
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2010, 35-44

I. INTRODUCTION

 Virtualization technology is playing an increasingly
important role in the management of complex computer
systems and resource provisioning environments such as
Grids and clouds. Full exploitation of the potential of
virtualization technologies requires virtualization of com-
putational, storage and communication resources. On-
demand virtual resource provisioning, required by adapt-
able systems supporting runtime computational mobility,
introduces new, challenging requirements for the organiza-
tion of communication processes. This issue can be
resolved in the context of network virtualization provided
by server and operating system virtualization frameworks
such as Xen [5, 6] and xVM [9].
 Practical usage of these technologies in a dynamic
environment supporting runtime migration is not a trivial
task. It requires (i) deployment of a virtual network infra-
structure consisting of virtual network interfaces, bridges
and routers; (ii) mapping them onto existing physical
networking resources; (iii) proper connection to virtual
machines (VMs) or OS containers. This sophisticated de-
ployment process should be performed automatically, with
minimum human involvement. The resulting virtual-to-
physical networking resource mapping must be changed

transparently whenever VM migration takes place. These
changes should preserve not only the connectivity between
virtualized computational resources but also the required
QoS and security parameters.
 The paper analyses Xen and xVM built-in network
virtualization technologies and requirements in the context of
computational mobility in Virtual Grids. The concepts of net-
work virtualization supported by Xen and xVM/Crossbow
are presented and compared. The process of deploying
a virtual network infrastructure is described and its
automation is proposed. The aspects of virtual network
infrastructure changes resulting from VM mobility are
investigated in detail. Suitable mechanisms implemented
by the provisioning tools for VM and Zone virtual network
management running within Xen or xVM virtualization
technologies are proposed and described.

II. PROBLEM DEFINITION

 Network virtualization needs to be considered on three
layers, shown in Fig. 1. These layers are related to each
other as virtualized elements of each layer are built upon
the components provided by lower layers.

Virtualization of Grid Networking Resources
for Computation Mobility Support

Marcin Jarząb, Jacek Kosiński, Krzysztof Zieliński

Institute of Computer Science, University of Science and Technology,
al. Mickiewicza 30, 30-059 Kraków, Poland

{mj/jgk/kz}@agh.edu.pl
http://www.ics.agh.edu.pl

(Received: 5 July; revised: 29 October; published online: 23 November 2010)

Abstract: The paper analyses Grid networking resource virtualization technologies and requirements in the context of computational
mobility. The mechanisms of network virtualization supported by Xen and xVM/Crossbow are presented and compared. A network
virtualization model, consisting of three layers, is presented. Changes in virtual network infrastructures resulting from VM or zone
mobility are investigated in detail. Typical migration process scenarios are presented, in addition to system commands used prior to and
following migration in order to restore network communication. The concept of automating this process is also described.
Key words: virtualization, migration, network virtualization, tools

user
Tekst maszynowy
CMST SI(1) 35-44 (2010)

user
Tekst maszynowy
DOI:10.12921/cmst.2010.SI.01.35-44

user
Tekst maszynowy

user
Tekst maszynowy

M. Jarząb, J. Kosiński, K. Zieliński 36

 The lowest layer – Hardware Network Virtualization –
refers to networking hardware such as network interface
cards (NIC) and switches. Virtual LAN (VLAN) techno-
logy is frequently used in this layer.
 The intermediate layer – VM Interconnection Virtuali-
zation – involves computer paravirtualization. This tech-
nology allows coexistence of many VMs (instances of
different operating systems) on a single physical machine.
VMs deployed on the same computer or on different
computers should be able to communicate – thus, net-
working virtualization should be provided for this purpose.
 The topmost layer – Zone Interconnection Virtuali-
zation – concerns OS virtualization mechanisms supported
by OpenSolaris [10] and Linux OpenVZ [11]. A single OS
instance can host many containers called zones. Each zone
can have its own networking resources allocated, providing
isolation and QoS guarantees. Such virtualization intro-
duces the need for similar networking virtualization tech-
nologies as in the VM Interconnection Layer but on
a different level of abstraction.
 Network virtualization in a dynamic environment sup-
porting VM and zone migration remains a challenging
issue. In this context, virtualization has two basic require-
ments:

• Provide isolation of traffic between a different group
of VMs/zones – communications inside a group of
VMs/zones should not be visible from the outside;

• Guarantee the requested level of communications
QoS between VMs/zones inside the group – the re-
quested flow throughput between VMs/zones should
be delivered.

