D yy Dg .μ ψ ψ ψ ψ= − −  (77) 

 The VM based on the functional (75) and ansatz (76) is 
called the stationary approach.  
 The effective Lagrangian takes the form:  

  
2

2 1
1 2

1
4 2 2

D
D

g AL A V
V

π μ
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

. (78) 

 The Euler-Lagrange equations of variational parameters 

A and V read:  

  

3
1

1 2

2 4
2 1

1 2

1 42 0
4 2 2

0
4 2 2

D
D

D
D

g A VAV ,
V

A g AA .
V

μ

μ

⎡ ⎤− + =⎢ ⎥⎣ ⎦

+ + =

 (79) 

 The relation between norm (63) and parameter A in (76) 
is also similar to (69). From such equations we immedi-
ately reproduce the above results:  

  
1

2 2
1

1

2

3
8

D

D
D

V ,
g N

g N .

π

μ
π

=

= −

 (80) 

 Instead of using Lagrangian, we can apply similar pro-
cedures of variational calculations for Hamiltonian. Within 
the stationary approach, the Hamiltonian density reads:  

  
2 4

1
1 1
2 2y Dg .ψ ψΗ = −  (81) 

 One can easily prove that this Hamiltonian density de-
scribes the same equation of motion as (77). The adopted 
ansatz for this case concerning the relation (63) has the 
following form:  

  ( )
2

12exp
2 D

N yy,t i t .
V V

ψ μ
π

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 (82) 

 After performing integration over y we obtain effective 
Hamiltonian: 

   
2

1
24 2 2

DN g N .
V V π

Η = −  (83) 

 The Euler-Lagrange equation of parameter V takes the 
form: 

   
2

1
2 32 2 2
Dg N N .

V V Vπ
∂Η = −
∂

  (84) 

 This equation has solution  

  
1

2

D
V

g N
π=  (85) 

which is identical to (70). The value of µ1D in the ansatz 
(82) can be evaluated by doing the following calculation:  

  

4
2 21
1

1 2

1
32

8

*
yy D

D
D

g dy
g N .

dy

ψ ψ ψ
μ

πψ

⎛ ⎞+⎜ ⎟
⎝ ⎠= − = −
∫

∫
 (86) 



Cao Long Van, Bui Dinh Thuan, Piotr Goldstein, Nguyen Viet Hung, Doan Hoai Son 12

 The conclusion of stability is based on checking second 
derivative of the functional (83) with respect to V at sta-
tionary point (85): 

  
2 2 2 4 5

1 1
2 4 3 2

3 0
2 2 V 8

D DN g N g N .
V V π π

∂ Η = − = >
∂

 (87) 

 This condition corresponds to the case of the stable 
solution. At this point the Hamiltonian has a local mini-
mum.  
 In Sec. IV we will apply the formalism of VM de-
scribed here  to consider the collapse of optical solitons. 
 
 

III.  NUMERICAL  METHODS  TO  SOLVE   
THE PULSE  PROPAGATION  EQUATION 

 
III.1. Split-Step Algorithm of second order 

 Firstly we present Split-Step Algorithm for finding ap-
proximate solutions of the pulse propagation equation. 
Equation (25) can be written in the form 

   ( )( )U ˆ ˆL N U U
ξ

∂ = +
∂

,   (88) 

 where L̂  and N̂  are the linear and nonlinear operator re-
spectively acting on the envelope function. 
 By some calculations performed in [9] we obtain the 
following formula describing Split-Step algorithm for the 
problem (88): 

( )

( )( )( ) ( )exp exp exp
2 2

U ,

ˆ ˆ ˆL N U , L U , .

