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1.  INTRODUCTION 

 The standard algorithms for computing the homology 
groups of cellular complexes composed of cubes (cubical 
sets) are based on performing row and column operations 
on the boundary matrices. We present the algorithm which 
is an extension of the results presented in [1]. The main 
idea is based on [1], but the construction of particular 
procedures and their theoretical analysis is new. Owing 
to the specific analysis of the problem which is pre-
sented in this paper, final estimations are even better 
than those in [1].  
 The algorithm obtained allows to compute the homol-
ogy groups for two-dimensional cubical sets. In higher 
dimensions, it sometimes does not lead to the computing 
the specified groups. However, it can lead to essential sim-
plification of basic complex (cubical set). Moreover, we 
conclude that the homology groups for two-dimensional 
cubical sets can be calculated in O(N log2(N)) operations, 
where N is the number of cubes in the considered complex. 
Whereas in [1] the corresponding time is O(N log3(N)). 
 Let n natural number greater than 1. We consider loga-
rithms of the base 2. Let B∂  the list of all cells which be-
long to the boundary of B and Bδ  the list of all cells which 
belong to the coboundary of B. 
 

2.  COMPUTATIONAL  HOMOLOGY 

 In this section we describe a theoretical background 
for computational homology. We use terminology from 
the book [2]. 
 
2.1. Cubical sets 
 For a given natural number ∈`a  we say that [a, a + 1] 
and [a, a] are elementary intervals. Now we say that a set 

X ⊂  ún is cubical if X can be written as a finite union of 
elementary cubes: 1

m
iiX Q==∪  where Qi is a finite product of 

elementary intervals :k
iI  

1 .k n
i i i iQ I I I= × × × ×" "  

The dimension of an elementary cube Q is defined to be 
the number of nondegenerate intervals in definition of Q. 
We say that a cube Q is k-cube if dimension of Q is equal 
k. Let d

kK  be the set of all k-cubes contained in úd.  
 
2.2. Cubical chains  
 With each elementary k-cube d

kQ ∈ k  we associate an al-
gebraic object Q

�
 called an elementary k-chain of úd.  

The set of all elementary k-chains of úd is denoted by ˆ .d
kk  

Now we define k-chain c as a finite sum of elementary 
k-chains. In particular 1

ˆs
i iic Pα==∑  where iα = ] and 

ˆ ˆ .d
i kP ∈ k  The set of all k-chains of úd we denote as .d

kC  If 
X ⊂  úd is a cubical set then by Ck(X) we denote the set of all 
k-chains generated by elementary k-cubes contained in X. 
 
2.3. The boundary operator 
 We would like to define the cubical boundary operator 
which takes k-chains to (k − 1)-chains. This is the motiva-
tion for defining the following product: 
 For given two elementary cubes 1

1

d
kP ∈ k  and 2

2

d
kQ ∈ k we 

set 

   nˆˆ .P Q P Q◊ = ×  

This definition extends to arbitrary chains  

1 1
11 1

ˆs d
i i kic P Cα== ∈∑  
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and   
1 2

22 1
ˆs d

j j kjc Q Cβ== ∈∑   

by 
n

1 2 : .i j i j
ij

c c P Q◊ = ×∑α β  

Now for a given k ∈`  we can define the cubical boundary 
operator 

1: ,d d
k k kC C −∂ →  

First we define k∂  on an elementary chain ˆ ˆd
kQ ∈ k  by the in-

duction on the given number d as follows. 
 If d = 1 then Q is an elementary interval and hence 
Q = [a, a] 1

0∈ k  or Q = [a, a + 1] 1
1∈ k  for some a .∈`   

 Define 

[ ]

n n [ ]

0 if ,
ˆ : .