 The complexity of migration is related to the issue that
these requirements have to be preserved in spite of
migration procedures. Therefore, migration should strike
a balance between isolation and flow-related parameters. In

virtualized networking infrastructures, migration can be
divided into three stages:

1. Deployment of initial configuration using configura-
tion networking commands for a selected virtualiza-
tion technology. This stage should take into account
the initial allocation of VMs and communication
requirements.

2. Identification of network resources following VM
migration, related to target computer networking
interfaces and their connections via physical network
devices.

3. Generation and execution of commands to be
performed on the target machine or network devices
to re-establish networking communications with the
requested level of QoS.

 The processing of stage 2 and 3 has to accompany the
VM migration process in a dynamic environment. This
procedure refers to the VM Connection Virtualization
Layer and should be replicated in the Zone Connection
Virtualization Layer. The following section discusses the
procedure in more detail, in the context of each layer.

II.1. VM Connection Virtualization Layer

 The complexity of steps 2 and 3 of the virtualized
networking infrastructure lifecycle depends on the initial
configuration built in step 1. Analysis of virtualization
mechanisms supported for xVM and Xen points to the
following two cases:

1. A migrating VM connected to Virtual NIC (VNIC),
as presented in Fig. 2

2. A migrating VM connected to a virtual switch (Ether-
Stub) as presented in Fig. 3 – such a switch supports
only internal communications inside one computer.

 In Figure 2, the simplest scenario is considered. VM1,
VM2 and VM3 are initially located on the same physical

Fig. 1. Networking virtualization levels

Zone
Interconnetion Virtualization

Virtual Machines
Interconnetion Virtualization

Hardware
Network Virtualization

Virtualization of Grid Networking Resources for Computation Mobility Support 37

Fig. 2. VM migration process – Case 1

machine (Computer 1). Communication between these
VMs is isolated from other traffic as VMs are connected to
VLAN1 implemented on a single computer. A virtual
switch deployed over a physical NIC is used for this
purpose. It is also possible to maintain the required flow
QoS between VMs. The deployment of such an initial
configuration using Xen or xVM is not very challenging.
A problem appears, however, when VM2 needs to migrate
to another physical machine (Computer 2). Such migration
should be performed at runtime and must preserve
communication between VM1, VM3 and VM2 within
VLAN1, as well as the flow QoS. This means that the
configuration shown in Fig. 3 must be established seam-
lessly. On Computer 2, VNIC2 should be created over NIC
and assigned to VM2.
 For Case 2 (depicted in Fig. 3), the initial configuration
consists of three VMs connected with EtherStub. It is
a very efficient solution for connecting VMs on a single
physical machine. Unfortunately, it creates difficulties
during execution of steps 2 and 3. Following migration of
VM3, communication between VMs can be re-established
only if external communication is enabled for both VM1
and VM3. The only solution is to create a router in
a dedicated VM (Network Virtual Machine), having access
to NIC, and use it to connect to Computer 2. VM2 has to be
connected to VNIC2 deployed over NIC on Computer 2, as
depicted in Fig. 3. As a result, VM2 can reside in VLAN2

Fig. 3. VM migration process – Case 2

and connect to VLAN1 through the router. Both VLANs
may be assigned the same ID if necessary. It is easy to
notice that this migration procedure is far more involved
than in Case 1.

II.2. Zone Connection Virtualization Layer

 The scenarios described in the previous section can be
implemented in the Zone Connection Virtualization Layer
using OpenSolaris with the Crossbow library. This bases
on the assumption that the VNIC allocated to OpenSolaris
VM may be used in exactly the same way as a physical
NIC, meaning that other VNICs and virtual switches can be
defined inside the virtual machine and subsequently
allocated to zones. This assumption will be validated in
Section IV.
 Under this assumption, communication between zones
is organized in a similar way as between VMs. Two cases
similar to the ones described in Section II.2 can be
distinguished:

1. Migrating zone connected to Virtual NIC (VNIC)
built over NIC, as depicted in Fig. 4;

2. Migrating zone connected to a virtual switch
(EtherStub) as shown in Fig. 5 – this type of switch
supports only internal communications inside one
computer.