ξ ξ τ

ξ ξξ ξ τ ξ τ

+ Δ ≈

Δ Δ⎛ ⎞ ⎛ ⎞≈ Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(89) 

 This expression permits us to specify the approximate 
value of the envelope function in the location ξ ξ+ Δ  from 
its value in the .ξ  
 For calculating the value of the envelope function by 
(29) we should know how the action of the linear and 
nonlinear operators on the envelope function is calculated. 
Because these operators contain the time partial derivatives 
one can calculate them just by Fourier Transform. 
 We take the value of the time variable in the finite 
interval [a, b] which is so large that its borders do not have 
any influence on the final results of the calculations. We 
assume now the periodic condition on borders that 

( , ) ( , )U a U bξ ξ= for [ ]00, .ξ ξ∈  For convenience, we change 
the variable in (29) in such a way that it normalizes the 
interval [a, b] into the interval [0, 2 ]π  and we divide this 
interval into N points with distance between them 

2 / .Nτ πΔ =  We denote these points as 2 / ,j j Nτ π=  

0,1,2,..., .j N=  Then we have the Discrete Fourier Trans-
form of the series ( ),U jξ τ −  as follows: 
 

( ) ( )

( ) ( )
1

0

, ,

1 , exp , 1.
2 2

k k j

N

j k j k
j

U F U

N NU i
N

ξ ω ξ τ

ξ τ ω τ ω
−

=

⎡ ⎤= =⎣ ⎦

= − − ≤ ≤ −∑
 (90) 

 The Inverse Fourier Transform is defined as follows: 

  

( ) ( )

( ) ( )

1

/2 1

/2

, ,

, exp , 0,1,2,..., .

j j k

N

k k j
k N

U F U

U i j N

ξ τ ξ ω

ξ ω ω τ

−

−

=−

= =⎡ ⎤⎣ ⎦

= =∑
  (91) 

F here denotes Fourier Transform and F–1 denotes its 
inverse transform. Calculations in (90) and (91) are made 
effective by the fast algorithm FFT [25]. The time partial 
derivatives of the envelope function in both the linear and 
nonlinear operator (27) and (28) can be easily calculated by 
multiplying the Fourier coefficients ( ), kU ξ ω  by powers of 

kiω−  corresponding to the order of derivative and then 
taking the Inverse Fourier Transform. For example, second-
order derivative of the envelope function in the point 
( ), jξ τ  can be calculated as ( )1 2 , .j k k jF F Uω ξ τ− ⎡ ⎤⎡ ⎤− ⎣ ⎦⎣ ⎦    
 
 
III.2. The fourth order Runge-Kutta algorithm 

 Equation (25) can be also solved by using the Runge-
Kutta algorithm. In this method the time discretization and 
calculations of time partial derivatives are the same as in the 
previous subsection, but the spatial derivatives are cal-
culated by Runge-Kutta algorithm. What is applied here is 
the fourth order Runge-Kutta algorithm, very popular for 
solving the differential equations [16, 21, 25, 26]. 
 After using Fourier Transform for calculating the time 
partial derivatives as above, Equation (25) becomes 

  

[ ]( ) ( ) ( ) [ ]

( )( )

( )

2 3
3

22

21

2

1

R

d iF U i i F U
d

iN iS i F U U

F UF i F U

ω ω δ
ξ

ω

τ ω−

⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

⎡ ⎡ ⎤+ + − +⎢ ⎣ ⎦⎣

⎡ ⎤⎡ ⎤⎡ ⎤− −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 (92) 

Denoting 

  [ ]
2

3
3exp

2
iV i F Uω ω δ ξ

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (93) 

and after some calculations [9] we obtain the value of the 
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envelope function in the location :ξ ξ+ Δ  

 
( )

2
1 3

3

( )

( ) exp .
2

U

iF V i

ξ ξ

ωξ ξ ω δ ξ ξ−

+ Δ =

⎡ ⎤⎛ ⎞⎛ ⎞
= + Δ − + + Δ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 (94) 

 Errors in applying (94) are of orders ( )5 .ξΔ  In 
comparison to calculations performed by (89), formula (94) 
has a higher accuracy, although the computational time is 
longer because the number of calculation steps is very large. 
 In the simulations performed below we have used both 
of the algorithms presented above and compared the 
obtained results. They are almost the same when the interval 

