
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2010, 109-118

I. INTRODUCTION

 Storing massive amounts of data for backup or archival
purposes is a challenging task both for institutions and
individual persons. It is projected that 1800 exabytes of
data it is going to be produced in 2010 across the World.
The estimated amount of data produced per person in 2010
may reach 260 gigabytes, according to IDC [IDC1].
Moreover, amounts of data produced and processed in
today’s computer systems exceed the storage capacity
available in storage systems, and the gap is still enhancing.
 Managing, classifying and storing as well as short-term
and long-term protecting these data are complex and
expensive processes, as they require know-how and re-
sources including man power and money needed for the
purchase and maintenance of the infrastructure.
 A lot of massive data producers represent the scientific
and academic environments. The main ‘data generators’ in
Poland include digital libraries, virtual laboratories, aca-
demic computing centers and academic network operators as

well as scientific institutions such as research institutes
(600+ organizations), universities (almost 500) and clinical
hospitals (more than 50). Even conservative simulations
suggest that these institutions and projects may need
storage space for backup and archival purposes expressed
in hundreds of terabytes per year.
 An example of an institution that generates such big
data volumes is the operator of PIONIER, the Polish
national academic network [PIO1]. Legal regulations that
apply to network operators force them to store some
percentage of protocol headers of the traffic traversing their
network, and be ready to present these data to authorities
for investigation purposes. The PIONIER network carries
about 20880 TB of the traffic per month. Assuming that the
network operator is forced to record protocol headers of
5% of the total traffic, about 14 TB of the storage space per
month is required for that purpose. This ends up in a need
for storage space about 168 TB per year and half of
petabyte after 3 years.

Popular Backup/Archival Service
and its Application for the Archival of the Network Traffic

in the PIONIER Academic Network

Maciej Brzeźniak, Norbert Meyer, Rafał Mikołajczak,
Gracjan Jankowski, Michał Jankowski

Poznań Supercomputing and Networking Center

Institute of Bioorganic Chemistry, Polish Academy of Sciences
Noskowskiego 12/14, 61-704 Poznań, Poland

e-mail: {maciekb/meyer/rafal.mikolajczak/gracjan/jankowsk}@man.poznan.pl

(Received: 27 September 2010; revised: 8 November 2010; published online: 23 November 2010)

Abstract: This paper presents the popular backup/archival service developed and operated in Poland by members of the PIONIER
network consortium and its example application for outsourcing of the archival of the network traffic in the national academic network.
The service is built upon the National Data Storage (NDS) system architecture deployed in the redundant, high-end, geographically
distributed infrastructure of servers, network and data storage systems built within the confines of the PLATON project. The details of
the NDS architecture and its features are discussed in the paper including the system components, their functionality and the system
scalability aspects. The paper also presents how the NDS architecture is deployed in the data storage infrastructure of the PLATON
project, with an extensive usage of servers and storage virtualization technologies. We discuss how the NDS system instantiation allows
for flexible set up of the multiple instances of the popular backup/archival service, which can address various, often contradictory
requirements of the service users, while sharing a common pool of physical resources. As an example the system set up for outsourcing
the archival of the PIONIER network traffic is presented.
Key words: data management, data archival, backup, virtualization, distributed data storage

user
Tekst maszynowy
CMST SI(1) 109-118 (2010)

user
Tekst maszynowy
DOI:10.12921/cmst.2010.SI.01.109-118

user
Tekst maszynowy

user
Tekst maszynowy

M. Brzeźniak, N. Meyer, R. Mikołajczak, G. Jankowski, M. Jankowski 110

Scientists and students themselves can add a consider-
able volume to this “national data storm”, taking into
account that more than 100 thousands people are employed
in scientific institutions in Poland [GUS1] and almost
2 million students attend universities [MIN1].

Having said that, we clearly see that protecting and
archiving the data may exceed the abilities of individual
institutions, projects and persons. Moreover, dealing with
data protection is not the core business of the academic or
research institutions and individual scientists, so the wish
and ability to designate considerable resources for that
purpose is not common. Therefore, outsourcing the process
may be the most reasonable solution.

Popular backup/archival service is a response to the
above-mentioned needs. It is intended to free the end-users’
mind from dealing with short-term data protection and
long-term data archival. The service allows the academic
and scientific institutions and individuals to store, keep and
maintain the data according to some agreed policies and
service profiles.

In this paper we discuss the architecture, deployment
and example use case of the popular backup/archival
service. The architecture of the service is based on the
outcome of the R&D project “National Data Storage”
[NDS1]. The basic architectural decisions taken during the
NDS system design and development are discussed in
Section II of this paper. We focus on these aspects of the
architecture that address critical user requirements gathered
in the early phase of the project. In Section III we show
how the NDS system architecture and the software stack is
deployed in the data storage infrastructure composed of
redundant and geographically dispersed servers, tape
libraries, disk arrays, file servers and storage management
software supporting the virtualization technologies. This
section also shows how the NDS architecture and the
redundant infrastructure of the PLATON project address
the user requirements by making it possible to provide the
reliable, secure and scalable data backup and archival
service. In Section IV we present an example use case of
the data archival service, i.e. recording the network traffic
headers in the PIONIER network. Finally, we discuss the
related work in the area of distributed storage systems for
data backup and archival, and we conclude our study in the
“Summary” Section.

