
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 69-77 (2006)

1. INTRODUCTION

 Programming for the Grid raises new challenge for paral-
lel and distributed programming. Mainly characterized by
resource heterogeneousness, location dispersity, and high
volatility (among others); the Grid requires the adoption of
new programming paradigms that address these issues.
 Based on our research, in this article we propose an
approach for Grid programming using the ProActive mid-
dleware. ProActive was originally created as an implemen-
tation of Active Object programming model [11], and has
developed into a multifeatured middleware for program-
ming and deploying distributed applications on the Grid.
ProActive is still evolving; and currently represents the
manifestation of our studies.
 Released under the LGPL license ProActive is a Java
library for parallel, distributed, and concurrent computing,
also featuring mobility and security in a uniform frame-
work. With a reduced set of simple primitives, ProActive
provides a comprehensive API allowing to simplify the pro-
gramming of applications that are distributed on Local
Area Networks (LAN), on clusters, or on Internet Grids.
 The Grid Infrastructure based on resource creation
and acquisition through deployment descriptors, provides
a level of abstraction that allows removing from the appli-
cation source code any reference of infrastructure (hard-
ware, software, hosts, protocol, and hardware). Applying
several Grid Technical Services non-functional and trans-
parent aspects such as: fault tolerance, load balancing and
file transfer can be transparently used to overcome the bur-
den of programming distributed applications. ProActive
also provides Higher Level Programming strategies that
provide a further abstraction for Grid programming using

paradigms like: typed group communication [11] and hier-
archical components [7].
 This document is organized as follows. In section 2 we
give a general background on the active object program-
ming model and ProActive, then in section 3 we discuss
how the Grid Infrastructure can be built using Descriptors
and Peer-to-Peer. Once we have established the Grid Infra-
structure, in section 4 we discuss the different services
required for Grid programming. We then proceed to section
5 where we show Higher Level Grid programming mecha-
nisms. Then we show in section 6 some Grid programming
experiences using our proposed approach, and finally in
section 7 we conclude and show our current perspectives
on Grid programming.

2. ACTIVE OBJECT PROGRAMMING
WITH PROACTIVE

 The ProActive middleware is a 100% Java library,
which aims at achieving seamless programming for concur-
rent, parallel, distributed, and mobile computing. It does
not require any modification of the standard Java execution
environment, nor does it make use of a special compiler,
pre-processor, or modified virtual machine.
 The ProActive core is a uniform active object (AO)
programming model. As shown in Fig. 1, AO are remotely
accessible via method invocation. Each AO has its own
thread of control and is granted the ability to decide in
which order to serve the incoming method calls, automati-
cally stored in a queue of pending requests. Method calls
on AO are asynchronous with automatic synchronization.
This is achieved using automatic future objects as a result
of remote methods calls, and synchronization is handled by

ProActive: an integrated platform for programming
and running applications on Grids and P2P systems

Denis Caromel, Christian Delbé, Alexandre di Costanzo, Mario Leyton

INRIA Sophia-Antipolis, CNRS, I3S, UNSA, 2004, Route des Lucioles, BP 93

F-06902 Sophia-Antipolis Cedex, France
e-mail: First.Last@sophia.inria.fr

Abstract: We propose a grid programming approach using the ProActive middleware. The proposed strategy addresses several grid
concerns, which we have classified into three categories. I. Grid Infrastructure which handles the resource acquisition and creation
using deployment descriptors and Peer-to-Peer. II. Grid Technical Services which can provide non-functional transparent services like:
fault tolerance, load balancing, and file transfer. III. Grid Higher Level programming with: group communication and hierarchical com-
ponents. We have validated our approach with several grid programming experiences running applications on heterogeneous Grid re-
source using more than 1000 CPUs.
Key words: Grid, middleware, active object, descriptor, deployment, peer-to-peer, fault-tolerance, load balancing, file transfer

user
Tekst maszynowy
CMST 12(1) 69-77 (2006)

