
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 21-32 (2006)

High level Grid programming with ASSIST*

M. Aldinucci1*, M. Coppola1*, M. Danelutto1*,
N. Tonellotto2, M. Vanneschi2, C. Zoccolo1

1Dept. Computer Science – Univ. Pisa

2ISTI – CNR, Pisa
*e-mail: {aldinuc|coppola|marcod}@di.unipi.it

Abstract: The development of efficient Grid applications usually requires writing huge portions of code directly at the level of abstrac-
tion provided by the underlying Grid middleware. In this work we discuss an alternative approach, raising the level of abstraction used
when programming Grid applications. Our approach requires programmers just to describe in a qualitative way the kind of parallelism
they want to express. Then, compiler tools, loader tools and run time system take complete care of running the application on a Grid
target architecture. This allows to move most of the cumbersome tasks related to Grid targeting and management from programmer
responsibility to tools. This paper introduces the structured parallel programming environment ASSIST, whose design is aimed at rais-
ing the level of abstraction in Grid programming and discusses how it can support transparent Grid programming while implementing
Grid adaptivity.
Key words: Grid, heterogeneous architectures, autonomic control, adaptivity, high performance computing

1. INTRODUCTION

 Grid architectures are used and exploited in several
different areas. Classically, Grids are used for high per-
formance computing, for high availability data storage as
well as for ubiquitous/global computing. In any case, Grids
can be viewed as heterogeneous and dynamic collections of
processing and data storage elements [25]. Both the hetero-
geneous and the dynamic keywords strongly characterize
Grids, in particular, distinguishing them from more tradi-
tional cluster/networks of workstations. Heterogeneity comes
on the scene in two ways. On the one hand, different proc-
essing elements, in terms of chipset, memory hierarchy and
operating systems are commonly used in Grids to execute
parts of the same application. On the other hand, the Grid
resources used to execute Grid applications often belong to
several different logical entities and therefore are managed
using totally independent policies and rules. In the former
case, programmers must set up proper architectural neutral
data formats to get rid of different processors and operating
systems. In addition, object code targeting all the different
architectures involved should be produced and managed, in
such a way that the proper object code is run on each node
of the heterogeneous Grid architecture at hand. In the latter
case, the single system image usually exported by Grid
middleware has to be exploited or explicit mechanisms
have to be inserted in the Grid application code to properly
log and use remote nodes.

Dynamicity also comes from several different sources.
First, Grid resources are usually shared with other users.
Therefore the load of processing nodes may vary out of the
control of the application programmer and, consequently,
clever load balancing strategies must be programmed to
achieve efficiency. Second, the exploitation of public net-
work infrastructure with shared connection links and re-
sources often makes the performance of the resource-to-
resource links unpredictable. Third, features of the applica-
tion at hand may require different resources for the differ-
ent stages of the application execution. Eventually, the
users can ask more powerful resources when observing the
execution of an application, as they recognize an interest-
ing, compute-intensive application stage. Again, load bal-
ancing as well as adaptive implementation strategies should
be programmed in the application code to take care of all
these factors and therefore be able to achieve efficiency.
 Grid applications are currently developed using some
kind of Grid middleware. Grid middleware provides the
programmer with a set of tools and with an API to access
these tools. Overall, the tools and the API give the pro-
grammer the complete control over Grid resource, process
and communication management. As an example, using the
Globus toolkit, programmers can look for available proc-
essing elements, stage code and data to a subset of them,
start remote processing and eventually gather the results
computed on the remote processing elements. Therefore

* This work has been partially supported by Italian national FIRB project no. RBNE01KNFP GRID.it
 and by the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-004265).

user
Tekst maszynowy
CMST 12(1) 21-32 (2006)