ξΔ  is relatively small. 
 At first we compare the numerical simulations per-
formed by using algorithms introduced above with analy-
tical results obtained in some special cases. In this way we 
test the accuracy of these numerical algorithms. We will 
compare our results with the results of the NLS equation for 
the case of picosecond pulses. We consider a very important 
phenomenon: propagation of the solitons [2, 11]. 
 According to the Inverse Scattering Transform Method, 
when the higher-order parameters 3, Sδ  and Rτ  in Eq. (25) 
equal zero and the initial shape of the pulses is the function 
of secant hyperbolic form, the equation will have the soliton 
solutions [27, 30]. These solitons exhibit the periodic 
feature with a characteristic period during propagation. 
With the exception of the case of the first-order (temporal) 
soliton (called the fundamental soliton) when the amplitude 
of the envelope function remains unchanged during 
propagation, higher-order solitons change in shape and 
spectrum in a complicated manner, but their shape follows 
a periodic pattern so that the input shape is recovered at the 

propagation period / 2.ξ π=  The order of soliton is deter-
mined by parameter N in (25). When the value of N is larger 
(higher-order solitons), the envelope changes in a more 
complicated way over one soliton period. 
 We simulated the pulse evolution for the first-order and 
tenth-order (N = 10) solitons over one soliton period with 
the input pulse having an initial amplitude [2]: 

  ( ) ( )0, sechU Nτ τ= U  (0, t ).                (95) 

 Figure 7 shows these results by plotting the pulse inten-
sity ( ) 2, .U ξ τ  
 In Figure 7(a) the envelope function of the pulse has an 
unchanged shape in the propagation process conserving the 
initial form (95). In Figure 7(b) the envelope function has 
a complex evolution in propagation, but in the end of the 
period it comes back to the initial shape and this process 
repeats in the next periods. These results are in good agree-
ment with analytical predictions about the periodic feature 
in the evolution of the envelope function. Analytical 
expressions for the higher-order solitons are very compli-
cated and only in the case of the second- and third-order 
they are explicitly given in literature [11, 27, 30], but for the 
tenth-order soliton considered above it is presented only by 
numerical results. 
 Moving on, we consider the case of multiple soliton 
propagation. The input amplitude for a soliton pair entering 
the medium is expressed by 

 ( ) ( ) ( ) ( )1 20, sech sech expU r r iτ τ τ τ τ θ= − + +⎡ ⎤⎣ ⎦ , (96) 

where r is the relative amplitude of the two solitons and θ  
is the relative phase between them [2, 11, 21, 22]. Analyti-
cal results [27, 30] show that neighboring solitons either 
come closer or move apart because of the nonlinear inter-

 
Fig. 7. Change of the pulse intensity in the propagation process for the case of fundamental (a) and tenth-order solitons (b) over one      

soliton period  / 2ξ π=  
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action between them. The time of soliton collisions depends 
on both the relative phase θ  and the amplitude ratio r. Soli-
tons collide periodically along the distance of propagation, 
the collision period is usually much greater than the soliton 
period. After the collision the shape of the wave amplitudes 
remains unchanged and stable. This effect is similar to the 
collision of the rigid particles, so the name “soliton” reflects 
the particle feature of the nonlinear waves [2, 11]. 
 The following calculations are performed for the 
collision between the fundamental solitons and the higher-
order solitons. The parameters in (96) are chosen as r = 1, 

0θ = (equal-amplitude and in-phase case) and 1 2τ τ=  
(initial spacing). Numerical results are displayed in Fig. 8. 
 Figure 8(a) displays the collision process between two 
fundamental solitons, where 1 2 3.5τ τ= =  and the propa-
gation distance 90.ξ =  Our results are in good agreement 
with the calculations in [11, 22]. 