M. Jarząb, J. Kosiński, K. Zieliński 38

Fig. 4. Zone migration – Case 1

Fig. 5. Zone migration – Case 2

 It is necessary to point out that runtime cross-VM zone
migration is not yet supported. Live migration can only
occur for specific VM instances. In such a situation, the

zone must be stopped prior to migration, and attached to
the guest OS hosted by the target VM machine. An
important issue is that the internal communication
configuration for VM zones must be preserved during VM
migration, ensuring that the existence of zones within
a VM is completely transparent from the point of view of
the migration process. A problem appears if a zone needs
to be migrated from one VM to another.
 Figures 4 and 5 show that activities performed in steps
2 and 3 of the migration procedure are very much the same
as the ones involved in VM migration. The case presented
in Figure 5 requires a dedicated zone, created to enable the
deployment of a VNM router.

III. NETWORK VIRTUALIZATION SUPPORT
MECHANISMS

 In the previous section we described the basic concepts
of VM and OS containers in the context of network
virtualization. The presented requirements are technology-
neutral. In this section, network virtualization techniques
for xVM and Xen implementation will be presented.
 Enabling local network communications for VMs can
proceed in many ways. Choosing the right solution depends
on its availability in the applied virtualization technology.
Commonly used technologies presented in this paper
include Xen and xVM. They differ with respect to network
communications.
 In Xen network communications are based on pinned
virtual interfaces [1-4] – every virtual interface has its
equivalent on the list of interfaces of the physical host and
is directly connected via a point-to-point virtual link.
Communication between virtual machines is possible
through additional mechanisms, e.g. routing techniques,
switching/bridging or network address translation. Such an
approach provides extensive configuration capabilities,
since by using routing, switching and NATs it is possible to
build any network topology using virtual computers. In
addition, it is also possible (in the case of point-to-point
links) to set filtration (firewall), queuing or traffic shaping
(QoS).
 These built-in technologies are not able to realize LAN-
like communication of VMs located on different nodes in
distinct LAN networks. In the case of WAN commu-
nications (host computers located in different LAN
segments) and live migration of virtual machines, it is
necessary to provide mechanisms which dynamically
alter/update the layout of the virtual topology, changing its
physical equivalent.

Virtualization of Grid Networking Resources for Computation Mobility Support 39

 The development of a network topology layout and
managing its configuration (e.g. by specifying bandwidth
restrictions) in the Linux OS is facilitated by a set of system
commands whose effect changes in the structure of the kernel.
The network topology definition obtained, for example, from
a graphical layout and configuration design tool, is mapped to
a sequence of system commands. Suitable components should
be implemented for translating configurations from the input
format (usually XML) to system commands with proper
arguments. Execution of these commands on physical
resource nodes results in the creation of a virtual network. The
implementation of the virtual Ethernet switch (from the
Virtual Distributed Ethernet project) can be used as a mecha-
nism for constructing virtual networks from Xen virtual
machines belonging to different LANs. The operation relies
on creating virtual switches on nodes connected via tunnels
(VDE plug with VDE cables).
 Migration support for Xen VMs implies changes in the
layout of physical topologies used for routing traffic in the
virtual network. Migration of VM execution requires the
physical host to support a VDE virtual switch representing
the LAN network to which the migrating machine belongs.
The network configuration update which follows (or
accompanies) Xen VM migration calls for a new connection
to be established between the logical (virtual) network
interface and its virtual switch while removing the corre-
sponding interface from the virtual switch interface list on the
source host (this is done automatically upon VM removal).
 Migration in virtual networks created using VDE
components requires updating connection parameters
between the virtual switch and the virtual interface
(representing the VM Ethernet interface in the logical
interface pool of a physical host’s network configuration).
In practice, this means reconfiguring the list of interfaces
for the group, which contains, for example, the tap
interface of the VDE switch (removal of mapping (1),
addition of mapping (2) and reconfiguration of connection
(3-4) in Fig. 6).
 Sun xVM Server is a Xen-based hypervisor that uses
OpenSolaris as the base operating system providing native
support for network virtualization called Crossbow [11, 12]
10]. It offers network virtualization and resource control by
creating virtual stacks for Internet services based on
application protocols (FTP, NFS or HTTP) and network
protocols (TCP, UDP).
 The core Crossbow components virtualize a physical
NIC into multiple Virtual NICs (VNICs) that can be
assigned to virtualized OS domains such as xVM domains,
zones (OS Containers) and LDOM domains. Each Virtual
NIC can be assigned its own priority and bandwidth on
a shared NIC without incurring performance degradation.