user
Tekst maszynowy
DOI:10.12921/cmst.2006.12.01.21-32

user
Tekst maszynowy

user
Tekst maszynowy

 M. Aldinucci et al. 22

application code eventually looks like a mix of application
specific code, computing the application results out of
the application inputs, and of “system” code, managing all
the interactions with the middleware subsystem. Both kinds
of code are completely in charge of the application pro-
grammers. Consequently, application programmers should
be both expert in the specific application field and in the
Grid middleware at hand.
 Middleware systems such as the Globus toolkit are
huge software packages and require non-trivial knowledge
to be used correctly. In several documents, the EU expert
group on next generation Grids pointed out how an invisi-
ble Grid concept should be provided through suitable pro-
gramming tools [35] and how the level of abstraction
needed to program Grid applications should be raised [33].
This is nothing but a reformulation of the motivations used
since long time to introduce parallel programming envi-
ronments not necessarily requiring programmers to write
sends and receives in their code, actually [12, 16, 22].
 The invisible Grid is indeed a very appealing concept.
Users/programmers should not even perceive that there is
a Grid somewhere. They should simply use the facilities
provided through the Grid. The programmers should be
enabled to develop efficient Grid applications without
actually making explicit actions targeting the Grid features.
 On the other hand, programmers must be provided with
high level programming models and tools that allow to
program (Grid) applications in a concise, Grid independent
way. This is to allow them to concentrate exclusively on the
application specific, algorithmic aspects of the application.
 In this work we discuss the innovative features of
a high performance programming environment targeting
workstation networks and clusters as well as Grids. The
programming environment provides suitable ways to di-
rectly express most of the parallelism exploitation patterns
used in Grid programming. In the meanwhile, those pat-
terns are provided in such a way that the programmer is not
concerned at all with most of the Grid management fea-
tures. Resource, process and communication management
are all dealt with by the programming environment in an
automatic way. In particular, all the aspects related to adap-
tivity management are dealt with automatically by the
compile and run time tools. Section 2 introduces the
ASSIST programming model. Section 3 introduces
ASSIST implementation and Section 4 outlines the kind of
performance results that can be achieved using ASSIST.
Eventually Section 5 discusses some of the most innovative
and significant results achieved using ASSIST.

2. ASSIST

 ASSIST provides programmers with a structured co-
ordination language. This language can be used to express
parallel programs at a very high level of abstraction. In

particular, programmers can express complex parallel ap-
plications without actually writing any single line related to
process decomposition, mapping and scheduling or even to
communication and synchronization handling.

Fig. 1. Process schema for the three-stage pipeline

sample application

 The ASSIST coordination language programs are build
of two specific parts: a module graph, describing how a set
of modules, either parallel or sequential, interact with each
other using a set of data flow streams, and a set of modules,
implementing each one of the nodes of the graph.
The modules in the graph can be programmed as sequential
or as parallel modules. Sequential modules are basically
procedure-like wrappings of sequential code written in C,
C++ or Fortran code. Parallel modules are programmed
instantiating an ASSIST parmod (parallel module).
 To give a rough idea of the expressive power of the AS-
SIST coordination language, we assume a programmer wants
to develop a three stage pipeline parallel application: the first
stage generates a stream of two-dimensional matrixes reading
them from a file, the second one is a data parallel stage, and
the third one post processes the resulting matrixes and eventu-
ally stores them to disk. In particular, the second stage proc-
esses the input matrixes A according to an iterative data paral-
lel pattern. A0 being the input matrix, a new matrix Ak is com-
puted such that ,

k
i jA is a function of 1

,
k
i jA − and all its

neighbours 1
, 1,k

i jA −
−

1
, 1,k

i jA −
+ 1

1, ,k
i jA −
+

1
1, .k

i jA −
− The process is iter-

ated until the whole computation converges, that is, until
1

, ,, : .k k
i j i ji j A A ε−∀ − < We assume that the user wants to

perform the computation of the new values of the matrix A
in parallel on all the matrix rows. The corresponding proc-
ess schema is outlined in Fig. 1. Each circle in the picture
represents a logically parallel activity, assuming, for the

High level Grid programming with ASSIST

23

sake of simplicity, that the matrixes only have four rows
each.

/* definition of the application module graph */

generic main()
{
 stream double[N][N] A;
 stream double[N][N] res;

 firstStage (output_stream A);
 secondStage (input_stream A output_stream res);
 endStage (input_stream res);
}

/* definition of sequential modules */

firstStage (output_stream double A[N][N]) {
 read_from_disk (output_stream A);
}

proc read_from_disk (output_stream double A[N][N])
inc<"fstream", "iostream", "string">
$c++{
 // C++ code reading tmpA from disk here ...
 assist_out(A, tmpA); // then output tmpA on stream }
c++$

endStage(input_stream double A[N][N]){
 write_to_disk (input_stream A);
}

proc write_to_disk (input_stream double A[N][N])
inc<"fstream", "iostream", "string">
$c++{
 // C++ code writing A to disk here ...
}c++$