 
III.3. Imaginary-time Method 

 Imaginary time method (ITM) is a powerful tool used to 
generate stationary states of quantum systems. Here we 
first describe background of this algorithm for the linear 
cases and then extend it to the nonlinear situations. Strictly 
speaking, we have no rigorous proof for the extension but 
in fact the ITM works very efficiently. In this subsection, 
we will use notations related to the quantum theory of 
Bose-Einstein condensates (BECs), but all results could be 
transferred from atom optics to nonlinear optics by analogy 
between the propagation equation in the Kerr medium 
derived above and the Gross-Pitajevski equation for BECs. 
 For a given Hamiltonian Ĥ (assumed to be bound from 
below), the eigenvalue problem is written as follows 

  ( ) ( )ˆ , , .j j jH x y E x yϕ ϕ=   (97) 

Applying the ITM for that Hamiltonian, we start by intro-
ducing an initial wave-function  Ψ0(x, y). The algorithm drives 
this wave function into the ground state ( )0 , .x yϕ  The for-
mal expansion of Ψ0(x, y) in the complete set of {φj(x; y)} 
is 

  ( ) ( )0
0

, , .j j
j

x y a x yϕ
∞

=
Ψ = ∑  (98) 

Assuming ( )0 ,x yΨ  as wave-function at time t = 0, the 
time evolution is performed by an unitary operator ˆ ,U  
which is acting as 

   

( ) ( ) ( )

( )

( )

0

ˆ

0

0

ˆ, , ,

,

, .j

i Ht
j j

j

i E t
j j

j

x y t U t x y

e a x y

a e x y

ϕ

ϕ

∞−

=

∞ −

=

Ψ = Ψ =

= =

=

∑

∑

=

=

  (99) 

 The name of the method originates from the implement-
ing “time evolution” in the imaginary regime it τ⇒  (t is 
real time) 

  ( ) ( )
0

, , , .
jE

j j
j

x y t a e x y
τ

ϕ
∞ −

=
Ψ = ∑ =  (100) 

    Unlike real time evolution, the “imaginary time evolution” 
is realized by exponential damping-factors: / .jE τ =  The 
terms correspond to high energies are damped faster than 
low energy ones and the ground state is damped least. For 

 
Fig. 8. Collision between two fundamental solitons over the propagation distance 90ξ =  (a) and between two second-order solitons 

over the propagation distance 10ξ =  (b) 
 



Propagation of Ultrashort Pulses in a Nonlinear Medium 15

τ → ∞  all components approach zero; therefore, to avoid 
this result of a naive, one has to re-normalize the wave 
function after each time step τΔ  (to guarantee the unitary 
evolution in every step of calculations). By doing so, the 
wave-function after n time steps reads 

( ) ( )
/

2 2 /0
0

, , , .
j

k

E n
j

j
E nj kk

a e
x y n x y

a e

τ

τ
τ ϕ

− Δ∞

∞ − Δ=
=

Ψ Δ = ∑
∑

=

=
   (101) 

 As { }0 min ,kE E=  the denominator of the above 
expression behaves like 0 0

2 2 / /
0 0

E n E na e a eτ τ− Δ − Δ== =  at 
the limit .n → ∞  Hence 

  ( ) ( )0
0

0
lim , , , .
n

ax y n x y
a

τ ϕ
→∞

Ψ Δ =    (102) 

Thus, this algorithm converges any initial wave function 
( )0 ,x yΨ  to the ground state ( )0 , .x yϕ  

 Now we turn to nonlinear cases. We assume that 
evolution equation of quantum system takes the form 

 ( ) ( ) 21 , ,
2t xx yyi U x y gΨ = − Ψ + Ψ + Ψ + Ψ Ψ   (103) 

which can be rewritten as 

  2ˆ ˆ .t i D N⎛ ⎞⎡ ⎤Ψ = − + Ψ Ψ⎜ ⎟⎣ ⎦⎝ ⎠
  (104) 

which has the same form as the equation (88). Here D̂ and 
N̂ are linear and nonlinear operators respectively given by 