In Crossbow, physical resources (hardware rings and inter-
rupts) of a NIC are allocated to a specific VNIC, thus
enabling independent scheduling based on the load of
a given VNIC and the classification of packets. Network
traffic for one VNIC can be completely isolated from other
types of traffic and assigned custom limits for the bandwidth
it can use to ensure that QoS contracts are maintained.

Fig. 6. VM migration in the VDE virtual network

 Two types of virtual switches exist, both providing the
same semantics as physical switches. When at least two
VNICs are created on top of a physical NIC, the MAC
layer automatically creates a virtual switch. It is also
possible to set up pseudo-Ethernet NICs called etherstubs,
independent from the underlying hardware and managed by
the system administrator. Such etherstubs allow the
creation of VNICs and provide virtual networks on a ma-
chine without actually using any hardware resources.
 To prevent NIC failure, system administrators can use
link aggregations supported by the IPMP (IP Multipathing)
technology, which provides high availability and better
throughput when several physical interfaces are grouped
into one link. Such link aggregations are used for the
definition of VNICs.
 In the case of xVM domains or Solaris Containers (also
called zones), Crossbow enables each such unit to be
assigned a virtual stack instance along with one or more
VNICs. This approach is used for the definition of network
virtual machines (NVMs) which abstract network
functionality – virtual routing, IP filtering or load balancing
within a VM or a zone. Such a configuration can be
prepared as an appliance (configuration template) stored in
a repository and provisioned on demand.

M. Jarząb, J. Kosiński, K. Zieliński 40

 All these components can be integrated in complex
virtual networks called virtual wires (vWire), spanning
several virtualized physical machines connected through
a physical network. These vWires are separated with
VLANs and support dynamic reconfiguration and migra-
tion of virtual machines.
 OpenSolaris also offers an advanced environment for
hierarchical virtualization (Fig. 7) and enables specifying
resource consumption limits (managed by the Solaris
Resource Manager) at each of the following levels:

• Zone: Virtualized OS instance;
• Project: Identifies running workloads;
• Task: Workload component;
• Process: Running processes within a task.

 Virtual Machine domains created on top of the xVM
hypervisor can apply both Crossbow and Solaris Resource
Manager (SRM) [13, 15] technologies to provide advanced
capabilities for networking and computational resource
management. These techniques are very efficient and easy
to use, thus providing a very good foundation for systems
that must be scalable and secure. Moreover, OpenSolaris
includes many modern facilities that provide a fully
integrated stack, even more comprehensive than any recent
AIX, HP-UX, Linux or Windows release. In addition to the
Solaris Zones virtualization technology, we can enumerate
the following mechanisms [14]:

• Zeta File System (ZFS): Integrates volume manage-
ment functions; however instead of a volume manager
there is the concept of a storage pool, where capacity is
provided on demand and can be dynamically resized.
Administrative tasks are very easy to perform with the
available tools, even by users who are not experienced
in volume management. Installation directories for
VMs and Containers can be created on top of ZFS. It is
possible to create snapshots which can be sent to

remote locations, as well as add extra capacity (if
needed).

• Process Rights Management: Extends common
UNIX security functions with a set of privileges,
allowing processes to acquire the required access
rights and making superuser rights more granular.
Individual processes are granted only those permis-
sions which they absolutely need to work. Installation
of VMs or Containers, and operations related to
network configuration can be defined within a secu-
rity profile and assigned to specific users who do not
require superuser privileges.