Fig. 2: Sample ASSIST coordination language code
(module graph and sequential stages code)

 Figure 2 and 3 show the ASSIST coordination language
code of this application. The application module graph is
defined in the first part of the code of Fig. 2. The streams
declared in the generic main section of the program are basi-
cally data flow communication channels. In case a module
process an input stream to produce an output stream, no
explicit statement is needed to manage streams. The mod-
ule is declared as a procedure with an input stream and
output stream parameter and the corresponding code just
reads the input stream variable and writes the output stream
one as if they were plain variables. In case a module pro-
duces a new stream (as in the firstStage) an explicit as-
sist_out is required to place the contents of a variable onto
the output stream.
 The first and third stages are sequential stages, and they
are shown in the second part of Fig. 2. The second, parallel
pipeline stage code is shown in Fig. 3. It is worth pointing
out that this is actually the only code needed to program the
three-stage pipeline application, apart from some sequential
code such as the computeStencil or init that are normal se-
quential procedures. No explicit communication code ap-
pears there. The programmer is not required to write any
kind of code to deploy and execute the program code onto
the distributed executing nodes. The only thing the pro-

grammer must do in order to run this ASSIST program is
a two-step process consisting in:
 • compiling the program issuing an astCC program.ast

command at the shell prompt, and
 • run the program, once compiled, issuing an assistrun

program command at the shell prompt.
 Parallel modules can be expressed in ASSIST using
the parmod module. The parmod relative to the second
stage of our sample parallel application is shown in Fig. 3.
The parmod is a generic parallel module construct. It is
basically meant to provide programmers with a high level
way of expressing sets of logically parallel activities.

parmod secondStage (input_stream double A[N][N]
 output_stream double risultato[N][N]) {
 topology array [i:N] Pv;
 attribute double S[N][N] scatter S[*i0][] onto Pv[i0];
 attribute bool diff replicated;
 stream double ris[N];

 do input_section {
 guard1: on ,, A{
 distribution A[*k0][] scatter to Pv[k0];
 }
 } while (true)

 virtual_processors {
 compute_secondStage (in guard1) {
 VP i=0 {
 init(in A[i][] out S[i][]);
 sync;
 do {
 // do nothing
 } while (reduce (diff, ||) == true);
 assist_out (ris, S[i][]);
 }
 VP i=N-1 {
 init(in A[i][] out S[i][]);
 sync;
 do {
 // do nothing
 } while (reduce (diff, ||) == true);
 assist_out (ris, S[i][]);
 }
 VP i=1..N-2 {
 init(in A[i][] out S[i][]);
 sync;
 do {
 computeStencil (in S[i][], S[i-1][], S[i+1][]
 out S[i][], diff);
 } while (reduce (diff, ||) == true);
 assist_out (ris, S[i][]);
 }
 }
 }

 output_section {
 collects ris from ALL Pv[i] {
 static double risult[N][N]; const double *el;
 AST_FOR_EACH(el) {
 for(int j=0;j<N;++j) risult[i][j]=el[j];
 } assist_out(res,risult);
 }<>;
 }
}

Fig. 3. Sample ASSIST coordination language code
(parallel module definition)

 M. Aldinucci et al. 24

 The programmer names a set of virtual processes (i.e.
logically parallel activities) with the topology keyword. In
this case, N parallel activities are defined, named Pv[1] to
PV[N]. Each parallel activity will process a single row of the
input matrix, interacting with the other parallel activities to
get the proper neighbor values needed to compute the row
next iteration values.
 The programmer may declare some data shared among
the parallel activities with the attribute keyword. In this
case, a shared boolean and a shared matrix are declared.
The boolean is replicated at all the virtual processes and it
will be used to determine termination. The matrix is dis-
tributed, one row per virtual process and it is used to host the
input matrixes in such a way that the neighbor matrix values
can be accessed to compute next iteration row values.
 Parmod input section defines how data appearing on
the input stream are handled. In this case, each matrix com-
ing onto the input stream is scattered among the virtual
processes, again one row per virtual process.
 The virtual_processors section is the central one. It is
used to state what the parallel activities do. In this case, all
the virtual processors initialize the state variables with
the input matrix values (init calls, the code is not shown
there for the sake of simplicity). The first and the last rows
just initialize their state variables, as they represent the bor-
der values, those not assumed to change during the compu-
tation. The central rows compute the new values of the row
items based on the old ones and on the ones from
the neighbor rows. The computation happens in a loop that
lasts until a global OR on the diff copies returns true.