  
2 2

2 2
1ˆ ,
2

D
x y

⎛ ⎞∂ ∂= − +⎜ ⎟
∂ ∂⎝ ⎠

  (105) 

  ( )2 2ˆ , .N U x y g⎡ ⎤Ψ = + Ψ⎣ ⎦    (106) 

 Applying the ITM for the Eq. (104), we introduce an 
trial wave-function Ψ0(x, y) with given norm 

  ( ) 2
0 , .x y dxdy N

∞ ∞

−∞ −∞
Ψ =∫ ∫   (107) 

 Evolution of the system in small interval time tΔ  is 
approximated to 

  
( ) ( ) ( )

( )

ˆ ˆ
0

ˆ ˆ
0

, , ,

, .

t D N

i tD i tN

x y t e x y

e e x y

−Δ +

− Δ − Δ

Ψ Δ ≈ Ψ ≈

≈ Ψ
        (108) 

 The basic idea of this approximation is that over suf-
ficiently small interval tΔ  the linear and nonlinear terms 
can be assumed to act independently. 
 Similar to the linear case, if we implement “time evo-
lution” in the imaginary regime: i t τΔ ⇒ Δ then the result 
takes 

  ( ) ( )ˆ ˆ
0, , , .D Nx y e e x yτ ττ −Δ −ΔΨ Δ ≈ Ψ    (109) 

 Again, we observe exponential damping of amplitude 
of the wave-function. To avoid this fact, we renormalize 
the wave-function as the following way 

  

( )

( )
( )2

0

, ,

, , .
, ,

x y

N x y
x y dxdy

τ

τ
τ

∞ ∞

−∞ −∞

Ψ Δ =

= Ψ Δ
Ψ Δ∫ ∫

�

  (110) 

 This new wave-function is used as Ψ0(x, y) for 
evolution in next interval time .τΔ  In applications, we 
repeated the calculations (109) and (110) until convergence 
is reached. Notice that in nonlinear cases the superposition 
(98) is invalid, therefore we can not state that the obtained 
wave-function Φ(x, y) is ground state of the system. In 
general, one can proof that the Hamiltonian describing the 
equation (103) is not bound from below. That means the 
wave-function Φ(x; y) is a stationary state of the considered 
system. It corresponds to a fixed point of the Hamiltonian 
in functional space. 
 In the next section we will use this numerical method to 
consider a very interesting phenomenon, namely the 
collapse of the pulse in the Kerr medium. The formalism of 
ITM will be used as a test for the variational approach 
described in II.6. 
 
 

IV.  DYNAMICS  OF  COLLAPSE  
OF OPTICAL PULSES IN KERR MEDIUM 

      
     Consideration of the self-focusing effect in nonlinear 
propagation of light is interesting both theoretically and 
practically. Theoretically, because sometimes we can see 
dramatic concurrence between different nonlinear effects of 
the pulse propagation in the nonlinear medium. When the 
self-focusing effect dominates over the other effects as the 
dispersion, diffraction etc. the amplitude of the optical 
pulse (soliton) increases drastically. On the other hand, if 
we reach a critical point the pulse completely collapses. In 
practice, this phenomenon is very dangerous from the prac-
tical point of view, because it usually destroys the optical 
material. 
 As it has been emphasized above, we use here an 
analogy between nonlinear optics in Kerr media and the 
Bose-Einstein condensate (BEC) system [4]. As it has been 
mentioned above, a common ground here is the nonlinear 
Schrödinger equation, which with the proper substitution of 
variables describes both types of phenomena. In nonlinear 
optics it is a light propagation equation that relates the 
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signal at the end of the nonlinear crystal to the signal at the 
input face of the medium. In the Bose-Einstein condensate 
dynamics it is the called Gross-Pitajevskii equation. Hence, 
all results of the consideration in this section can be 
transferred into the BEC systems [35]. Thus, for some 
values of the nonlinear coupling constant we can have the 
collapse and the explosion of the BEC [36]. Such collapse 
of the self-focusing waves described by the nonlinear 
Schrödinger equation (NLSE) in nonlinear optics and 
plasma turbulence has been reviewed in [37]. In this 
section we use the VM and we will predict the critical point 
in which the optical pulse collapses. One should keep in 
mind that when we apply the VM the choice of the trial 
functions becomes essential. In practice, we shall concen-
trate on two cases. They correspond to the Gaussian Ansatz 
(GA) and the Secant Ansatz (SA), as well, and we have 
performed variational calculations for such two types of the 
trial functions. Moreover, to confirm numerically our ana-
lytical predictions we use the time imaginary method 
(Subsection III.3). We see that the secant trial function is 
more proper. 
 