• Service Management Facilities (SMF): A unified model
of services and management activities. Services are
represented as objects with defined dependencies. In
case of errors (administrator error, bug or hardware
error) services are restarted in a dependency-based
order. SMF also facilitates the Predictive Seal-Healing
feature. Grid workloads performing computations man-
aged by SMF are described via XML descriptors that
handle boot-up, access management and self-healing.

• Extended Accounting: Enables gathering statistics at
the process, task and network flow levels for a given
container. System administrators can analyze these
statistics in order to determine the cost of running
user applications.

• OpenSolaris can be used as a guest operating system
in other virtualization solutions such as VMWare or
Xen, thus providing QoS management for network,
CPU and memory resources used by computations on
a given virtual machine instance. The ability to run
workloads can be further extended by introducing the
Open HA Cluster [16, 17] which ensures the
clustering of Grid services in a protected, highly-
available cluster environment.

Fig. 7. Solaris virtualization technology overview

Virtualization of Grid Networking Resources for Computation Mobility Support 41

 Table 1 summarizes the basic features of network and
VM virtualization technologies. The presented features
support the concept of introducing OpenSolaris and the
xVM hypervisor as a base Grid platform for virtualization
and hosting of computations. xVM and Crossbow ensure
that the hardware stack is well integrated, efficient and
easier to manage by system administrators.

IV. DEPLOYMENT – CASE STUDY

 The case study bases on a sample configuration of
virtual machines connected in the virtualized network
topology. Our approach must provide connectivity between
VMs running on different physical hosts in the same local
network, and maintain this connectivity following VM
migration. The scenario assumes a dedicated VNIC,
ensuring the isolation of each VM group as an important
function of network virtualization.

Fig. 8. Case study topology – initial setting

 The scenario topology is presented in Fig. 8. It consists
of two hardware nodes running OpenSolaris OS on which
a set of VMs is deployed. The initial configuration of
Crossbow provides a simple mechanisms for assigning
bandwidth limits to VM guests (domUs). The VM
definition with the use of libvirt [8] commands is as
follows:
#virt-install --nographics --paravirt --ram 1024 –
name
 domu-vm1-osol -f /dev/zvol/dsk/rpool/zvol/domu-vm1-
osol
-root -l /var/installs/osol-0906-x86.iso –network
bridge=elxl0,capped-bandwidth=50M

 When a Xen domU is defined, Crossbow implicitly
creates a VNIC and assigns it to the VM. In our scenario,
VNIC is automatically created on top of elxl0 NIC and can
be verified by issuing the following command:
dladm show-vnic
 LINK OVER SPEED MACADDRESS MACADDRTYPE VID
 vnic1 elxl0 100 2:8:20:53:f0:b9 random 0
 xvm1_0 elxl0 50 0:16:3e:79:d6:21 fixed 0

 The VNIC can be created before domU, with given
bandwidth restrictions, and then assigned to VMs by
including the required statements in the VM XML
configuration file. From the level of the VM OS, the
configuration of the virtual instance can be accessed using
the following command:
#dladm show-phys

Table 1. Comparison of Crossbow and VDE network virtualization technologies

Concept OpenSolaris xVM/Crossbow Linux XEN with VDE
Virtualization level Solaris Zone, xVM virtual machine XEN Virtual Machine

Virtual NICs (VNICs)
Logical networking interface, which can be created
and assigned to a VM. Administrator can choose
any VNIC name ending with a digit

Logical interface created automatically by XEN
hypervisor upon VM bootup. VNIC name uses the
following schema: ‘eth’ + VM ID + ‘.’ + ‘interface
ID’ (e.g. eth10.1 – second VM interface with id 10)

Virtual Switching
(public)

Set of VNICs created over a physical network
interface

VDE Switch instance connected with a physical
interface. Multiple VDE switches can be connected
together with so-called ‘vde_cables’

Virtual Switches
(isolated)

Etherstubs – software switches to which VNICs
can be assigned. VNICs must be created over an
etherstub instance. Provides connectivity between
virtual machines/zones on the same physical host

VDE Switch instance without real network
connectivity. VNICs can be assigned directly or via
Tun/Tap Linux interface bridged with VNIC