 Eventually, the output section states how the final results
are collected to deliver the output matrix onto the output
stream, the one connecting secondStage to the endStage.
 The number of processing elements actually used to run
this program will be decided at launch time, depending on
the resources available and on the user requests. The re-
sources available will be discovered either using the
Globus services or consulting proper configuration XML
files hosting the informations concerning all the available
resources. The user requests are provided either using
pragmas (i.e. inserting in the code meta statements stating
the number of processing elements to be used in the execu-
tion of the program) or supplying and XML performance
contract to the ASSIST launcher program. In the former
case, a line such as

#pragma parDegree 10 in secondStage

is added to the source code. In the latter, the user specifies,
using a proper XML document schema, a contract stating
the number of the processing elements to be used to com-
pute the program. The contract is stored in a file whose
name is then given to the compiler tools. Actually, the user
supplied contracts can also state that a parmod or an entire
ASSIST program should process a given number of input

tasks per second. This version of the contract is the one
used and discussed in the experiments of Section 5.
 Although this sample application code shows most of
the principal ASSIST features, there are many features that
are not covered: external libraries and objects can be called
from within the sequential code wrapped in the sequential
modules or in the virtual processes bodies. Entire ASSIST
programs can be compiled into CCM components [31] or
even into standard Web Services. Furthermore, CCM com-
ponents or standard Web services can be invoked from
within the sequential portions of code wrapped in sequential
modules or in the virtual processes bodies. These two possi-
bilities guarantee interoperability with these other standard
frameworks. Last but not least, ASSIST code can be compiled
into GRID.it components and used within any other GRID.it
component program. The interested reader can refer to [42, 4,
3] or to the ASSIST home page, hosting the available docu-
mentation at http:www.di.unipi.it/Assist.html.

3. LAYERED IMPLEMENTATION

 The ASSIST support tools manage to compile and run
ASSIST applications on two distinct kind of target archi-
tectures: Globus Grids (currently, only Globus 2.4 Grids
are considered) and Grids made up of POSIX processing
elements reachable via the ssh/scp tools. In particular, both
in the Globus version and in the POSIX one, ASSIST can
target heterogeneous architectures, that is architectures
hosting different processing elements (with respect to
CPUs and Operating Systems) at the same time [6].
The ASSIST environment is structured in layers, as shown
in Fig. 4. A compiler layer is in charge of compiling
ASSIST source code into C++ code hosting calls to the
ASSISTlib library. The compiler tool (astCC) actually
produces three distinct items: a set of C++ files with the
abstract “object” code, a set of makefiles that can be used
to generate actual object code for the target architectures
considered (currently only Linux/Intel and Mac OS
X/PowerPC architectures) and an XML configuration file
hosting all the code/library dependencies, the parametric
process network description and the configuration parame-
ters relative to the process network that will eventually
implement the ASSIST application onto the target architec-
ture. All the static optimization techniques are exploited at
the compiler level.
 A run time layer is in charge of supporting the ASSIST
object code execution. This layer hosts several items, such
as the ASSISTlib, the AdHOC library and the application
and module managers. ASSISTlib provides a set of “task
code” classes implementing the instructions of the compiler
target abstract architecture. AdHOC library provides
a shared data abstraction [9]. Eventually the application
and module managers provide autonomic control in the
ASSIST applications and in the single parmod modules

High level Grid programming with ASSIST

25

taking care of monitoring the execution of applications and
adapt their execution to the dynamic target Grid features.