, 1 , if , 1
k

Q a a
Q

a a a a Q a a

⎧ =⎪⎪∂ = ⎨
⎪⎡ ⎤ ⎡ ⎤+ − = +⎪ ⎣ ⎦⎣ ⎦⎩

 

Now assume that d > 1. Then Q = I H P where I is an ele-
mentary interval and P an elementary cube. 
 Define 

  ( ) 1

1 2
ˆ ˆ ˆ ˆ ˆ1 ,k

k k kQ I P I P∂ = ∂ ◊ + − ◊∂  

where k1 is a dimension of I and k2 is a dimension of P. 
 Finally, we extend the definition to all chains by linear-
ity; that is, if l

1
m

i iic Q==∑ α  then 

l
1

: .
m

k i k i
i

c Q
=

∂ = ∂∑α  

 
2.4. Homology of cubical sets 

 Let dX ⊂ \  be a cubical set. A k-chain ( )kz C X∈  is 
called a k-cycle if 0.k z∂ =  The set of all k-cycles in X is 
denoted as 

( ) : ker ( ) ker ( ).X
k k k k kZ X C X C X= ∂ = ∂ ⊂1  

A k-chain ( )kz C X∈  is called a k-boundary in X if there 
exists 1( )kc C X+∈  such that 1 .k c z+∂ =  The set of all k-boun-
daries in X is denoted as 

( )1 1 1( ) : im ( ) ( ).X
k k k k kB X C X C X+ + += ∂ = ∂ ⊂  

It can be proved that ( ) ( ).k kB X Z X⊂  
 Now we can define k-th cubical homology group of X 
as the quotient group:  

( ) : ( ) ( ).k k kH X Z X B X=  

The homology of X is the collection of all homology groups 
of X: 

{ }*( ) : ( ) .k k NH X H X ∈=  

Note that we use the homology groups of the cubical 
set X to gain information about the topological structure 
of X. 
 

1.5. Fixed points in the unit ball  
 In this section we give the application of computational 
homology. 
 Let n+1 = 1[ 1, 1] n+−  be the unit ball and n = M n+1 be 
the corresponding unitary sphere. 
 First we need the following fact about Homotopy In-
variance: 

Corollary 1. [2, Corollary 6.69]. Let X and Y be cubical 
sets of the homotopy type. Then 

{ }* *( ) ( ) .H X H Y≅  

We have the following theorem due to K. Borsuk: 

Theorem 1. [2, Theorem 10.43] Let n ≥ 0. The following 
statements are equivalent: 
 (1) n is not contractible. 
 (2) Every continuous map f : n+1 → n+1 has a fixed point.  
 (3) There is no retraction from n + 1 onto n. 
 Now we can use a computer program to calculate ho-
mology groups:  
 For d ≥ 1 we can obtain: 

   Hk( n)  
if 0,

0 otherwise

k d=⎧⎪≅ ⎨
⎪⎩

]
 

while for d = 0 

   Hk( n)  
2 if 0

0 otherwise

k⎧ =⎪≅ ⎨
⎪⎩

]
 

Observe that homology groups for a point {0} are the fol-
lowing:  

Hk({0})  
if 0,

.
0 otherwise

k d=⎧⎪≅ ⎨
⎪⎩

]
 

In particular due to Corollary 1 we may conclude that n is 
not contractible to a point {0}, thus the condition (a) of 
Theorem 1 holds, and therefore all three statements of 
Theorem 1 are true. 
 More examples can be found in the book (2). 
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3.  CUBICAL  APPROXIMATIONS 

 
 We observe that the cube [a, b]n where a < b can be 
divided into 2n cubes [a1, b1] × ... × [an, bn] where ai = a 
and bi = (a + b)/2 or ai = (a + b)/2 and bi = b. From here 
comes a clear method of approximation any solid B con-
tained in cube K with by means of calling the procedure 
Subdivide (K, B, s). 

 
4.  ALGORITHM 

FOR  COMPUTING  THE  HOMOLOGY 

 In this section we describe the algorithm for computing 
the homology groups for the complexes composed of cubes 
in n (cubical sets). Simplification method of two given 
cells is the same as in the paper [1]. A crucial difference 
between the algorithm in our paper and the one in [1] is 
different order in which the cells are selected for simplifi-
cation (this order is set by a special index which stores 
information on the simplifications already carried out near 
the selected cells). 
 

4.1. Data structure 
 The algorithm operates upon the following data struc-
tures: 

• Leaf L ⇔  L is the leaf in the tree returned by Sub-
divide(K, B, s). 