Flow

Communication stream identified by the following
parameters: services (protocol + remote/local
ports), transport protocol name (TCP, UDP, SCTP,
etc.), remote and local IP addresses or subnets,
DSCP labels. The following properties can be set
for each flow: bandwidth limits, priorities, CPU
pins

Similar behavior can be simulated via the Linux
kernel traffic shaping configuration (e.g. with ‘ip’,
‘iptables’ and ‘tc’ tools). Independent of hypervisor
and VM configuration

vWire
A virtual network machine can be combined with
VNICs and virtual switches to create a fully
virtualized network

Two or more VDE switch plugs connected via
network by third-party universal communication
software (such as VPN daemons or the basic
“NetCAT” tool)

M. Jarząb, J. Kosiński, K. Zieliński 42

LINK MEDIA STATE SPEED DUPLEX DEVICE
xnf0 Ethernet up 1000 full xnf0

 In OpenSolaris running on the VM, this VNIC is visible
as a normal ‘physical’ operating system interface. Due to
this fact, two levels of Crossbow network virtualization can
be introduced. The following commands create a VNIC on
top of this interface using the dom0 configuration. In
addition, further bandwidth allocation can be achieved by
assigning limits to individual interfaces, within the scope of
the main interface limit.
dladm create-vnic –p maxbw=10M -l xnf0 vnic1
dladm create-vnic –p maxbw=20M -l xnf0 vnic2
#dladm show-vnic
 LINK OVER SPEED MACADDRESS MACADDRTYPE VID
 vnic1 xnf0 10 2:8:20:1d:1a:44 random 0
 vnic2 xnf0 20 2:8:20:6a:97:9f random 0

 The created VNICs can then be assigned to Solaris
zones. In addition, each VNIC can be bound to CPUs
assigned to its proper zone. Traffic management is per-
formed by Crossbow and although it can be CPU-intensive,
it does not affect running computations. The above
commands result in the configuration shown in Fig. 9.
#dladm set-linkprop cpus=0,1 vinc1
#dladm set-linkprop cpus=2,3 vinc2

Fig. 9. Case study configuration prior to zone migration

 Another scenario deals specifically with zone migration
for specific VM instances. Unfortunately, the current
implementation of Solaris Containers does not support live
migration. This means that the zone must be halted prior to
migration (running processes are stopped). Once migration
has been performed, source and destination VMs are
booted up again. The following scenario assumes a zone
running within the ZFS file system, which enables
“versioned” snapshots to be stored in an NFS-based
repository.

#zlogin zone1 shutdown -y -i 0
#zoneadm –z zone1 detach
#zfs snapshot pool1/zones/zone1@@snap
#zfs send
pool1/zones/zone1@ver.1>/nfs_snap/zone1@ver.1

Once zone1 is detached, the ZFS snapshot must be
imported on the destination VM instance. Additionally,
a VNIC needs to be created (VNICs are not automatically
created in Solaris Containers). The zone can then be
migrated and set up for servicing user requests.
#zfs receive pool2/zones/zone1 < /nfs_snap/zone1@ver.1"
/nfs_snap/zone1@ver.1
#dladm create-vnic –p maxbw=10M -l xnf0 vnic1
#zonecfg -z zone1
#zonecfg:zone1> create -a /zones/zone1
#zonecfg:zone1> exit
#zoneadm –z zone1 attach
#zoneadm –z zone1 boot

 Such an infrastructure is a complex system with many
elements that must be effectively managed. The con-
structed software tools must therefore enable network
automation for control and management of vWire provi-
sioning over a physical network. In addition to fulfilling
computational mobility requirements, they must also
support flexible resource management. The proposed
solution must offer a unified stack of tools, exposing
a uniform interface for managing and monitoring network
resources, CPU and memory.