Fig. 4. ASSIST support tools

 A Grid abstract machine layer (GAM) decouples
the compiler and run time layer from the actual Grid mid-
dleware used, providing a suitable interface/API to the
mechanisms used in the ASSIST framework for code and
data staging, remote commanding, communications and
synchronizations, etc.
 In particular, ASSIST application code is assumed
having no possibility to directly access the Grid middle-
ware, even in the version mediated by the GAM. All the
interactions with the underlying Grid are implemented by
the compiler/run time layer couple. This, in conjunction
with the adaptivity mechanisms described in Section 5,
implements the “invisible” Grid concept advocated, for
instance, in [35, 29].
 Overall, this layered implementation schema is imple-
mented as depicted in Fig. 5. The ASSIST compiler is in-
voked to produce the intermediate object code, then this
code is run invoking the ASSIST run tool that in turn relies
on the services provided by the Grid Execution Environ-
ment (GEA). GEA manages to read the configuration file,
to compile the proper object code files using the makefiles
produced by the compiler, to stage code and input data to
the remote nodes, to start the remote processes computa-
tions, and eventually to stage back the result files and
suitably terminate the remote processes.
 The GEA tool is quite complex, actually. It is derived
from former ASSIST program deployment tools ASSIST-
conf and ASAP [21]. Its structure is depicted in Fig. 6.
GEA provides two distinct kinds of interfaces to client
process (the ASSIST run command): one is based on a
simple protocol running on top of plain TCP/IP sockets, the
other one is actually a Web Service interface. Those inter-
faces can be used to invoke the services of GEA, namely
the ones providing code and data staging, remote process
control and monitoring. The GEA engine (ASAP4G) is
written in Java and is a plug-in based architecture. Proper
plug-in can be provided taking care o proper code staging,

launching and synchronization procedures. The ASSIST
plug-in is provided by default, that takes care of stage, run
and synchronize the ASSIST code and its support code
(ASSISTlib, AdHOC, etc.).

Fig. 5. ASSIST support tools

Fig. 6. Structure of GEA

 Parmods, the peculiar ASSIST coordination language
constructs modeling generic, customizable parallel modules
are dealt with in the ASSIST support environment as
shown in Fig. 7. The upper part of the Figure represents the
logical view of a parmod: a set of logically parallel activi-
ties processing data coming from the input stream(s) to
produce data on the output stream(s), possibly interacting
with external objects and libraries. Parmod implementation
is outlined in the lower part of the picture. Each parmod is
implemented by a set of processes implementing a peculiar
process network. An Input Stream Manager process (ISM)

 M. Aldinucci et al. 26

manages the input streams delivering the input data items
to a set of Virtual Processor Managers (VPM). VPMs man-
age virtual processes. Each VPM can be set up to manage a set

Fig. 7. Parmod implementation

of virtual processes. One VPM is run for each target archi-
tecture node available, depending on the requirements
stated in the user pragmas or performance contracts. Even-
tually, an Output Stream Manager (OSM) is run to gather
data from the VPMs and deliver them onto the proper out-
put stream(s). The parmod manager process is run to con-
stantly monitor the parmod execution and possibly take any
corrective action in case of faults or load imbalances, as
discussed in Section 5. The AdHOC process is run to sup-
port data sharing across processing elements running ISM,
OSM and VPMs and to (partially) support interactions with
external objects and libraries. It is actually used also to
implement data flow streams connecting the parmod mod-
ule to the other program modules running on distinct target
architecture nodes.

4. PERFORMANCE RESULTS

 ASSIST is currently being used by our group at the
University of Pisa and at the ISTI/CNR, and by several

groups participating to the GRID.it national research pro-
ject [26]. In particular, it has been used to program compu-
tational chemistry applications [19], image processing ap-
plications [15], bioinformatics applications [32] and differ-
ent applications processing SAR satellite images as well as
to run several benchmarking applications including data
mining code [18] and numerical kernels. The typical results
achieved are those shown in Fig. 9. The plot is relative to
the performance of a multimedia application. The applica-
tion is structured as a pipeline with data parallel stages (see
Fig. 8). The first stage requests the rendering of a sequence
of scenes while the second renders each scene (exploiting
the PovRay rendering engine), interpreting a script describ-
ing the 3D model of objects, their positions and motion.
The third stage collects images rendered by the second one,
and builds Groups Of Pictures (GOP), that are sent to the
fourth stage, performing DivX compression. The last stage
collects DivX compressed pieces and stores them in an AVI
output file.