II. SYSTEM ARCHITECTURE, FEATURES
AND FUNCTIONALITY

The main assumption of the National Data Storage

project was to design and develop the data storage service

targeted to data backup and archival storage applications.
Various approaches were possible to implement the
distributed data store, depending on the most important
features expected from the system. Architectural decisions
that we have taken were motivated by the following
factors.

Firstly, we assumed that high-availability and reliabil-
ity, including data durability, require a geographically
distributed storage system with data replication. Distribu-
tion of the architecture is also necessary to provide system
scalability in terms of performance, storage capacity and
the number of users. We were, however, aware of the
challenges the distribution brings while trying to guarantee
consistency, fault tolerance and high performance in the
system.

Secondly, we decided to focus on specific system
features and functionality. In order to target actual user
needs, we collected detailed user requirements against the
features and user interface of the service in the early stage
of the project (i.e. the autumn of 2007). The survey results
confirmed that data durability and service availability are
the most important features demanded by users. Half of the
users explicitly expressed the need for geographical data
replication. Replication was also requested implicitly as the
consequence of availability requirements, most of the
potential clients indicated. Features-wise, no users expected
data sharing or exchange capabilities from the system. On
the contrary, most examined institutions wanted to have
dedicated name spaces in the system and required the
confidentiality of the data.

Thirdly, we had to be realistic about the features and
functions we are actually able to provide as a reliable and
stable production-level service, having in mind the
available budget and the time schedule. We expect users to
charge the system with a task of protecting and archiving
their data, and therefore the reliability of the system was of
the highest importance.

II.1. System architecture

 Having in mind the above factors, we have worked out
the architecture of the National Data Storage system
(Fig. 1), that combines distribution and centralization of
selected components in order to meet contradictory require-
ments and expectations we had to deal with.
 The data are stored in a fully distributed manner in
multiple, geographically dispersed Storage Nodes of the
system, which assures the data durability. Service
reliability and high-availability is guaranteed by the fact
that at least one Storage Node is always able to serve the

Popular Backup/Archival Service and its Application for the Archival of the Network Traffic 111

data replica or accept the incoming user data, nevertheless
the failures of another Storage Nodes in the system.
 A user can access the data through multiple, distributed
Access Nodes. This again improves the service’s availability
as the fail-over between Access Nodes is possible in case
when part of the Access Nodes is unavailable due to
emergency or scheduled downtime. Moreover, the existence
of multiple Access Nodes assures the system scalability in
terms of data access performance as well as the number of
users and institutions served effectively.
 Meta-data DB that maintains the file system structure as
well as replica information and another data objects’ meta-
data is logically centralized in order to keep the
consistency, fail-over and disaster recovery techniques
simple and reliable and make the meta-data operations
effective (e.g. no need for distributed locking). Physically,
the Meta-data DB is redundant. Meta-data are replicated
from master Meta-data DB to a set of slaves. This
eliminates a single point of failure and allows the roll-back
and recovery in case of emergency. The Meta-data DB
redundancy also assures the meta-data durability, which is
critical from the point of view of the system reliability.
 Potentially, single Meta-data DB can impose the
limitations on the meta-data handling efficiency throughput
and the number of data objects stored in the system as well
as on the overall amount of the meta-data kept for the data
objects. However, multiple meta-catalogs can exist in the
system and serve particular, distinct institutions or groups
of users. Such an approach is acceptable, as data sharing
among organizations is not expected by potential system
users. The solution is described in details in the ‘Architec-
ture Deployment’ section of the paper, where we discuss
how the instantiation of meta-catalog as well as other

system databases and components can be used in order to
omit possible limits of system centralization.

II.2. Basic system components

 The NDS Virtual File System is the interface between
the NDS system logic and the Access Methods exploited
by users in order to store and retrieve data and meta-data
(see Fig. 1). The NDS system logic itself is implemented as
Data and Meta-data Daemons (not visible in the Fig. 1)
using the FUSE library that allows to develop the file
system drivers at the user level [FUSE1]. NDS system
daemons serve the virtual file system requests such as
create, read, write, flush, release etc., by performing actual
data operations on the distributed data replicas and making
meta-data operations in the meta-data DB. Data replicas are
stored and retrieved by the Data Daemons in the Storage
Nodes using Replica Access Methods, including NFS and
GridFTP (see Fig. 1) protocols, while meta-data are stored
and maintained in the meta-data DB.
 Meta-data DB holds the critical information about the
virtual file system structure. It includes names of logical
files and directories, logical data objects hierarchy
(directories, subdirectories and files), mappings of logical
files to physical replicas as well as logical file and directory
attributes, including standard file system attributes such as
file size, modification and access times as well as access
and ownership flags. Additionally, meta-data DB keeps the
replica information including physical replica location,
attributes as well as additional NDS-specific attributes of
logical files and directories such as annotations and data
objects history (operations record).