user
Tekst maszynowy
DOI:10.12921/cmst.2006.12.01.69-77

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

D. Caromel et al. 70

a mechanism known as wait-by-necessity [11]. To move
any AO from any Java Virtual Machine (JVM) to any
other, a migration mechanism is provided. An AO with its
pending requests (method calls), futures, and passive
(mandatory non-shared) objects can migrate from JVM to
JVM through the migrateTo(...) primitive. The migration can
be initiated from outside the AO, but it is the responsibility
of the AO to execute the migration, this is known as weak
migration. Automatic and transparent forwarding of re-
quests and replies provide location transparency, as remote
references toward active mobile objects remain valid.
 ProActive uses by default the RMI Java standard library
as a portable communication layer, supporting the follow-
ing communication protocols: RMI, HTTP, Jini, RMI/SSH, and
Ibis [25].
 Another Grid communication mechanism is the typed
group communication model [2]. Group communication
allows triggering method calls on a distributed group of
active objects with compatible type, dynamically generat-
ing a group of results. It has been shown in [2] that this
group communication mechanism, plus a few synchroniza-
tion operations (WaitAll, WaitOne, etc.), provides quite
similar patterns for collective operations such as those
available in e.g. MPI, but in a language centric approach
[3]. The typed group communication model is detailed in
section 5.1.
 ProActive also provides other higher-level abstractions
for grid programming, implementing the hierarchical Frac-
tal component model [7].
 Graphical visualization and monitoring of any ongoing
ProActive applications is possible through IC2D (Interac-
tive Control and Debugging of Distribution) tool. In par-
ticular, IC2D enables to migrate executing tasks by a gra-
phical drag-and-drop.

3. GRID INFRASTRUCTURE PROGRAMMING

3.1. Descriptor-based Deployment
of Grid Applications

 The deployment of distributed applications is com-
monly done manually through the use of remote shells for
launching the various virtual machines or daemons on
remote computers and clusters. Deployment on the grid
increases the complexity of applications because of the hetero-
geneousness of resources, thus making the deploying task
central and harder to perform.
 ProActive succeeds at providing a generic approach for
deployment. Using grid descriptors, infrastructure details
can be removed from the user application in a uniform and
abstract way [5]. References to hosts, protocols and other
infrastructure details are removed from the application
code, and specified in the descriptors using XML.
 The grid application is thus contracted with the descrip-
tor through a VirtualNode. VirtualNodes are abstractions
for the location of resources, and correspond to the actual
references in the application code. They have a unique
identifier, and can be mapped on to one or several Java
Virtual Machines (JVM). These JVMs can be created or
acquired (on local or remote sites), through the mapping of
processes. A process holds the protocol specific informa-
tion. The result of mapping a VirtualNode on the resources
corresponds to one or several ProActive Nodes.
 Effectively, a user can change the mapping of the Vir-
tualNode → JVM → Process to deploy on different sites,
without modifying a single line of code in the application.
 Figure 2 shows a simple descriptor example. The
VirtualNode named Example is mapped on to a JVM called
JVMExample, which in turn is mapped on to a process

Fig. 1. Execution of a remote method call

ProActive: an integrated platform for programming and running applications on Grids and P2P systems 71

called sshProcess. The sshProcess will perform an ssh
connection to the host example.host and insantiate a JVM
using the defined jvmProcess.
 The XML Deployment Descriptors currently provide
interfaces with various protocols: rsh, ssh, LSF, PBS, SGE,
Globus, Jini, RMIregistry, EGEE gLite, Unicore, Nordugrid, etc.,
which enable to effectively deploy grid applications.

<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema
 – instance" xsi:noNamespaceSchemaLocation="DescriptorSchema.
 xsd">
 <componentDefinition>
 <virtualNodesDefinition>
 <virtualNode name="Example"/>
 </virtualNodesDefinition>
 <componentDefinition/>
 <deployment>
 <mapping>
 <map virtualNode="Example">
 <jvmSet>
 <vmName value="JvmExample"/>
 </jvmSet>
 </map>
 </mapping>
 <jvms>
 <jvm name="JvmExample">
 <creation> <processReference refid="sshProcess"/> </creation>
 </jvm>
 </jvms>
 </deployment>
 <infrastructure>
 <processes>
 <processDefinition id="sshProcess">
 <processReference refid="jvmProcess"/>
 <sshProcess class="org.objectweb.proactive.core.process.
 SSHProcess"
 hostname="example.host" username="smith"/>
 </processDefinition>
 <processDefinition id="jvmProcess">
 <jvmProcess class="org.objectweb.proactive.core.process.
 JVMNode Process"/>
 </processDefinition>
 </processes>
 </infrastructure>
</ProActiveDescriptor>

Fig. 2. XML Deployment Descriptor Example

 In addition, descriptors provide support for other infra-
structure services, such as P2P, File Transfer and others. In
particular, the File Transfer support allows transferring of
files, such as data, libraries, Java Virtual Machines, code,
ProActive runtime, etc., to remote locations and retrieve of
files from remote nodes. In section 4.3 we discuss File
Transfer in further detail.

3.2 A self-organized and flexible Peer-to-Peer Infrastructure
 Existing models and infrastructures for Peer-to-Peer
(P2P) computing are rather limited: only targeting inde-
pendent worker tasks, usually without communications
between tasks. Therefore, we propose a P2P infrastructure
of computational nodes for distributed communicant appli-
cations. The infrastructure provides large scale grids for
computational intensive applications; such Grids provide
a mix of clusters and desktop machines.