Fig. 8. Structure of the multimedia application

Fig. 9. ASSIST performance results: multimedia application

 Overall, the ASSIST environment demonstrated to scale
on both cluster and network of workstations (up to 10 to
100 nodes) and on Globus Grid architectures hosting nodes
distributed in a geographical network (up to 10 (possibly
cluster) nodes). These results have been achieved using
medium to coarse grain parallel applications. Furthermore,
as the ASSIST/GEA environment schedules interacting
parallel activities on the remote nodes, the Globus Grid was
used without any kind of process scheduler at the remote
Grid nodes. This is necessary to be able to schedule com-

High level Grid programming with ASSIST

27

municating processes on different Grid nodes without in-
curring in communication starvation and deadlocks.

5. ADAPTIVITY

 In this Section, we discuss how Grid adaptivity is im-
plemented in the ASSIST framework. Adaptivity, in con-
junction with the transparent compile and run process de-
scribed in Section 3, achieves the invisible Grid goal, in
that programmers may program entire, working and effi-
cient applications without the need to write a single line of
code or a single line command directly related to the target
architecture middleware at hand.
 Adaptivity is needed in Grid computing to take care of
the varying features of the Grid nodes, as well as of the dif-
ferent kinds of faults that can be verified on large scale
Grids. Node features can vary basically due to the fact that
nodes are usually shared with other Grid applications and
users. Therefore, resources with a small load can become
very busy or resources with a high load can become sud-
denly available to accept further load. This is true not only
for computing resources, but also for interconnection re-
sources, such as communication links and routers. Faults
can be related to actual hardware faults (link and process-
ing element faults) as well as to temporary unreachability
of physical resources due to link load hot spots.

Fig. 10. General schema for adaptivity

 In a joint work with collegues in IRISA/INRIA [1] we
developed a general adaptation schema, that is being cur-
rently used in ASSIST such as the one depicted in Fig. 10,
that can be used to control Grid programs adaptivity. We
clearly recognized two distinct phases in the adaptivity
process: in the first, decide phase some event triggers
the adaptivity process and a policy library is consulted to
figure out which kind of solutions can be devised to over-
come the event triggering the process. As an example, the
triggering event can be generated by a monitoring process
figuring out that some parts of the parallel program do not
perform as expected. In case the parallel application is
structured as a task farm, the policy library may suggest
that either the number of worker processes has to be in-
creased or some “slow process” has to be moved to a faster

resource. The second, commit phase is aimed at imple-
menting the decisions taken in the first phase. Therefore
a plan is figured out stating how the taken decision is to be
implemented, then an execute phase takes care of figuring
out which mechanisms have to be used and when they have
to be exploited.
 Such an abstract adaptation schema is exploited in the
parmod manager process. The manager process receives
a performance contract from the user code, stating the kind
of behavior expected from the parmod. The contract may
state, as an example, that the parmod should be able to
process a new input data set each t (milli) seconds. When
the parmod is actually executed, special monitor process
are run that constantly monitor the performance of parmod.
In case a poorer performance is measured with respect to
the user supplied performance contract, the manager proc-
ess is informed and a corrective action is planned. In this
case, the policy that can be adopted requires to increment
the number of resources employed in the parmod execu-
tion. Therefore, a commit phase is started that performs the
following steps:
 1. while the original parmod is still running, new available

resources (processing elements) are searched and one of
them is selected to run a new VPM taking care of exe-
cuting a sub partition of the virtual processes in the
parmod. In case there are no new resources to recruit to
the current computation, or in case either having new
resources available, the overhead required to recruit
them is supposed to be higher than the expected benefit,
the process is stopped and a unsatisfied performance
contract event is raised to the user. The user may decide
then if the computation has to continue or it has to be
restarted.

 2. then, the parmod is stopped as soon as it reaches a syn-
chronization point. Synchronization points are not ex-
plicitly inserted by programmer in the application code
(as it happens in AFPAC, for instance [11]). Rather,
they can be figured out looking at the structure of the
parmod computations. They are rather inserted in the
object code by the compiler considering the structure of
the particular parmod,

 3. after stopping the parmod computation the virtual proc-
essors and the parmod state are redistributed across the
existing VPMs and the new one added on the newly re-
cruited processing resource,

 4. eventually the parmod computation is restarted with one
more VPM and the monitor process generating the trig-
gering events is restarted as well.

 In case a consistently higher performance is measured
with respect to the one indicated in the user supplied per-
formance contract, instead, a similar process is started to
dismiss one of the resources used to compute a VPM and to
redistributed the VPs managed by that VPM to the other
VPMs.