Storage Node file system

Replica access methods servers
Storage
Node

NDS system logic

Virtual file systems for data and meta-data
Access
Node

Database
Node

Access Methods Servers (SSH, HTTPs, WebDAV...)

User

Meta-
data DB

Users
DB

Accounting
& limits DB

Replication

Fig. 1. Overall architecture of the system

M. Brzeźniak, N. Meyer, R. Mikołajczak, G. Jankowski, M. Jankowski 112

 The meta-data DB is implemented as a PostgreSQL
data-base [PSQ1]. Fault tolerance of the meta-catalog is
assured by a semi-synchronous meta-data replication. The
database transactions are asynchronously replicated using
Slony-I for PostgreSQL [SLO1]. Additionally, each meta-
data operation is synchronously recorded in multiple,
distributed operation logs. In case of emergency, a slave
copy of the meta-data DB can be used as the master DB, as
it contains an asynchronously created copy of the master
DB. In case when this asynchronous copy does not hold the
consistent state, consistency can be recovered by using
distributed operation logs reflecting the synchronously
updated meta-data operations history.
 Beside the meta-data DB, the system and system
services operation is supported by Users, Accounting and
Limits Databases (see Fig. 1). Users DB contains the
profile information for the users of the service, including
the data replication mode (synchronous versus
asynchronous), a desired number of replicas and allowed
replica locations as well as other service parameters such as
resource usage limits etc. Accounting DB stores history of
the resources usage (mainly the used storage space) at the
level defined for particular users. Fault tolerance of these
databases is assured, by supporting fail-over from the failed
master database to the asynchronously updated slave. As
the data are mainly read from the Users Database,
asynchronous database replication is acceptable. Similarly,
replicating Accounting and Limits Databases with this
mechanism does not bring significant risks, as these data
are not critical for the system operation nor users’ data
durability or consistency.
 The National Data Storage system operation is
supported by auxiliary mechanisms, not visualized in
Fig. 1. For high-availability reasons, the responsiveness of
the system components including servers, daemons and
databases is constantly monitored and taken into account
by the NDS Data Daemon while processing the users’ I/O
requests. Failures are also reported to the system
administrators using a monitoring portal, e-mails and other
communication channels. Additionally, the load of disk
arrays, tape systems (status of queues, tape robots and
drives) and other system components are monitored for
performance optimization purposes.

II.3. System functionality and interface

 Data replication. The NDS system performs the automatic
data replication, that is transparent to the end-users. When
asynchronous replication is used, writing the data to the

virtual file system is confirmed immediately after the
successful writing of at least one replica to any of the Storage
Nodes allowed for a given user. This allows to minimize the
time needed to store the data into the system, observed
from the user point of view, while assuring that the user’s
data is protected against the single replica failure after
some period of time, needed to asynchronously create
additional physical data object instances. Synchronous data
replication is also supported. In this mode, storing the data
requires more time, from the user’s point of view, however,
it is guaranteed that all modifying I/O operations requested
by the user are immediately performed on all replicas of the
data and finished when the completion confirmation is sent
to the user.
 The system interface is composed of two main
elements. The Virtual File System interface (see Fig. 1)
provides the low-level, file system-like data storage and
retrieval functions that abstract the data management
operations performed inside the system such as data repli-
cation, meta-data processing, operation logging, accounting
and limits implementation and system components’ failures
handling. Secondly, these low-level functions are made
available to users through the Access Methods (see Fig. 1).
This assures another level of data storage and access
abstraction – users have a feeling of interacting with
remote SFTP, HTTP, WebDAV or GridFTP sites, and do
not have to care about the services implementation details
or the physical data location. From the service provider’s
point of view, the abstract logical file system interface
helps to maintain the system security and availability.
Performing updates or security patches to the Access
Methods software is not problematic as these methods
interact with the storage system through a standard file
system interface.

III. ARCHITECTURE DEPLOYMENT

 In the previous section we have presented the architec-
ture of the National Data Storage system that combines the
distribution and centralization of selected components. We
have also indicated possible scalability issues related to the
logically single meta-data database. In this section we
discuss in detail the scalability of the single system
instance and show how bottle-necks of the partially
centralized system can be omitted by using multiple
instances of the whole system or its selected components
deployed in the virtualized infrastructure of servers and
storage resources.