 The main goal of the P2P infrastructure is to provide
a new way to build and use Grids. The infrastructure allows
applications to transparently and easily obtain computa-
tional resources from Grids composed of both clusters and
desktop machines. The application deployment burden is
eased by a seamless link between applications and the infra-
structure. This link allows: applications to communicate,
and to manage the resources volatility.
 The proposed P2P infrastructure has three main charac-
teristics. First, the infrastructure is not centralized and
completely self-organized. Second, it is flexible, thanks to
parameters for adapting the infrastructure to the location
where it is deployed. Last, the infrastructure is portable
since it is built on top of Java Virtual Machines, which run
on cluster nodes and on desktop machines. Thus, the infra-
structure contributes to ProActive, providing a new way
for: deploying applications and acquiring already running
JVMs (instead of starting new ones).
 For us P2P is defined as “Pure Peer-to-Peer Network”
[19]. This definition focus on sharing, decentralization,
instability, and fault tolerance.
 The proposed P2P infrastructure is an unstructured P2P
network, such as Gnutella [15]. Therefore, the infrastruc-
ture resource query mechanism is similar to the Gnutella
communication system, which is based on the Breadth-First
Search algorithm (BFS). The system is message-based with
application-level routing. Messages are forwarded to each
acquaintance, and if the message has already been received
(looped), then it is dropped. The number of hops that
a message can take is limited with a Time-To-Live (TTL)
parameter 1.
 As previously mentioned, the main problem of P2P
infrastructures is the peers high volatility, since peers are
usually desktop machines and clusters nodes available for
a short time. Therefore, the proposed infrastructure aims at
maintaining the network alive, while available peers exist;
this is called self-organizing. When it is impossible (or
undesired) to have external entities, such as centralized
servers, which maintain peer databases, all peers should be
capable of staying in the infrastructure by their own means.
A widely used strategy for achieving self-organization
consists in maintaining, for each peer, a list of acquaintan-
ces.
 At the beginning, when a fresh peer joins the network,
it only knows acquaintances from a list of potential net-
work members, such as with super-peer architectures.
The initially known peers will not be permanently avail-
able, and therefore peers have to update their list of ac-
quaintances to stay connected in the infrastructure.
 Therefore, the proposed infrastructure uses a specific
parameter called Number of Acquaintances (NOA): the mini-
mum number of known acquaintances for each peer. Peers

1 The TTL is one of the parameters configurable by the administrator,
which has deployed the P2P infrastructure.

D. Caromel et al. 72

update their acquaintance list every Time to Update
(TTU)2 checking their own acquaintance list to remove un-
available peers, i.e. they send heartbeat messages to them.
When the number in the list is less than NOA, a peer will
try to discover new acquaintances. To discover new ac-
quaintances, peers send exploring messages through the
infrastructure. Note that each peer can have its own parameter
values, and that they can be dynamically updated.
 Using the proposed P2P infrastructure we have con-
ducted several Grid programming experiences. Some of
which are detailed in section 6.1.

4. GRID PROGRAMMING:
TECHNICAL SERVICES

 In this section we present Technical Services, which are
non-functional aspects of applications. Those services can
be added to the application functional code at the deploy-
ment time. Services configurations are based on application
needs, potentially taking into account the underlying char-
acteristics of the infrastructure.

4.1. Fault-Tolerance
 As the use of desktop grids goes mainstream, the need
for adapted fault-tolerance mechanisms increases. Indeed,
the probability of failure is dramatically high for such sys-
tems: a large number of resources imply a high probability
of failure of one of those resources. Moreover, public
Internet resources are by nature unreliable.
 Rollback-recovery [13] is one solution to achieve fault-
tolerance: the state of the application is regularly saved and
stored on a stable storage. If a failure occurs, a previously
recorded state is used to recover the application. Two main
approaches can be distinguished: the checkpoint-based [16]
approach, relying on recording the state of the processes,
and the log-based [1] approach, relying on logging and
replaying inter-process messages.
 Fault-tolerance in ProActive is achieved by rollback-
recovery; two different mechanisms are available. The first
is a Communication-Induced Checkpointing protocol (CIC):
each active object has to checkpoint at least every TTC
(Time To Checkpoint) seconds. Those checkpoints are
synchronized using the application messages to create
a consistent global state of the application [12]. If a failure
occurs, every active object, even the non faulty, must re-
start from its latest checkpoint. The second mechanism is
a Pessimistic Message Logging protocol (PML): the differ-
ence with the CIC approach is that there is no need for
global synchronization, because all the messages delivered
to an active object are logged on a stable storage. Each
checkpoint is independent: if a failure occurs, only the
faulty process has to recover from its latest checkpoint.