IV.1. Variational approximation 

 In Section II, using a method based on a consistent and 
mathematically rigorous expansion of the linear dispersion 
relation with included nonlinear optical response of the 
medium, we derived a general propagation equation for 
light pulse in an arbitrary dispersive nonlinear medium 
which is called the Generalized Nonlinear Schrödinger 
Equation (GNLS). In the case of Kerr media we have a well-
known cubic nonlinearity which leads to the well-known 
Nonlinear Schrödinger Equation (NLS). In this paper we 
concentrate on the model of two-dimensional (2D) NLS. this 
model describes the propagation of the pulse in a Kerr 
medium in presence of a harmonic potential [4]: 

  ( )
2 2

21
2 2t xx yy

xi gωΨ = − Ψ + Ψ + Ψ − Ψ Ψ  (111) 

where g is a nonlinear coefficient. Our notations are chosen 
for easy transfer of the results to the case of Bose-Einstein 
condensates. This is a special case of the transformed NLS 
equation, so-called TNLS equation considered by Berge 
[37] (see Equation (152) in this paper). The powerful 
variational method based on choosing a proper trial func-
tion. This trial function should, of course, remain compati-
ble with the main invariants and conservation laws of the 
original NLS equation. To find soliton solutions of the 
equation given above, corresponding to the propagation of 
the pulse on the xy plane we use the following SA in two 
directions x and y: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )2 2

, , sec h sec h

1exp ,
2

x yx y t A t
W t V t

i t b t x t yϕ β

⎛ ⎞ ⎛ ⎞
Ψ = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎧ ⎫× + +⎨ ⎬
⎩ ⎭

   (112) 

where the variational parameters ( ) ( ) ( ) ( ), , , ,A t t b t tϕ β  
( )W t  and V(t) stand for the amplitude, total phase, spatial 

chirp coefficients, transverse widths along x and y di-
rections, respectively. Moreover, we use in VA scheme the 
Lagrange function of the following form [38]: 

  
( ) 2* *

2 2 42 2

1
2

.

t t x

y

L dxdyi

x gω

∞ ∞

−∞ −∞

⎡= Ψ Ψ − Ψ Ψ − Ψ +⎣

⎤− Ψ − Ψ + Ψ ⎥⎦

∫ ∫
    (113) 

 Consequently, we apply our ansatz to the above 
Lagrange function and integrate the result over spatial 
variables x and y. Finally, we obtain the following function: 

  

( ) ( )( )

2
2

2 2

2
2 2 2 2 2

2 1 1 14 '
9 6

' ' .
24

gAL A WV
W V

V W b b

ϕ

π β β ω

⎡ ⎛ ⎞= − − + +⎢ ⎜ ⎟
⎝ ⎠⎣

⎤
− + + + + ⎥

⎦

 (114) 

 At this point we are in the position to derive Euler-
Lagrange equations for our parameters (treated as a dyna-
mical variables) in the form of the following system of 
differential equations: 

  ' ,Wb
W

=     (115) 

  ' ,V
V

β =   (116) 

  2
2 3 2 2
4 2" ,

3
gW W

W VW
ω

π π
= − −    (117) 