Popular Backup/Archival Service and its Application for the Archival of the Network Traffic 113

III.1. Single instance scalability

 We have shown above, that the scalability of the single
system instance is supported by logical and physical
distribution of the multiple Storage Nodes and Access
Nodes. We have also noted that the system performance
and storage capacity can grow up to the point in which the
logically central meta-data DB becomes the bottle-neck.
Below we comment on the system scalability in detail, in
the context of the efficiency of the “throughput-intensive”
versus “meta-data-intensive” I/O operations as well as the
system capacity versus the number of data objects that can
be stored in the system.
 Numerous Storage Nodes enable to scale data access
performance and the system capacity, in addition to
obvious availability and reliability advantages. Data
transmission throughput of the system increases with the
growing number of storage sites as the data traffic can be
distributed among them. Similarly, the responsiveness of
the system is better if more Storage Nodes can serve the
data access requests in parallel. Note, that monitoring and
requests execution optimization techniques are in place in
the National Data Storage system. Capacity of the system,
both in terms of storage space and the number of files
stored in the system, increases with a growing number of
the Storage Nodes and storage devices (disk arrays, tape
system or HSM systems) connected to these nodes.
 Similarly, multiple Access Nodes help to scale the
system performance and capacity, in addition to availability
and reliability advantages. Distribution of the user load
among a high number of Access Nodes improves the data
throughput and responsiveness to the I/O request in the
system. Numerous streams of data incoming to the system or
retrieved from it can be served in parallel by distinct
instances of Virtual File Systems running on multiple
servers. Additionally, parallelization of the users’ data access
sessions allows to compensate communication latencies
caused by the need of exchanging of the I/O requests and
user data between the user-level daemons and the VFS layer
of the Linux kernel. Note, that the NDS system logic is
implemented on the user level (opposite to kernel-level file
system drivers) and the efficiency of the communication
between user and kernel layers in a single operating system
can be limited. In terms of system capacity, the existence of
numerous Access Nodes allow to overcome possible
capacity limits of single Virtual File System instances,
related to Linux VFS layer limits.
 While distributed Access Nodes and Storage Nodes
enable the scalability of the system, the logically central-

ized meta-data DB (called also meta-catalog) can be both
capacity and performance bottle-neck.
 Capacity limits imposed by the meta-catalog can affect
the maximum number of the data objects stored in the
system. For directory, at least one data base entry
describing its name and attributes (both standard and NDS-
specific) is required. For file, the replica information also
has to be maintained, which requires at least one database
record in the meta-catalog for each file replica. In terms
of database capacity itself, the number of database entries
should not be an issue, as PostgreSQL supports the tables
of size up to 32 TB and does not impose limits on the
number of rows per table. However, we can expect the
performance degradation happening after exceeding some
database size threshold. Note, that the meta-catalog does
not impose any limits to the storage space available in the
storage system, as its possible impact relates to the
number of data objects in the system, not to the storage
space they can use.
 Processing meta-data transactions in the meta-catalog
can be a source of performance limits of the single NDS
system instance. Application-level operations such as
storing the file in the system are in practice composed of
numerous file-system level actions such as directory
lookup (lookup()) and attributes checking (getattr()),
creating the file (mknod()), opening the created file
(open()) and, finally, performing a sequence of writing
(write()) and flushing (flush()) operations, followed by
closing the file and releasing the descriptors (release()).
File system-level I/O operations, in turn, can require at
least some queries to the meta-data database tables or even
their modifications. For instance, opening the file in a read-
only mode, requires assigning the database-level handlers
and applying the locks. It also generates history record(s)
and can result in other modifying operations to be per-
formed in the database. Moreover, most actions performed
on the logical files requires corresponding actions on the
physical replicas which can produce another portion of
database transactions.
 Overall, the user actions that require creation, deletion,
renaming or changing the attributes of the file impose
a significant load of the meta-data database. Therefore, the
responsiveness of the NDS system to these meta-data
intensive operations can be impacted by a limited through-
put of the logically centralized database. On the other hand,
reading the content of the files or writing data to them is
not vulnerable to meta-data handling issues that can happen
due to meta-catalog centralization, as these operations are
not meta-data intensive.

M. Brzeźniak, N. Meyer, R. Mikołajczak, G. Jankowski, M. Jankowski 114

 Note, that in the backup/archive applications, the
majority of the I/O traffic incoming to the storage system
contains the sequential write or read operations with a large
requested data block size. Therefore, we believe that the
proposed architecture of the NDS system is suitable for the
backup/archive service, as it assures the performance
scalability of the throughput-intensive data operations.