 2 NOA and TTU are also both configurable.

 Basically, we can compare those two approaches re-
garding two metrics: the failure-free overhead, i.e. the addi-
tional execution time induced by the Fault-Tolerance
mechanism without failure, and the recovery time, i.e.
the additional execution time induced by a failure during
the execution. The failure-free overhead induced by the CIC
protocol is usually low [6], as the synchronization between
active objects relies only on the messages sent by the appli-
cation. Of course, this overhead depends on the TTC value,
set by the programmer; the TTC value depends mainly on
the assessed frequency of failures. A small TTC value leads
to very frequent global state creation and thus to a small
rollback in the execution in case of failure. But a small
TTC value leads also to a higher failure free overhead. The
counterpart is that the recovery time could be high since all
the application must restart after the failure of one or more
active object.
 As for CIC protocol, the TTC value impacts on
the global failure-free overhead, but the overhead is more
linked to the communication rate of the application. Re-
garding the CIC protocol, the PML protocol induces
a higher overhead on failure-free execution. But the recov-
ery time is lower as a single failure does not involve all the
system: only the faulty has to recover.
 Choosing one of those two approaches highly depends
on the characteristics of the application and of the underly-
ing hardware. We thus aim to provide a fault-tolerance
mechanism that allows to choose the best approach at de-
ployment time: the programmer can specify in the deploy-
ment descriptor if the application must be started with
fault-tolerance, and can select the best mechanism and
configuration regarding the hardware environment. In par-
ticular, there is no need to alter the original source code of
an application to make it fault-tolerant: all the fault-
tolerance concerns are handled transparently at the mid-
dleware level.

4.2. Load balancing of Active Objects
 An important feature of Grid systems, is the ability to
redistribute tasks among its processors. This requires
a redistribution policy to gain in productivity by dispatch-
ing the tasks in such a way that the resources are used effi-
ciently, i.e. minimizing the average idle time of the proces-
sors and improving applications performance.
 Load balancing is the process of distributing parallel
application tasks on a set of processors while improving
the performance and reducing the application response
time. The decisions of when, where and which tasks have
to be transferred are critical; and therefore the load infor-
mation has to be accurate and up-to-date [17]. When these
decisions are taken at runtime, this process is called dy-
namic load balancing.
 Dynamic load balancing requires the collection of in-
formation such as: underloaded and overloaded Grid nodes.

ProActive: an integrated platform for programming and running applications on Grids and P2P systems 73

For communication-intensive applications 3, in [10] we
experimentally showed that Distributed oriented policies
(opposed to Centralized) have the best performance (using
response time and bandwidth as metrics). And, that sharing
underloaded nodes information, Eager policies (opposed to
Lazy), is the best decision. Therefore, for this kind of applica-
tions, we concluded that the best strategy is the Eager Distrib-
uted policy: overloaded nodes trigger the balancing using
previously collected information of underloaded nodes.
 For load balancing in P2P networks, we presented [9]
an active object load balancing algorithm based on well
known algorithms [21] and adapted for an heterogeneous4
P2P infrastructure. This algorithm is a dynamic, scalable,
and fully distributed load balancer, which reacts to load
perturbations on the processor and the system.
 Using these experiments, we have set up, and continue
to improve, a load balancing mechanism for programming
on the Grid using ProActive.

4.3. File Transfer
 File transfer in the Grid can be addressed from two
different perspectives: infrastructure and programming.
 From the infrastructure point of view, the Grid must
provide tools for transferring / accessing files. Given the
heterogeneous nature of the Grid, the file transfer tools will
be miscellaneous: scp, rcp, gridftp, unicore [24], nordugrid-
arc [18], etc. Providing a general abstraction for all the file
transfer tools diversity is addressed in ProActive through
the Descriptor Deployment model (see section 3.1). This
allows transferring files at deployment time to the remote
Grid nodes. For example, to provide the input for the appli-
cation. Later on, at the end of the application, the gathering
of remote files from the remote nodes can take place. For
example, gathering the result of the application.
 From the programming perspective, a uniform method-
ology is required. Different approaches have been used to
address this issue, for example GAT transparent remote
access [20]. From the active object Grid Programming
model (see section 2), the ProActive solution [4] is to pro-
vide asynchronous file transfer with future objects through
a programming API:
//Sends a file to Node n
static public void pushFile(Node n, File source, File
 destination);
//Gets a file from Node n
static public File pullFile(Node n, File source, File
 destination);

 With the use of asynchronism and futures, a file transfer
can take place in parallel with the user application. The
wait-by-necessity mechanism will automatically synchro-

 3 Parallel applications which transfer a large amount of data among
 processors.
 4 Heterogeneous in processing capacity.

nize the threads only if the file needs to be accessed while
the transfer is still taking place.