   2 3 2 2
4 2" ,

3
gV

V WVπ π
= −      (118) 

( )
2

2 2
2 2

1 1 1' " " ,
9 6 4

g W WW VV
WV V W

πϕ ω
⎡ ⎤

= − + + + +⎢ ⎥
⎣ ⎦

(119) 

and  
  2 const.A WV =   (120) 
 Moreover, since for our ansatz we have 

  2 24dxdy A WV
∞ ∞

−∞ −∞

Ψ =∫ ∫    (121) 

we can derive that 
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  24 1.A WV =   (122) 

 At this point we shall concentrate on the stationary 
regime. Therefore, for the above differential equations we 
set ' " 0W W= =  and ' " 0.V V= =  As a result, we obtain 
the following solutions for our parameters: 

  0,bβ = =   (123) 

  6 ,V W
g

=     (124) 

  
2

4
2 2

36 .
9

gW
π ω

−=   (125) 

 One can see that the form of the last formula leads to 
the necessary condition for the existence of solitons: the 
value of nonlinearity parameter g should satisfy the 
inequality g < 6. Therefore, we treat the value gc = 6 as 
a critical one, and when the value of g becomes greater 
than gc, the collapse of soliton occurs. For such a case the 
pulse will becomes very narrow and its amplitude tends to 
infinity.  
 To confirm these analytical results we apply by using 
direct numerical time imaginary method introduced in III.3. 
                        

 
Fig. 9. Soliton solution corresponding to the value of nonlinearity 
parameter which is below the critical value (g = 3). The parameter 
                                                  ω = 4 

 

 
Fig. 10. The same as in Fig. 9 but for g close to its critical value 

(g = 5.9) 

The numerical results are shown in Fig. 9, where we have 
assumed that g = 3, ω = 4 and in Fig. 10 for g = 5.9 and 
ω = 4. We see that when the value nonlinear coefficient 
becomes closed to its critical value (Fig. 10), the pulse 
becomes very sharp and narrow, contrary to the situation 
depicted in Fig. 9 (the pulse amplitude tends to infinity 
when the nonlinear coefficient approaches the critical 
value). 
 
IV.2. Optical chemical potential 
 
 At this point we come back to the soliton solution of 
our problem. This solution can be expressed as: 

  ( ) ( )2, , , ,Di tx y t e x yμ−Ψ = Φ     (126) 

μ2D is an “optical chemical potential” (OCP) which is strictly 
related to the energy of the pulse. moreover, we assume that 
Φ(x, y) is a real function of spatial variables x and y. 
 In particular, for the functions discussed here, we 
substitute expressions (124), (125) determining the widths 
of the soliton to the Eq. (119) for ϕ’ and we obtain: 

  
2

2

18' .
18 36

g

g

πωϕ −= −
−

  (127) 

 Hence the phase of soliton can be expressed as: 

  ( )
2

2

18' .
18 36

t gt dt
g

πωϕ ϕ −= = −
−

∫    (128) 

 From the above definition of the optical chemical 
potential (126), after comparing it with our ansatz, we can 
easily conclude that 

  ( ) 2Dt tϕ μ= −   (129) 

and therefore, we can write that 

  
2

2 2

18 .
18 36

D
g

g

πωμ −=
−

  (130) 

     The dependence of OCP on g and ω is displayed in Fig. 11. 
We see that its value decreases rapidly as g goes to 6, and 
moreover, as ω becomes greater and greater such decrease 
becomes more pronounced for values of g smaller than 6. 
 In the next step we derive expression for the OCP 
corresponding to GA. For that purpose we apply the results 
presented in [38]. Thus, the formula for μ2D can be written 
in the following form: 

  
2 2

2 2 2

2 .
2 4

D
g

g

ω πμ
π π

−=
−

   (131) 

y x 

y 
x 
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It is easily seen that for the case discussed here the critical 
value of nonlinearity 2 .cg π=  
                                   