III.2. System instantiation

 Potential limitations of the NDS architecture related to
meta-data processing can be omitted by running multiple
instances of the system in a redundant, distributed infra-
structure of servers, storage devices and database
management systems that support the servers and storage
virtualization technologies.
 Such infrastructure, along with the NDS architecture
features, allows flexible deployment of the system compo-
nents in order to meet both the end-user requirements and the
infrastructure owner’s wish to keep the system configuration
simple and the need to use the resources effectively.
 As the meta-data handling is the potential limitation of
the NDS architecture, the deployment infrastructure, should
enable to configure separate meta-data databases for
particular system instances. Such approach is in line with
the assumptions related to the system functionality, as no
data sharing between distinct user groups (e.g., distinct
institutions) is required. Particular meta-data DB instances
can be created on dedicated physical or virtualized servers
or they can co-exist within the same database management

system, depending on the expected or actual user require-
ments against the meta-data processing efficiency.
 The deployment infrastructure should also allow to
assign pools of Access Nodes and Storage Nodes to parti-
cular system instances. These nodes can again be,
configured on dedicated physical or virtual servers depend-
ing on user needs against the data access performance and
volume of the data stored by them in the system.
 The deployment infrastructure for the NDS system (see
Fig. 2), which is built in the confines of the PLATON
project, meets the above-mentioned requirements. It is
composed of multiple, geographically dispersed servers,
tape libraries, disk arrays and file servers. Virtualization
technologies and storage management software such as the
VMware ESXi [VMW1] system and the HSM systems
[HSM1] are also present. The infrastructure is funded from
the EU structural sources under the PLATON project (Ser-
vice Platform for e-Science, POIG.02.03.00-00-028/08).
 Flexible configuration of the PLATON infrastructure
elements and seamless deployment of the NDS system
instances is possible thanks to the physical and logical
infrastructure redundancy and distribution and the fact
that the infrastructure supports the servers and storage
virtualization. This assures that critical users’ require-
ments such as data access performance as well as service
reliability and data security can be addressed.
 Particular NDS system instances set up in the PLATON
infrastructure can share selected physical resources, or can
be run on dedicated resources depending on the end-users

Fig. 2. System deployment infrastructure

Popular Backup/Archival Service and its Application for the Archival of the Network Traffic 115

needs against the data and meta-data processing perform-
ance as well as data and meta-data capacity.
 For instance, particular NDS Virtual File System
modules and Data and Meta-data Daemons can be run in
dedicated Access Nodes belonging to distinct NDS system
instances. Such approach is reasonable if the user is going to
store a considerable volume of data or a big number of files
in the system, and expects the data access to be effective.
The servers can be dedicated to NDS instances in a logical or
physical sense. In the former case, multiple virtual machines
running the Access Nodes are run in a shared pool of
physical servers, by exploiting the functionality of the server
virtualization platform present in the infrastructure. In the
latter case, one may benefit from the fact that multiple
physical servers exist in the environment, and thus using a
subset of these servers as Access Nodes for a selected NDS
instance is possible. Note, that both solutions are supported
by the NDS system architecture.
 On the other hand, if the expected data traffic generated
by the user is moderate, the Access Nodes exploited by
a given user can be run in the physical servers shared with
another system instances. Sharing of the servers can
happen in two ways. Separate virtual machines can be used
to run Access Nodes belonging to distinct system instances.
Alternatively, the NDS Virtual File System or Data and
Meta-data Daemons as well as Access Methods belonging
the distinct NDS instances can share selected virtual
machines. Again, the NDS architecture and PLATON
infrastructure supports both approaches.
 The distinct NDS instances, while having dedicated or
shared Access Nodes, can use dedicated or common pool
of Storage Nodes providing separate NFS exports. Separate
exports can by used for storing data replicas belonging to
distinct NDS instances. Both setups are possible in the
infrastructure and are in line with the NDS system
architecture. The decision whether to use dedicated or
shared Storage Nodes depends on user needs related to
replica access throughput. Storage virtualization technol-
ogy such Storage Area Network and features of the disk
arrays (flexible RAID and LUN configuration) and the file
servers (flexible NFS shares setup) belonging to the
infrastructure, help to provide appropriate storage resources
to particular Storage Nodes comprising the NDS instances.
 When meta-data processing performance is considered,
two approaches to deploy NDS architecture in the
PLATON infrastructure are possible. If the user require-
ments against the meta-data processing performance is
moderate, multiple NDS system instances can share
a common database management system (PostgreSQL in
our case) hosting multiple, logically separate instances of