V. SOLUTION

 The previous sections presented aspects related to
migration (VM, Solaris Containers) within a virtual network.
This process can be complex, especially when – apart from the
need to preserve network topology – it becomes necessary to
preserve QoS parameters or communication isolation. Hence,
automation appears desirable. We propose to add components
that perform such changes automatically without administrator
supervision (an example involving zone migration was
presented in Section IV).
 Such an automatic process requires support for mecha-
nisms enabling the construction of network topologies with
specific layouts and, more importantly, influencing the pa-
rameters of virtual connections (QoS guarantees or restrictions).
 The capabilities offered by existing network virtualiza-
tion components include:

• Creating a virtual network topology by connecting
VM virtual network interfaces;

• Defining primary connection parameters (bandwidth, etc.);
• Creating dedicated network services, such as fire-

walls and routers based on preconfigured OS images,
to implement VNM functionality;

Virtualization of Grid Networking Resources for Computation Mobility Support 43

• Recreating virtual network topology following VM or
zone migration.

 The key aspect of the discussed solution, presented in
Section IV, is the ability to alter the physical topology layout
while preserving the parameters of virtual connections. This
operation is performed using VM migration techniques and
can be executed autonomously or by the operator.
 To automate virtual network creation and recon-
figuration processes, it is necessary to implement a set of
agents (Master VNET Manager and VNET Managers).
These agents implement a set of commands which the
administrator would otherwise have to execute (a sample
command set was presented in Section IV). They can
operate on the VM host operating system or in a global
zone. The initial virtual network configuration is passed to
agents in the XML format, and describes both the topology
and QoS requirements. This configuration needs to be
created by the administrator. Software agents based on
JMX (Java Managed Extensions [18] technology provide
an interface for buiding and modifying virtual network
topologies [19]. The master agent is responsible for
coordination and execution of tasks on many physical
hosts. Configuration involves defining the topology and
access parameters for agents running on virtual machines.
 Figure 10 presents a sample sequence of invocations
generated in the process of recreating a virtual topology
during zone migration. Each component (VM, zone) has an
initial topology and configuration of QoS parameters. This
configuration is recreated within the network configuration
of the target host (step 2.2 in Fig. 10). Hence, prior to migra-

tion, it is necessary to verify if the given QoS guarantees can
be met by the hardware and configuration of networking
components on the target host (step 1.2). Communication
between agents (including operations and event delivery) can
be accomplished using the JMX technology.

VI. SUMMARY

 Migration of virtualized resources involves substantial
complexity related to reconfiguration of virtualized net-
working infrastructures. Existing libraries, such as Cross-
bow or VDE, offer basic support for manual reconfigura-
tion; however, automation of this process requires dedicated
software agents managing the virtualized network infrastruc-
ture during the migration process.
 In the scope of the VM Connection Layer, migration
involves similar reconfiguration requirements as for the
Zone Connection Layer. Thus, the same software agents on
both layers could perform virtualized networking infra-
structure automation.
 The proposed migration procedure can be performed
successfully only if the target computer provides the
requested resources. This introduces the need for integra-
tion with a suitable resource monitoring system, which will
be the focus of further study.

Acknowledgment
This research is supported by the PL-Grid Project;
POIG.02.03.00-00-007/08-00.

Fig. 10. Sequence of operations related to zone migration

M. Jarząb, J. Kosiński, K. Zieliński 44

References
 [1] A. Ganguly, A. Agrawal, P.O. Boykin, R.J. Figueiredo. IP

over P2P: Enabling Self-configuring Virtual IP Networks
for Grid Computing. In Proceedings of 20th IEEE Inter-
national Parallel & Distributed Processing Symposium
(IPDPS). Rodos, Grece, Apr 2006.

 [2] Xuxian Jiang, Dongyan Xu, VIOLIN: Virtual Internetworking
on Overlay Infrastructure. Parallel and Distributed Processing
and Applications 3358, 937-946 (2004).

 [3] Tsugawa Maur´ıcio, J.A.B. Fortes. A Virtual Network
(ViNe) Architecture for Grid Computing. In Proceedings of
20th International Parallel and Distributed Processing
Symposium (IPDPS-2006), p. 10 (2006).

 [4] A. Sundararaj, P. Dinda, Towards virtual networks for
virtual machine grid computing. In Proceedings of the 3rd
USENIX Virtual Machine Research and Technology
Symposium. San Jose, CA, USA, May 2004.