5. HIGHER LEVEL GRID PROGRAMMING

5.1. Typed Group Communications
 Group communication is an important feature for high-
performance and Grid computing, for which MPI is gener-
ally the only available coordination model [3].
 The typed group communication mechanism [2] is built
upon the ProActive elementary mechanism for asynchronous
remote method invocation with automatic futures. The group
mechanism must be thought of as a replication of more than
one (say N) ProActive remote method invocations towards N
active objects. Of course, the aim is to incorporate some op-
timizations into the group mechanism implementation, in such
a way as to achieve better performances than a sequential
achievement of N individual ProActive remote method calls.
In this way, the mechanism is a generalization of the remote
method call mechanism of ProActive.
 The availability of such a group communication mecha-
nism, simplifies the programming of applications with
similar activities running in parallel. Indeed, from the pro-
gramming point of view, using a group of active objects of
the same type, subsequently called a typed group, takes
exactly the same form as using only one active object of
this type. This is possible due to the fact that the ProActive
library is built upon reification techniques.

Object[][] constructorArray = {{...},{...},...};
Node[] nodes = {...,...,... };
A ag1 = (A) ProActiveGroup.newActiveGroup("A", constructorArray,
 nodes);
...
ag1.foo(...);
// A group communication //

A method call on a typed group
V vg = ag1.bar();
// To wait and capture the first returned member of vg
V v = (V) ProActiveGroup.waitAndGetOne(vg);
// To wait all the members of vg are arrived
ProActiveGroup.waitAll(vg);

Fig. 3. Typed group communications

 Figure 3 shows an example using typed group commu-
nication.

5.2. Distributed Hierarchical Components
 Components are attracting research for developing grid
applications. In [7] we proposed a parallel and distributed
component framework for building Grid applications,
adapted to the hierarchical, distributed and heterogeneous
nature of the Grid. We extended ProActive implementing

D. Caromel et al. 74

a hierarchical and dynamic component model named Frac-
tal [8, 14]. This implementation aims at simplifying the
composition, deployment, re-usability and efficiency of
grid applications.
 Using components, a complex Grid software can be
composed of services (or sub-components). Each compo-
nent has a well defined interface for accessing the service
that it provides, and a well defined interface for requiring
services5 . Also, a component can be composed hierarchi-
cally of other sub components. The process of linking
the component’s interfaces is called binding.
 From the outside, an application is viewed as a compo-
nent providing a service. Once deployed and running on the
grid, if the application or one of its sub components needs
to be replaced or migrated (for example, because of load
balancing), this can be achieved by replacing or migrating
hierarchically the component.
 Components are thus a very promising paradigm for
Grid programming.

6. GRID EXPERIENCES

6.1. Experimentations on a large scale grid, mixing
Clusters and Desktop Machines
 In order to run experiments, the INRIA Sophia Desktop
Grid has been deployed on the 250 desktop machines of the
INRIA Sophia Antipolis laboratory; this grid is now a per-
manent grid managed by the P2P infrastructure (see section
3.2). All these desktop machines have heterogeneous oper-
ating systems (GNU/Linux and Windows) and CPU gen-
erations (Intel Pentium 2 to Pentium 4).

 5 As a matter of fact, a component has more interfaces like non functional
interfaces, which are not denoted here for simplicity.

 To avoid disturbing desktop users, a daemon was de-
veloped to start a JVM with a P2P Service at fixed times.
The 250 desktop machines by default work during night
(from 8:00 pm to 8:00 am) and during weekend (from Fri-
day 8:00 pm to Monday 8:00am), this group is called IN-
RIA-ALL, and about 40 of those machines always work,
this sub-group is called INRIA-2424.
 In addition, of that desktop grid, we have access to
a large scale national french wide infrastructure for grid
research, Grid’5000 (Grid5K). Grid5K project aims at
building a highly reconfigurable, controllable and monitor-
able experimental grid platform gathering 9 sites geo-
graphically distributed in France, and currently featuring
a total of 1700 CPUs.
 The Figure 4 shows the grid used for our experimenta-
tions, this grid is a mix of INRIA Sophia Desktop Grid and
Grid5K clusters. The left of the figure shows the INRIA
Sophia Desktop Grid wherein INRIA-2424 peers are used
as registries, all registries use themselves as registries; and
at fixed moments the rest of INRIA-ALL machines join the
P2P infrastructure by contacting those registries. In addi-
tion, the right part of the figure shows the Grid5K platform.