the meta-data databases. However, if the user is expected to
generate a lot of meta-data, distinct NDS instances can use
dedicated meta-data database nodes. Again, separation of
the NDS system nodes can be performed in the logical
sense (multiple database virtual machines running on
a shared pool of physical servers) or in the physical sense
(a dedicated physical server for a given DBMS).
 The decision, whether to use shared physical infrastructure
elements for distinct NDS instances (and how to share them,
i.e. by using servers or storage virtualization) or to use the
physical resources dedicated for particular system instances,
should be taken (while) having in mind the user requirements
against the data access performance as well as their expecta-
tions related to the service reliability and the data security.
However, also the user expectations related to the service
reliability and the data security should be considered.
 If the end-user requires high reliability, multiple physical
elements, such as Access Node, can be assigned to host virtual
machines implementing the storage service for this end-user.
Note, that thanks to server virtualization technology,
dedicating these physical servers to the NDS instance is not
necessary. Reliability is guaranteed by the existence of
multiple logical Access Nodes and Storage Nodes in the
system instance, even if physical servers on which the logical
servers are run are shared with another system instances.
 In case of extremely high security-related requirements,
a dedicated system instance can be used for the user.
Elements of this instance can be isolated from the other
instances on multiple levels, by running them on separate
virtual machines, configuring separate virtual Ethernet, IP
and SAN networks (by using VLANs, VPNs and SAN
zoning technologies) and dedicating cryptographically-
protected storage devices such as encrypted tape pools and
disk volumes. Note, that the PLATON infrastructure
components supports the features necessary to configure
a securely isolated NDS.
 Overall, the redundant PLATON infrastructure allows
for flexible deployment of the NDS system instances, in the
way that addresses various and possibly contradictory user
needs. The NDS architecture itself supports different
configuration options, so the production services built upon
it can benefit from advanced deployment infrastructure
features such as servers and storage virtualization.

IV. SYSTEM USE CASE

 In the previous sections we have presented the NDS
system architecture and shown how it can be deployed in
the data storage infrastructure built in the confines of the

M. Brzeźniak, N. Meyer, R. Mikołajczak, G. Jankowski, M. Jankowski 116

PLATON project, in order to address the end-users’ needs
on performance, reliability and security of data storage
and retrieval. In this section we present the example use-
case of the storage service, We also show how the re-
quirements of the application can be fulfilled by the
system based on the NDS architecture deployed in the
PLATON infrastructure.
 One of the planned applications of the popular backup/-
archive service is the storage of the PIONIER network
traffic. The operator of this national academic network is
forced by the legal regulations to store at least network
protocol headers of some percentage of the traffic in the
network and be ready to present these data to authorities on
legitimate demand.
 The application requirements can be summarized as
follows. Firstly, the storage needs of the application are
around 168 TB per year. This leads to a need for the
average data storage performance at the level of 5.5 MB/s.
Secondly, the network traffic data are collected in multiple
geographical points, i.e. in more than 20 nodes of the
PIONIER network. Thirdly, high responsiveness to I/O
requests is expected from the storage system as the data are
collected in real-time. Fourthly, the physical data replica-
tion is required for the data durability, as the operator has
to be ready to present the traffic data to authorities during
at least 5 years from collection. Fifthly, we can expect
that the I/O requests generated by the application in the
storage system are mainly related to frequently appending
the data to existing traffic log files and rarely creating
new log files or circulating the logs. Thus, a relatively
small number of I/O operations requires extensive meta-
data handling.
 The expected level of the data traffic incoming to the
system from multiple geographical points allows to use
multiple virtualized Access Nodes running on physical
machines distributed across all sites of the PLATON infra-
structure. This guarantees enough data storage throughput,
as multiple Access Nodes will run multiple instances of
NDS Virtual File System, as well as high responsiveness of
the system to I/O requests, thanks to the geographical
proximity of Access Nodes (and associated Storage Nodes)
to the point in which the network traffic is collected. The
performance of processing I/O requests offered by the NDS
instance should be sufficient to store the network logs in a
real-time. Multiple virtualized Storage Nodes can be used
in order to assure the existence of at least two data replicas,
and thus to guarantee the data durability. Finally, meta-data
database used for this application can be run on a dedicated
virtual machine or DBMS shared with another applications
as appending the network traffic logs does not require a lot
of meta-data processing.

V. STATE OF THE ART

Storing massive amounts of data for backup or archival
reasons in the distributed environment is known to be
a challenging problem, and there are a number of systems
that attempts to solve it. In this section we shortly present
selected systems and show how NDS differs from them.

The dCache project provides a distributed, hetero-
geneous data storage system visible for the user as a single
virtual file system [DCA1]. Depending on the persistency
model, the data are automatically exchanged with backend
(tertiary) storage systems, replicated, migrated to ‘hot-
spots’ and recovered in case of disk or node failures.
Beside its specific protocols, data in dCache can be
accessed via NFS, FTP, HTTP, WebDAV and GridFTP.
The system design assumes a big number of users access-
ing the same file system, as the data exchange and scien-
tists and projects cooperation aspects are very important in
the dCache application (opposite to the NDS system
assumptions).