 
Fig. 11. Chemical potential obtained from VA as a function  

of g and ω 
 

 
 

 
 

Fig. 12. Chemical potential as a function of the nonlinearity 
parameter g for ω = 2.5 

 
 Now, we shall again confirm our analytical results 
using numerical calculations. Thus, Fig. 12 shows the 
values of OCP as a function of g with assumption that the 
value of ω is fixed ω = 2.5 calculated numerically (circle 
marks) and derived from our analytical formulas (lines). 
The dashed line corresponds to GA, whereas the continu-
ous line to the SA. We see that the continuous line is better 
fitted to the numerical results than its dashed counterpart, 
so we can conclude that the trial secant function gives more 
accurate results than the Gaussian one. 
 
IV.3. Dynamics of the collapse 

 In this section we shall concentrate on the collapse 
phenomenon. In particular, we will discuss the case when 
g ≥  6. In this regime we have: 

  6 .V W W
g

= ≈    (132) 

 At this point we need to assume that our system has 
cylindrical symmetry. If we drop the harmonic term, we 
can write down that 

  ( )
2 3 2 3 2 3

12 24 2" .
3 3

ggW
W W Wπ π π

−
= − =  (133) 

Next, if we set that 

  
( )

2

2 6
0

3
g

λ
π

−
= >    (134) 

we get the following ordinary differential equation deter-
mining the width W(t): 

  3" .W
W
λ= −   (135) 

We can easily solve this equation assuming that W(0) = 
W0, W’(0) = 0 (for stationary solution), where the para-
meter W0 is a certain value of the initial width of the pulse. 
 Thus, after integrating the equation (135) we obtain the 
solution 

  ( )
2

0 4
0

1 tW t W
W
λ= −     (136) 

and we introduce the time of collapse tcol by demanding: 

  ( )
2

4
0

1 0.col
col

tW t W
W
λ= − =     (137) 

 Consequently, we can write that 

  
2

0 .col
Wt

λ
=      (138) 

 

 
Fig. 13. The time-dependence of the pulse width W(t) for various 
values of g for the case of collapses. The time t is scaled 
                               in the units of 2

0( 2 )Wβ β π=  
 
 
 Figure 13 shows the change of the pulse width for the 
case when the collapse occurs. We see that this width 
decreases to zero for shorter times as the value of the 
parameter g increases. Moreover, we see that the situation 

β t  
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depicted in Fig. 13 agrees with that shown in Fig. 2 on the 
page 304 of [37]. 
 
 

V.  CONCLUSIONS 
 
 In this paper we have derived the generalized nonlinear 
Schrödinger (GNLS) equation for the propagation process 
of the ultrashort pulses in the Kerr medium. The influence 
of the higher-order dispersive and nonlinear effects, espe-
cially the nonlinear effect induced by the stimulated Raman 
scattering, have been considered in detail. 
 Because the GNLS equation is strongly nonlinear, the 
problem of solving it is a difficult task. We find an exact 
analytical solution for this equation in the general case by 
using the developed Jacobi elliptic function expansion. Seve-
ral approximate methods of solving it are applied. We presen-
ted the powerful varational method and three useful numerical 
methods. Our results calculated by these methods are in good 
agreement with those obtained before by several authors. 
 In Sec. IV we have considered TNLS equation concen-
trating on the special case describing the wave collapses 
effect. In particular, this equation has been applied to 
describe light pulse propagation in a Kerr medium. Em-
ploying the variational scheme, we have shown that for the 
two cases discussed (for the secant ansatz and for gaussian 
one, as well) the wave collapse can appear. Moreover, it 
was proved that the secant trial function is more proper 
than its Gaussian counterpart. This fact is quite understand-
able because the “non-perturbed” solution is the secant 
hyperbolic solution. It should be stressed out that by the 
analogy between the propagation equation and Gross-
Pitajevski equation for Bose-Einstein condensates we can 
transfer obtained results to the case of BECs placed in 
a external harmonic potential. 
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