NQueens: Computation Record. With the INRIA Sophia
Desktop Grid we managed, using the previously detailed
P2P infrastructure, to be the first [22] to solve the NQueens
counting problem for a 25 × 25 chessboard. The experi-
mentation took six months at solving this problem instance.
 The NQueens counting problem consists in placing n
non attacking queens on a n × n chessboard (no two queens
are on the same vertical, diagonal, or horizontal line).

The problem’s complexity comes from counting all the
satisfying solution for a given n. The approach used to
solve the NQueens problem, was to divide the global set of

Fig. 4. Environment of experimentations: Grid of desktop machines and of clusters

ProActive: an integrated platform for programming and running applications on Grids and P2P systems 75

permutations into a set of independent tasks. A master-
slave model was applied to distribute these tasks to the
workers, which were dynamically deployed on the INRIA
Sophia Desktop Grid.
 The results of the NQueens experimentation are shown
in Table 1.

Table 1. NQueens experimentation summary

 n of NQueens n = 25
Total of Solution Found 2, 207, 893, 435, 808, 352
Total of Tasks 12, 125, 199
Total of Computation Time 4 444 h (≈185 days)
Average Time of One Task Computation 2 min. and 18 sec.
One CPU Cumulated Time 464 344 h (≈53 years)
Total of Desktop Machines 250 (up to 220 working together)

 The total number of solution was confirmed by Pr.
Yuh-Pyng Shieh from the National Taiwan University.
Using a different algorithm he found the same number of
solutions [22] to place 25 queens on a 25 × 25 chessboard.

NQueens: Large Scale Grid. To experiment on a large
scale grid, we took the same NQueens application, and run
it on a grid. This grid is a mix of machines from INRIA
Desktop Grid (INRIA-2424 and INRIA-All), and from
clusters of Grid5K. Using these resources, we managed to
deploy on 1007 CPUs. We chose the NQueen problem
instance: n = 22.

Fig. 5. NQueens with n = 22 benchmark results

 Figure 5 shows computation time for the problem in-
stance deployed on different number of CPUs. The speedup
of the application depends on the ratio of desktop and clus-
ter machines used. Note that, during the experimentation
the availability of desktop machines varied affecting the
ratio and therefore the speedup.
Flow-Shop: Communicant Application. The Flow-Shop
problem aims to find a schedule of a set of jobs on a set of
machines for minimizing the total execution time. We try

to evaluate our P2P infrastructure using a Flow-Shop which
requires communication.
 The algorithm used to solve the Flow-Shop problem is
not optimal, but provides some good characteristics for
testing the P2P infrastructure. Firstly, we divide the solu-
tion tree of a given problem instance in a number of tasks.
For finding the best solutions, we give the tasks to
the workers. Our approach is based on a master-slave
model. Workers share the best current solution, when a bet-
ter solutions is found, the worker that finds it broadcasts it
to all workers. Using this information workers can branch
and bound the search tree.
 Table 2 shows results from Flow-Shop computations
with an instance of 17 jobs/17 machines. An analysis of
the Table 2 shows that computation time decreases when
the number of used CPUs increases. Note, there are two
peaks, which can be explained because desktop machines
are not constantly available. Machines leave and join the
infrastructure, since they are desktop resources.

Table 2. Flow-Shop experimentation results
with an instance of 17 jobs and 17 machines

Max. CPUs Computation Time Cumulated Time
 80 125.55 min. 9 603 minutes (≈160 h)
201 61.31 min. 10 676 minutes(≈178 h)
220 86.19 min. 14 396 minutes (≈240 h)
313 56.03 min. 13 257 minutes (≈220 h)
321 83.73 min. 14 628 minutes (≈243 h)
346 59.14 min. 15 036 minutes (≈250 h)

 Thanks to the P2P infrastructure we successfully man-
aged to deploy a communicant application on different sites
which provided about 350 CPUs. Those CPUs were com-
posed of heterogeneous architectures, using desktop ma-
chines and clusters.

6.2. 2nd Grid Plugtests
 During the 10th-14th of October 2005 the 2nd Grid
Plugtests [23] was held. Organized by ETSI and INRIA,
the objectives were: to test Grid interoperability, and to
learn, through the user experience and open discussion,
about the future features needed for Grid middlewares.
 Two Grid challenges took place with 8 participating
teams. A grid was setup using the ProActive middleware,
which inter-operated with several other middlewares and
protocols. This grid was deployed on 13 different countries,
in more than 40 sites, gathering 2700 processors with
a computing power of approximately 450 GFlops6 . Given
the heterogeneousness of the sites, each one had to be con-
figured and fine tuned. This involved figuring out the Ar-
chitecture (x86, ia64, x86-64, PPC, AIX, SGIIrix, and Sparc)
and Operating System (Linux, MacOS, AIX, SGIIrix, and