The meta-data of the dCache system is managed by the
Chimera service [CHI1] based on the relational database.
These features make dCache similar to NDS; however,
some differences follow. It is possible to mount a lower
level service as a sub-tree of a higher service, but there is
still a central root service. This solution enhances per-
formance, security and availability of the data. The authori-
zation is based on Unix attributes or on certificates and
ACLs. The system was designed for grid structures and it
has been used mainly for grids so far. On the contrary,
NDS was designed as data archive and backup service for
institutions that require a high level of confidentiality, so
that the logical workspaces and the metadata (as well as
physical replicas) for different clients are separated. This
allows also for better system distribution, especially thanks
to the fact that no common view of the file system (such as
common root in dCache case) is needed.

iRODS (Integrated Rule-Oriented Data System) [IRO1]
is a software for data-grids, digital libraries, persistent
archives and the real-time systems. The data is managed
according to a set of rules that define replication modes that
are optimal from the point of view of data security, access
time, load balancing and possible failure recovery, etc . The
system is object-oriented – the stored data can be files,
database objects or any other digital data. This was
achieved using virtualization techniques on many levels of
the system. The system consists of a central meta-catalog
(based on relational database), rules engine, executing
engine (a set of micro-services that perform single opera-
tions) and scheduler. The system was tested by NASA and
certified as appropriate for commercial solutions, but it was

Popular Backup/Archival Service and its Application for the Archival of the Network Traffic 117

deployed mainly in the scientific environment. The main
differences to NDS are a central meta-catalog and the fact
that iRODS is object-oriented. The rules system, while
providing great flexibility, makes iRODS relatively dif-
ficult to use.

Overall, according to our best knowledge, there is no
distributed data storage system that might be used for data
backup or archival purposes and would guarantee full
scalability of the single system instance. Both dCache and
iRODS exploit the meta-data management systems that are
logically centralized, similarly to NDS. Note, however, that
the architecture of NDS system combined with the features
of the PLATON deployment infrastructure including
support for servers and storage virtualization, allow to deal
with the limitations resulting from meta-data centralization
within a single system instance.

VI. SUMMARY

In the paper we have shown the architecture of the
National Data Storage system and discussed the possibi-
lities of deploying this architecture in the redundant servers
and storage infrastructure of PLATON project. The infra-
structure supports advanced features such as servers and
storage virtualization which enables implementing scalable,
reliable and secure data backup/archival services, desig-
nated for short-term data protection and long-term data
archival.

The NDS system architecture itself allows for imple-
menting data storage services that address critical user
requirements such as high data access performance, huge
storage capacity, service reliability and data storage security.
The scalability and reliability of the system is achieved,
among others, by means of multiple, geographically distrib-
uted Access Nodes and Storage Nodes for serving the user’s
I/O requests and storing the actual user’s data. However, the
NDS system has a logically central meta-data database, for
integrity and performance reasons, and as a result of the end-
user requirements related to the data security (most of the
potential users demand a logically separate name-space
isolated from the other system users).

We have shown that meta-data centralization in the
single NDS system instance can constitute service scalabil-
ity bottle-neck in many aspects. However, we have also
presented the idea of deploying multiple instances of the
NDS system in the redundant PLATON infrastructure
composed of multiple servers and data storage resources
supporting the servers and storage virtualization.

Our analysis shows that the NDS system instantiation
allows to omit scalability limits resulting from centralized

meta-data catalog. Moreover, the usage of virtualization
technology along with the NDS system configuration
options enables flexible set up of the NDS instances, which
can help addressing various, often contradictory require-
ments of different users of the popular data backup/
archival service, basing on shared or dedicated pools of
physical resources.

References

[IDC1] IDC analysis. Cited among others in: Humans created

161 exabytes of data in 2006.
http://www.itnews.com.au/News/74870,humans-
created-161-exabytes-of-data-in-2006.aspx

[PIO1] PIONIER – Polish Optical Internet – a nationwide
broadband optical network for e-science.
http://www.pionier.net.pl/online/en/projects/69/PIONI
ER_Network.html

[NDS1] National Data Storage project in Poland. Project Web
page: nds.psnc.pl

[GUS1] Source: polish Central Statistics Office.
http://www.stat.gov.pl/gus/index_ENG_HTML.htm

[MIN1] Source: polish Central Statistics Office.
http://www.stat.gov.pl/gus/index_ENG_HTML.htm,
cited by:
http://www.studenckamarka.pl/serwis.php?s=73&pok
=1909

[FUSE1] Filesystem in Userspace. http://fuse.sourceforge.net
[PSQ1] PostgreSQL. The world’s most advanced open source

database. http://www.postgresql.org
[SLO1] Slony-I. Enterprise-level replication system.

http://www.slony.info/
[VMW1] VMware vSphere Hypervisor (ESXi).

http://www.vmware.com/products/vsphere-
hypervisor/index.html

[HSM1] HSM. TSM-HSM, Tivoli Storage Manager for Space
Management.
http://www-306.ibm.com/software/tivoli/products/

 storage-mgr-space/
[DCA1] http://www.dcache.org
[DCA2] P. Millar, dCache. Presentation during 3rd Terena TF-

Storage Meeting, Dublin, 2009.
http://www.terena.org/activities/tf-
storage/ws5/agenda.html

[DCA3] P. Fuhrmann, V. Gulzow, dCache, storage system for
the future, In: W. E. Nagel, W. V. Walter, W. Lehner
(Eds.): Euro-Par 2006, Parallel Processing, 12th
International Euro-Par Conference, Dresden,
Germany, August 28-September 1, 2006, Proceedings.
LNCS 4128, Springer 2006,