• LeafParent T ⇔  if Q is a child for T then Q is 
a leaf in the above tree. Moreover all children of T 
are d as Children(T). 

• Cell X ⇔  X contains coordinates, boundary list MX 
and a list of coboundaries .Xδ  Additionally, X in-
cludes the field Index: Index(X). 

• BoCell Y ⇔  Y ∈  MX where X is of type Cell. In 
particular Y is a simple pointer for a suitable cell of 
type Cell of lower dimension. 

• CoCell Z ⇔  Z ∈  Xδ  where X is of type Cell. 
Now we define an incidence number , .Z X  In 
particular Z is the pointer for an appropriate cell of 

type Cell of higher dimension plus incidence num-
ber. If ,A B  ≠  0 then B A∈ ∂  and .A Bδ∈  

• Block T ⇔  T is a sorted lists1 (due to Index, di-
mension and coordinates) of the cells of type Cell. 
The d-dimensional interior of that cube is d by Inte-
rior(T, d). In particular A∈ Interior(T, d) if A T∈  
and A is d-dimensional Cell located outside the 
boundary of T. 

Remark. We denote length of b∂  by # b∂  and length of 
bδ  by # .bδ  Inserting and deleting operations for elements 

from b∂  and bδ  are performed in logarithmic time. 
 
4.2. Procedures 
 Now we present all the procedures. 

 
 
 

 
 
 

 
 

                                                 
1 For Concatenate operations we need to merge lists due to coordinates 
and dimensions. Therefore it suffices to use sorted list. For Simplify 
operations we additionally need the field Index and therefore we need T to 
be represented by priority queue. 
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Note 1. Index change in lines 7, 10 influences the order of processing the 
elements in line 2. However, it does not influence the cost of performing 
the algorithm as index is not changed into smaller one (priority queue due 
to Index may be used here). Additionally, for n = 2 we can use the fact 
that Index is of order O(log N). 
 
 

 
Notice: In line 12 we guarantee the performance of the last operation 
Simplify on all non deleted Cells. 
 
4.3. Algorithm correctness 
 We show that algorithm allows to make reductions 
which are homologous invariants. We observe that the ho-
mology groups can be changed only in those lines of pro-
cedure Simplify(W, d) which modify BoCells and CoCells. 
Moreover, let us observe that the pair (c, b) is reduced if 

,c b  is reversible (in this case ,c b  equals 1, or –1). 
The Cell b has dimension d, c has dimension d + 1. Reduc-
tion made by Simplify influences the boundary (d + 1)-di-
mensional cells in the following way: 

• , ,v v c b v b c∂ = ∂ − ∂  

Because b and c are deleted, the information about them 
must be also deleted from the boundaries and coboundaries 
of other cells. It results in the following modification of 
the boundaries of (d + 2)-dimensional cells: 

• ,w w w c c∂ = ∂ −  
The boundaries of the cells of different dimensions stay 
unchanged.  
 Now it suffices to use the same arguments as in [1]. 
 

5.  ANALYSIS  OF  ALGORITHM  COMPLEXITY 

Symbols: 
• n   –  dimension of the cubical set, 
• N   –  number of the cubes in the cubical set, 
• N(d) –  number of d-dimensional cells in the cu- 
     bical set, 
• B(N)  –  maximal possible number of BoCells, 
• B(N, d)  –  maximal possible number of d-dimen-
     sional BoCells, 
• C(N)  –  maximal possible number of CoCells, 
• C(N, d)  –  maximal possible number of d-dimensio-
     nal CoCells, 
• k  –  number of the levels in the tree (number 
     of the levels from the root to children), 
• δB   – coboundary of cell B,  
• MB   – boundary of cell B. 