 6 Measured with the SciMark 2.0 benchmark.

D. Caromel et al. 76

Solaris), installing an adequate Java Virtual Machine (Sun,
IBM, Apple, and AIX), figuring out the network/firewall
configuration (Firewalls, and NAT), Job Scheduler (GLite,
Globus, LSF, NorduGrid ARC, OAR, PBS, PRUN, SGE,
SSH, and Unicore). The deployment and interoperability
between all resources/sites was achieved using ProActive.
 The Grid deployment was thus made very simple and
transparent for the contestants, who had all the architecture
details hidden by the ProActive layer. The contestants had
to implement their own solutions for the challenge prob-
lems. All teams used the ProActive grid programming
library.
 The criterion for deciding the winners were based on:
a) Greatest number of solutions found. b) Biggest number
of processors used. c) Fastest algorithm.
 Each team was allocated one hour of exclusive access
to the Grid for computing. The first challenge was the
NQueens counting problem. The Brazilian team from
LSC/UFSM got ahead of the other participants. They man-
aged to compute 2 202 billions of solutions, deployed on
1106 nodes, and solved the NQueens instance n = 21 in
13 minutes.
 The second challenge was the Flow-Shop scheduling
problem. The first place was awarded to the Polish Team
PUTaT3AM. They computed all exact cases for FlowShop
challenge for 20 jobs and 20 machines. Only this team was
able to do this in less than one hour, and using 370 CPUs.
 The Grid Plugtests gave us the opportunity to develop
new and interesting features, while testing the middleware
at a new level of complexity. The results of the NQueens
and Flow-Shop challenges showed that programming in the
heterogeneous Grid can be achieved using ProActive.

7. CONCLUSIONS

 Using the proposed approach, which targets Grid pro-
gramming at three different levels: Grid Infrastructure,
Grid Technical Services, and Grid Higher Level Program-
ming, we have shown it is possible to program applications
for the Grid. Our experiences have shown that our ap-
proach can be used successfully on a large scale, highly
heterogeneous and geographically dispersed grid.
 As the grid continues to evolve, so will our proposed
programming approach. We are currently concerned on
Distributed Non Functional Exception Handling as a Grid
Technical Service, where remote exceptions can be handled
in distributed environments. We are also concerned with
other Grid Higher Level strategies like Skeletons. A Skele-
ton can be defined as useful patterns of parallel computa-
tion and interaction that can be packaged up as ”frame-
work/second order/template” (i.e. parametrized by other
pieces of code) constructs. The idea is to take advantage of
Skeletons in order to ease the programming of Grid appli-
cations.

References
[1] L. Alvisi and K. Marzullo, Message logging: Pessimistic,

optimistic, causal, and optimal. Software Engineering, 24(2),
149-159 (1998).

[2] L. Baduel, F. Baude, D. Caromel, Efficient, Flexible, and
Typed Group Communications in Java. In Joint ACM Java
Grande – ISCOPE 2002 Conference, pp. 28-36, Seattle,
2002. ACM Press. ISBN 1-58113-559-8.

[3] L. Baduel, F. Baude, D. Caromel, Object-Oriented SPMD.
In Proceedings of Cluster Computing and Grid, Cardiff,
United Kingdom, May 2005.

[4] F. Baude, D. Caromel, M. Leyton, R. Quilici, Integrating
deployment and file transfer tools for the grid. In Prelimi-
nary Proceedings 1st Coregrid Integration Workshop (IW’05),
Pisa Italy, pp. 457-466 (2005).

[5] F. Baude, D. Caromel, L. Mestre, F. Huet, J. Vayssière, In-
teractive and descriptor-based deployment of object-
oriented grid applications. In Proceedings of the 11th IEEE
International Symposium on High Performance Distributed
Computing, pp. 93-102, Edinburgh, Scotland, July 2002.
IEEE Computer Society.

[6] F. Baude, D. Caromel, Ch. Delb, L. Henrio, A hybrid mes-
sage logging-cic protocol for constrained checkpointability.
In Proceedings of EuroPar 2005, 3648 in LNCS, pp. 644-
653, Lisbon, Portugal, August- September 2005. Springer.

[7] F. Baude, D. Caromel, M. Morel, From distributed objects
to hierarchical grid components. In International Sympo-
sium on Distributed Objects and Applications (DOA), Cata-
nia, Sicily, Italy, 3-7 November, pp. 1226-1242, Springer
Verlag, 2003, Lecture Notes in Computer Science, LNCS.

[8] E. Bruneton, T. Coupaye, J. Stefani, Recursive and dynamic
software composition with sharing, 2002.