[CHI1] Chimera – a new, fast, extensible and Grid enabled
namespace service,
http://www.dcache.org/manuals/chep06/Chimera-
paper-chep06.pdf

[IRO1] https://www.irods.org
[IRO2] Arcot Rajasekar, Mike Wan, Reagan Moore, Wayne

Schroeder, A Prototype Rule-based Distributed Data
Management System HPDC workshop on “Next
Generation Distributed Data Management”, Paris
2006,

M. Brzeźniak, N. Meyer, R. Mikołajczak, G. Jankowski, M. Jankowski 118

MACIEJ BRZEŹNIAK, M.Sc. in Computer Science from the Poznań University of Technology (2001).
Current affiliation: Supercomputing Department in Poznań Supercomputing and Networking Centre
(http://www.psnc.pl) as storage systems specialist and researcher. Interests include: scalable data storage and
management technologies and architectures, storage and data management services design, implementation
and operation, storage systems performance. Involved in: PLATON project (Service Platform for e-Science,
POIG.02.03.00-00-028/08), National Data Storage project (nds.psnc.pl) and TERENA TF-Storage
(www.terena.org/activities/tf-storage). Previously active in CoreGrid project (Institute on Knowledge and
Data Management, EU FP6 NoE project no. FP6-004265), Atrium project (IST-1999-20675) and national
projects: SGIgrid (mathlib.psnc.pl) and Virtual Laboratory (vlab.psnc.pl). His publication record includes
papers and technical related to performance analysis of storage and computing systems architectures as
well as storage and data management services.

DR. NORBERT MEYER is currently the head of the Supercomputing Department in Poznań Supercomputing
and Networking Center (http://www.man.poznan.pl). His research interests concern resource management
in GRID environment, GRID accounting, data management, technology of development graphical user
interfaces and network security, mainly in the aspects of connecting independent, geographically distant
Grid domains. NM conceived the idea of connecting Polish supercomputing centres, vision of dedicated
application servers and distributed storage infrastructure. He is the author and co-author of 60+ conference
papers and articles in international journals, member of programme committees of international
conferences related high performance computing and distributed computing. He was the leader of RINGrid
EU project, currently leading the EU DORII project.

RAFAL MIKOŁAJCZAK, M.Sc. degree in Computer Science from the Poznań University of Technology in
1998. Currently he is employed as a deputy manager of Supercomputing Department in Poznań
Supercomputing and Networking Center. His research interests concern checkpoint low level services and
grid service, distributed data management and data center technical infrastructure. Hi is also responsible
for the storage system in PSNC. He was working on the kernel-level checkpointing mechanism for the
IA64 with Linux OS and he was working on the Grid Checkpointing Architecture within the CoreGRID
project. The other area of interested is the storage systems architecture and technology. Currently he is
working on the National Data Store project.

GRACJAN JANKOWSKI received the M.Sc. degree in Computer Science from the Poznań University of
Technology in 2002. He works in Supercomputing Department of PSNC since 2001. In years 2001-2008
his R&D activity concerns checkpointing, load balancing and migration of running processes in HPC and
HTC. He is author and coauthor of a few papers discussing the checkpointing related issues. He was
participating in two national projects: PROGRESS (http://progress.psnc.pl) and SGIgrid, implementing
kernel and user level checkpointing for Solaris and Linux (checkpointing mechanism for IA64) operating
systems – http://checkpointing.psnc.pl/. The projects PROGRESS and SGIgrid were co-funded by the
State Committee for Scientific Research and two leading IT companies, respectively SUN Microsystems
and Silicon Graphics. Recently he has been involved in FP6 Network of Excellence Core-GRID funded by
the European Commission where he worked on techniques allowing utilization of legacy checkpointing
packages in GRID environment. Currently he works as analyst and programmer of virtual file system for
National Data Storage

MICHAŁ JANKOWSKI, M.Sc. degree in Computer Science from the Poznań University of Technology in 1998. Current possition:
computer systems analyst at the Supercomputing Department in Poznań Supercomputing and Networking Center. Professional interests:
distributed data storage systems, user management, authorization, software design and development. Involved in projects: PLATON
(Service Platform for e-Science, POIG.02.03.00-00-028/08), National Data Storage project (nds.psnc.pl) – design, development and
deployment of meta-catalog. Previous projects: CoreGrid (Institute on Knowledge and Data Management, EU FP6 NoE project no. FP6-
004265), Baltic Grid and BalticGrid-II (www.balticgrid.org, EU 6 FP, contract no.: 026715, EU 7 FP, contract no.: 223807), Clusterix
(National CLUSTER of LInuX Systems), SGIgrid (mathlib.psnc.pl) – design, development and deployment of Virtual User System
(vus.psnc.pl).

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2010, 109-118

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