 [5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, A. Warfield. Xen and the
Art of Virtualization. In SOSP ’03: Proceedings of the nine-
teenth ACM symposium on Operating systems principles,
pp. 164-177. ACM, New York, NY, USA (2003).
doi:http://doi.acm.org/10.1145/945445.945462

 [6] D. Chisnall, The Definitive Guide to the Xen Hypervisor
(Prentice Hall Open Source Software Development Series).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

 [7] S.J. Vaughan-Nichols, New Approach to Virtualization Is
a Lightweight. Computer 39 (11) 12-14 (Nov. 2006).

 [8] Libvirt toolkit virtualization platforms API website,
http://libvirt.org/

 [9] Oracle xVM hypervisor website, http://hub.opensolaris.org/-
bin/view/Community+Group+xen/WebHome

 [10] N.A. Solter, J. Jelinek, G. Jelinek, D. Miner, OpenSolaris
Bible. John Wiley and Sons (2009).

 [11] N. Droux. Crossbow for Cloud Computing. Solaris Kernel
Networking. SUN Microsystems (May 2009).

 [12] S. Tripathi, K. Belgaied, N. Droux, Crossbow: Network
Virtualization & Resource Partitioning – Crossbow Techni-

 cal Paper, http://opensolaris.org/os/project/crossbow/-
Docs/Crossbow_WP.pdf

 [13] M. Lageman, Solaris Containers – What They Are and How
to Use Them.

 [14] G. Haff, Solaris Rises, Illuminata Research Note report,
http://www.sun.com/software/solaris/solaris_rises_report.p
df, 2004.

 [15] System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones
(http://docs.sun.com/app/docs/doc/817-1592)

 [16] R. Elling, Designing Enterprise Solutions with Sun Cluster
3.0. Prentice Hall PTR, (December 2001).

 [17] J.S. Bozman, Addressing Virtualization and High Availabil-
ity Needs with SUN Solaris Cluster. IDC White Paper –
Sponsored by SUN Microsystems, October 2009.

 [18] Sun Microsystems, Java™ management extensions instru-
mentation and agent specification, v1.2 (JSR003), Mainten-
ance Release, October 2002

[19] K. Bałos, M. Jarząb, D. Wieczorek., K. Zieliński, Open inter-
face for autonomic management of virtualized resources in
complex systems – construction methodology, Future Gene-
ration Computer Systems 24 (5) 390-401 (2008).

MARCIN JARZĄB. Received his M.Sc. in Computer Science, at the University of Science and Technology
(AGH – UST) in Kraków, Poland, in 2002. He worked as a software consultant at Consol Solutions and
Software from 2000-2002, participating in many projects for Telco companies. He was an intern at Sun Labs in
the latter half of 2003, investigating the application of the Multi-tasking Java Virtual Machine to the J2EE
environment. His research interests include the tuning and performance evaluation of distributed systems,
design patterns, frameworks, lightweight virtualization technologies, and architectures of autonomic computing
environments. Currently he works in SOA research project performed by IT-SOA Consortium in Poland and in
a project releated with Polish national grid initiative – PL-Grid.

JACEK KOSIŃSKI. He is a PhD research assistant at the department of Computer Science, AGH University of
Science Technology Kraków since 2000. His main interests focus on computer networks, operating systems
and virtualization. He is an author of several papers in these areas. He is a Cisco CCNP instructor. He has
participated in national and international research projects, mainly EU-founded. Currently he works in SOA
research project performed by IT-SOA Consortium in Poland and in a project releated with Polish national grid
initiative – PL-Grid. He works on usage of virtualization techniques in areas related with resources
management.

KRZYSZTOF ZIELIŃSKI. He is a full professor and head of Institute of Computer Science at AGH-UST. His
interests focus on networking, mobile and wireless systems, distributed computing, and service-oriented
distributed systems engineering. He is an author of over 200 papers in this area. He has been Project/Task
Leader numerous EU-funded projects, like e.g.: PRO-ACCESS, 6WINIT, Ambient Networks. He served as an
expert with Ministry of Science and Education. Now he is leading SOA oriented research performed by IT-
SOA Consortium in Poland. In this area his research interest concerns: Adaptive SOA Solution Stack, Services
Composition, Service Delivery Platforms and Methodology. His a member of IEEE, ACM and Polish
Academy of Science Computer Science Chapter.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2010, 35-44

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