[9] J. Bustos, D. Caromel, A. Di Costanzo, M. Leyton, J. Piquer,
Balancing active objects on a peer to peer infrastructure. In
Proceedings of XXV International Conference of SCCC,
Valdivia, Chile. IEEE CS Press, November 2005.

[10] J. Bustos, D. Caromel, M. Leyton, J. Piquer, Load informa-
tion sharing policies in communication-intensive parallel
applications. In Proc. of Sixth IEEE International Sympo-
sium and School on Advance Distributed Systems (ISSADS
2006), Guadalajara, Mexico, Springer LNCS Series, 2006.
To appear.

[11] D. Caromel, Toward a method of object-oriented concurrent
programming. Communications of the ACM, 36(9), 90-102,
1993.

[12] K. M. Chandy and L. Lamport, Distributed snapshots: De-
termining global states of distributed systems. In ACM
Transactions on Computer Systems, pp. 63-75 (1985).

[13] M. Elnozahy, L. Alvisi, Y.M. Wang, D.B. Johnson. A survey
of rollbackrecovery protocols in message passing systems.
Technical Report CMU-CS-96-181, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA,
oct 1996.

[14] Fractal. http://fractal.objectweb.org.
[15] Gnutella. http://www.gnutella.com.
[16] D. Manivannan and M. Singhal, Quasi-synchronous check-

pointing: Models, characterization, and classification. In
IEEE Transactions on Parallel and Distributed Systems, 10,
703-713 (1999).

[17] M. Mitzenmacher, How useful is old information? IEEE
Transactions on Parallel and Distributed Systems, 11(1),
6-34 (2000).

[18] NorduGrid. http://www.nordugrid.org.
[19] R. Schollmeier, A definition of peer-to-peer networking for

the classification of peer-to-peer architectures and applica-
tions. In Peer-to-Peer Computing, pp. 101-102 (2001).

[20] E. Seidel, G. Allen, A. Merzky, J. Nabrzyski, Gridlab:
A grid application toolkit and testbed. Future Generation
Computer Systems, 18, 1143-1153 (2002).

ProActive: an integrated platform for programming and running applications on Grids and P2P systems 77

[21] N. G. Shivaratri, P. Krueger, M. Singhal, Load distributing
for locally distributed systems. IEEE Computer, 25(12),
33-44 (1992).

[22] Neil J. Sloane. Sloane a000170.
http://www.research.att.com/projects/OEIS?Anum=A000170

[23] OASIS Team and ETSI. 2nd grid plugtests report. Technical
report, INRIA, 2005. http://www-sop.inria.fr/oasis/plugtest2005/
2ndGridPlugtestsReport.pdf.

[24] Unicore. http://www.unicore.org.
[25] R. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. F. H. Hof-

man, C. J. H. Jacobs, Th. Kielmann, H. E. Bal, Ibis: a flexi-
ble and efficient java-based grid programming environment.
Concurrency – Practice and Experience, 17(7-8), 1079-1107
(2005).

DENIS CAROMEL is full professor at University of Nice-Sophia Antipolis and CNRS-INRIA. He is also
member of the Institut Universitaire de France (IUF), a multi-disciplinary national academia that select a few
professors based on the excellence of their research records. His research interests include parallel, concur-
rent, and distributed object-oriented programming. He was an invited visiting scientist at various universities
and research institutions (including Digital System Research Center in Palo Alto, NASA Langley Research
Center in Hampton, Virginia, and IBM Tom Watson). He has published more than 70 scientific papers in
referred international journals and conferences, and edited 5 volumes of Lecture Notes. In 2005 he published
a monograph, A Theory of Distributed Objects.

CHRISTIAN DELBE is graduated at the University of Nice Sophia Antipolis in 2003 in Networking and
Distributed Systems and is currently PhD student at the INRIA-CNRS-University of Nice Sophia Antipolis.
His research interests involve parallel, concurrent, and distributed object-oriented programming. His PhD
deals with fault-tolerance for distributed systems, particularity in the context of Grid Computing.

ALEXANDRE DI COSTANZO graduated at the University of Nice Sophia Antipolis in 2004 in Networking and
distributed Systems and is currently PhD student at the INRIA-CNRS-Universty of Nice Sophia Antipolis.
His main research interests are in parallel, distributed, and grid computing. In particular, in the field of Peer
to Peer Computing: Model and Infrastructure for Communicating Applications. He was a visiting scientist
for three months at the Computer Science Department of Indiana University.

MARIO LEYTON received his Computer Science Engineer degree from University of Chile in 2004. Cur-
rently he is a PhD student at University of Nice-Sophia Antipolis and INRIA. His main research interest are
in parallel/distributed computing. In particular, the field of structured parallel programming models.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 69-77 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