 Let us observe that B(N, d) = C(N, d + 1). Moreover, we 
assume that δb and Mb are sorted lists. 
 Let us observe that it suffices to analyze the complexity 
of realization of all Simplify and Concatenate procedures 
and the complexity of data preparation for Main procedure. 
It is because CreateCube procedure is performed in time 
O(1) and processing all nodes in the tree is performed in 
time O(Nk). 
 For further analysis we need the following lemmas: 

Lemma 1. Each cubical set B built of N-cubes can. be 
transformed in a homologically equivalent way into A 
cubical set so that [ ]1 2 .nA N⊂ …  This operation can be 
performed in O(N log(N)) time. 
Proof. We should sort the cubes due to coordinates. It can 
be performed in O(N log(N)) time. For a moment let us 
assume that B is one-dimensional and it is composed of s 
disjoint pieces S1, ... Ss of the length ml ... ms respectively. 
Let us move the pieces so that the distance between them 
equals 1. This operation can be performed in O(N) time. 
This way we obtain a new cubical set A. Moreover, A is 
homologically equivalent to B and is contained in the cube 
of length (m1 + 1) + ... + (ms + 1) = N + S ≤ 2N. If B has 
higher dimension it suffices to repeat the operation for each 
of the coordinates, separately.          G  

 The following conclusion can be drawn: 

Conclusion 1. The height of the tree which represents B can 
be limited by log(2N) in O(N log(N)) time. 
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 Now we can assume that k is not bigger than log(2N). 

Lemma 2. Cost of all Concatenate operations is up to 
O(C(N) log(N)).   
Proof. Executing Concatenate operation on a given level of 
tree involves processing all boundaries and coboundaries 
and therefore it costs O(C(N)). As tree’s height is not higher 
than log(2N), therefore a cost of all Concatenate operations 
on all the levels in tree is up to O(C(N) log(N)).               G  

Lemma 3. Numbers B(N, 0) = C(N, 1) and B(N, n − 1)= 
= C(N,n) are of order O(N). 
Proof. Observe that during Main procedure (n − 1)-di-
mensional Cells have no more than two-element cobound-
ary. From this follows that C(N, n) is of order O(N). More-
over, the number of 1-dimensional Cells is up to N. Each 
1-dimensional Cell has no more than two-element bound-
ary and therefore B(N, 0) is of order O(N).         G  

Lemma 4. Cost of all Simplify(*, 0) is O(N log2(N). 
Proof. Observe that Y is a one-element list. Moreover, in 
line 11 CoCells from bδ  are copied to yδ  so that In-
dex(y) > Index(b). Therefore: 
 A)  CoCells are copied from one coboundary to 
  the other coboundary with higher Index value. 
Now we prove the following property: 

B) If y is 0-dimensional Cell then  
 Index(y) ≤ log(2n+1N). 

 First, observe that cost of lines 9-13 is greater than cost 
of lines 5-8 (because d = 0 and to estimate costs of lines 
9-13, 5-8 it suffices to estimate cost of processing the list 
X). Therefore it suffices to study only lines 9-13 in Sim-
plify(*, 0) procedure. 
 For arguments simplification we assume that: 

• CoCells in Simplify(*, 0) are not deleted. Moreover, 
line 11 is replaced by – add bδ  to yδ  with 

• In particular, during reduction (lines 9-13) the se-
quence { }X cc  is added to yδ  without deletion of 
the same CoCells. Some CoCell may point to de-
leted Cells and therefore yδ  may contain two Co-
Cells which point to the same Cell. 

 We show the following invariants of Simplify(*, 0): 
 (1)  If yδ  contains at least two equivalent CoCells 

(two CoCells which point to the same Cell), then 
there are exactly two of them and they point to de-
leted edge or edge with one-element boundary. 

 (2)  # yδ  ≥  2Index(y). 
The qualities (1)-(2) are fulfilled before first reduction. 
 We consider next reductions. If Index(b) ≠  Index(y) 
before the current reduction, then after reduction Index(b) 
< Index(y) and (2) is fulfilled. If Index(b) = Index(y) before 
the current reduction then Index(y) = Index(b) + 1 after 
reduction. Moreover, the length of yδ  is not smaller than 
2Index(b) + 2Index(b) = 2Index(b) + 1, so point (2) also occurs. 

 For the proof of point (1) we should take x which be-
longs at the same time to bδ  and .yδ  In particular, ,x b  
and ,x y  do not equal 0. From this follows that before 
reduction x has two-element boundary (this boundary con-
tains b and y). Moreover, after reduction x is deleted or has 
boundary with only one element (b is deleted). From this 
follows that yδ  by cannot contain two duplicates pointing 
to x. This finishes the proof of (1). 
 Due to point (1), the length of any yδ  is not bigger than 
2n + 1N. Due to (2) we have 

   2Index(y) ≤ # yδ  ≤ 2n + 1N.  

We conclude the property B): Index(y) ≤ log(2n + 1N). 
 Now we notice that during the algorithm performance, 
1-element Cell of type CoCell can be copied to the co-
boundary of another Cell ( )yδ  only log(2n + 1N) times. It 
results from the properties A)-B). Because element inser-
tion into yδ  costs O(log(N)) therefore cost of all Sim-
plify(*, 0) reductions is equal to O(N log2(N)).        G  

Lemma 5. Cost of all Simplify(*, n − 1) reductions is 
O(N log2(N)). 
Proof. Let Qn be the length of the boundary for basic n-di-
mensional cube. 
 Let b be (n − 1)-dimensional Cell from line 2 of Sim-
plify(*, n − 1). Observe that # bδ  ≤ 2 and X is one-element 
list. As the cost of element insertion into yδ  and x∂  is 
equal to O(log(N)), therefore the cost of all Simplify(*, 
n − 1) reductions is not greater than cost of processing x∂  
and Y lists and simultaneously adding X list to yδ  list. It 
suffices to count the cost of processing x∂  and Y lists in 
lines 6 and to multiply it by O(log(N)). 
 For arguments simplification we assume that: 

• BoCells in Simplify(*, n − 1) are not deleted. More-
over, we replace line 6 by 

  − add c∂  to x∂  

• In particular, during reduction the sequence c∂  is 
added to x∂  without deleting the equivalent BoCells 
(two BoCells pointing to the same Cell). Some Bo-
Cells may point to a deleted Cell and x∂  contains 
duplicates. 

 Observe that x is n-dimensional Cell. Let us define: 

MinIndex(x) := { }
, no points to deleted cell

min Index( ) .
d x d

d
∈∂

 

We prove the following invariants of Simplify(*, n −  1): 
   (1)  If x∂  contains at least two equivalent BoCells (two 
  BoCells pointing to the same Cell) then there are 
  exactly two of them and they point to a deleted 
  (n − 1)-dimensional Cell. 
   (2)  If y x∈ ∂  then Index( )# 2 .yx∂ ≥  
   (3)  Executing lines 6-7 increases MinIndex(x) value. 
 Let .c bδ∈  Observe that Index( )# 2 bx∂ ≥  as .b x∈ ∂  
Moreover, if y c∈ ∂  and y do not point to a deleted cell, 
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then Index(y) ≥  Index(b). If Index(y) < Index(b), then y 
points to a cell reduced before b so it currently points to 
a deleted cell. 
 If we consider the situation before the first reduction, 
then the qualities are fulfilled. We consider next reductions. 
 For the proof of point (1) we take (n – 1)-dimensional 
BoCell y which belongs at the same time to c∂  and .x∂  In 
particular, before reduction y has two-element coboundary 
(this coboundary contains c and x). Moreover, after reduc-
tion y is deleted. From this follows that x∂  contains y and 
only one duplicate of y. This finishes the proof of (1). 
 First, observe that before reduction Index(z) ≥  Index(b) 
for all z Y x∈ ∂c  which do not point to a deleted Cell. 
Moreover, Index( )# 2 zx∂ ≥  for all z Y x∈ ∂c  which point to 
deleted Cells. If before reduction there exists z Y x∈ ∂c  
such that Index(z) > Index(b), then after reduction 

Index( )# 2 zx∂ ≥ . If before reduction Index(z) = Index(b) for 
some ,z Y x∈ ∂c  then after reduction Index(z) = Index(b) + 1 
and 

Index( ) Index( ) Index( )# 2 2 2b b zx∂ ≥ + =  

after reduction, which finishes the proof of (2). 
 Observe that Index(z) > Index(b) for all z x b∈ ∂ \ which 
do not point to deleted cells after reduction. Before reduc-
tion MinIndex(x) = Index(b) and after reduction MinIn-
dex(x) > Index(b) + 1. From this follows (3). 
 Due to (1) follows that # x 2 .nQ N∂ ≤  Moreover, due to (2): 

MinIndex( )2 # 2x
nx Q N≤ ∂ ≤  

and therefore Minlndex(x) ≤  log(2QnN). Due to (3) we 
conclude that the single (n – 1)-dimensional element Bo-
Cell is processed in lines 6-7 (during program running) no 
more than MinIndex(x) ≤ log(2QnN). Now because the number 
of all (n – 1)-dimensional BoCells is O(N) (Lemma 3) 
therefore the cost of processing ,x∂  Y lists in line 6 of all 
Simplify(*, n – 1) reductions is O(N log(N)). Therefore the 
cost of all Simplify(*, n – 1) reductions is O(N log2(N)).  G  

Theorem 2. The homology groups of the cubical sets lo-
cated in 2\  can be calculated in O(N log2(N)) time. 
Proof. Due to Lemma 1 the cost of data preparing for Main 
procedure is equal to O(N log(N)). Moreover, due to Lem-
mas 2-3 the cost of all Concatenate operations is equal to 
O(N log(N)). Now it suffices to observe that due to Lem-
mas 4-5 the cost of all Simplify(*, 1), Simplify(*, 0) reduc-
tions is O(N log2(N)).          G  

6.  NUMERICAL  EXPERIMENTS 

 In our program we create and remove many small ob-
jects with identical size (CoCell type or BoCell type). 
Therefore, we decided that proper structures are created at 
the moment of their first using. Additionally for the objects 
with the same size we applied a simple memory managing 

algorithm which is supposed to reduce the frequency of 
allocating memory directly from the system: 

 
 
 Let us observe that memory allocated by MemAlloc 
from the system is destroyed after the program has been 
ended. Therefore to create and destroy the same object 
several times it suffices to change some pointers. 
 For 3-dimensional cubical sets our algorithm theoreti-
cally needs the similar number of operations as in [1]; 
however we receive better results than in [1]. 
 In Table 1 we present the effects of our algorithm on 
a cubical set equivalent with a cube. Moreover in Table 2 
we present results which we obtained for 3-dimensional 
cubical set equivalent with S 1 + S 2 + T 2, (circle + sphere + 
torus; in this case H0 = ,Z  H1 = 5 ,ZH2 = 2Z). The ex-
periments were carried out on Pentium 100 with 64 MB 
RAM, under Linux. 
 

Table 1. 

L.p. n k N   
Max Mem 

(MB) 
Reduction 

(MB) 
T    
(s) 

[1] T   
(s) 

1 2 5 1 024 1 1 0.91  
2 2 6 4 096 2 3 2.13  
3 2 7 16 384 5 11 6.75  
4 2 8 65 536 6 41 25.49  
5 2 9 262 144 7 163 109.10  
6 2 10 1 048 576 7 649 458.72  
7 3 9 512 1 2 1.17 3.5
8 3 12 4 096 4 10 6.82 67.0
9 3 15 32 768 10 77 54.55 1 998.0

10 3 18 262 144 22 617 485.74 78 269.0
 

Table 2. 

L.p. n k N   Max Mem 
(MB) 

Reduction 
(MB) 

T    
(s) 

[1] T   
(s) 

1 3 12 4 020 4 10 6.68 66.4
2 3 15 32 644 10 77 53.78 1903.4
3 3 18 261 924 21 614 484.16  



Homology Calculation of Cubical Complexes in ún 

 

121

 In all the tables n – means dimension, k – the number of 
levels in binary tree which is representing a given cubical 
set, N – the number of elementary cubes in a cubical set, 
Max Mem – the maximal size of the program with data 
during running, Reduction – the total size of allocated and 
deallocated memory during running, T(s) – the time of 
calculations, [1] T(s) – the time of calculations from [1] 
(calculations from [1] were performed on Sun SPARC-
Station 20 machine with 160 MB RAM). 
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