 M. Aldinucci et al. 28

Fig. 11. Effect of adaptivity process implemented

in a parmod manager

 All the process can be performed in this way as
the computation managed by the parmod manager process
is a structured parallel computation whose features are
completely known (from the compiler) to the manager.
 Figure 11 shows the results achieved while running
a parmod with the manager on a set of workstation whose
load has been varied by putting additional load on one of
the processing elements involved. At time 50 and 100, for
instance, additional load was put on one of the processing
elements involved in the parmod computation. The moni-
toring process detected the loss of performance under
the user supplied performance contract, asking to process 4
items per second and the manager recruited a new resource
to correct the problem. Immediately after, as the contract
was “over satisfied” one resource is released, possibly not
the one just recruited but somehow the “slower” in the pool
of resources running VPMs.
 Interested readers can found more information concern-
ing ASSIST (component) adaptivity in [5, 8, 7].

6. HIGHER LEVEL COMPONENTS

 The experience gained with the implementation of
parmod managers and of the related adaptation policies was
exploited in the GRID.it framework by developing two
specific “supercomponents”: a task farm component and
a generic graph component. These components have been
developed in the GRID.it component framework [5], that is
the project component framework using ASSIST to imple-
ment the parallel components and either wrapped sequen-
tial C, C++ or Fortran code or even Web Services or CCM
components as sequential components.
 The task farm supercomponent can be customized pro-
viding a worker component to model any task farm (or mas-
ter slave) parallel application. The component comes with an
embedded manager that implements (best effort) policies to
adapt the task farm performance to the aggregate power of
the resources used to run the workers by recruiting new
(releasing) workers in case of performance loss (gain) with
respect to the user supplied performance contract.
 The generic graph supercomponent can be customized
providing the set of components that have to be intercon-

nected in a generic graph (or in a pipeline, as a sub-case)
and specifying the generic graph through proper data flow
streams. This component is also provided with a manager
that takes care of ensuring the user performance contract by
providing to balance the input/output bandwidths of the
components participating in the graph.
 Both these supercomponents can be used to program
high performance Grid parallel applications basically with-
out requiring the programmers any effort to program all the
structure code needed to run the components in a farm (or
in a generic graph) structure, nor any code to keep care of
adapting their run time behavior to the features of the Grid
target architecture at hand. Preliminary experimental re-
sults have been achieved that show perfect functionality of
these components as well as good efficiency in the related
runs on both workstation networks and Grids.

7. RELATED WORK

 The HOC project at Muenster is probably the most
related project to our work on supercomponents [10, 23,
24]. HOC (High Order Components) is a programming
environment allowing users to use predefined components
that implements notable parallelism exploitation patterns
including the ones implemented by ASSIST supercompo-
nents, i.e. task farms and pipelines. These notable parallel-
ism exploitation patterns are derived from the algorithmical
skeletons originally developed for cluster architectures,
such as those present in [28, 20, 17, 13]. Differently from
ASSIST, the HOC implementation exploits Web Service
technology to deploy components on remote Grid process-
ing elements. However, HOC component do not support at
the moment any kind of adaptivity.
 The Condor Grid programming system also provides
methods to program task farm computations [36]. In this
case adaptivity is achieved by suitably programming the
scheduling policies of the Condor tool. However, the kind
of computations addressed are basic batch computations
rather than full parallel programs as in the ASSIST frame-
work, where task farms can be included in any one of the
modules appearing in the program module graph.
 Ibis [40] is a Grid programming system that implements
the invisible Grid concept while leaving the programmer
the full control over a set of communication mechanisms
fully integrated in plain Java. While the mechanisms pro-
vided in base Ibis are not too high level (in particular they
require programmers the full control over process decom-
position and over the related communications), extensions
of the environment provide users with higher-level parallel
patters. In particular Satin [39] provides handy ways of
implementing divide&conquer parallel applications. Adap-
tivity and heterogeneity are taken into account as well in
Ibis: heterogeneity is solved by using plain Java byte code
(with extensions to implement serialization in more effi-
cient way than standard Sun serialization). Adaptivity is

High level Grid programming with ASSIST

29

handled exploiting adaptive load balancing in the imple-
mentation of Satin divide&conquer [41].
 Adaptivity in Grid computations is provided within the
AFPAC framework [11, 14]. This framework was origi-
nally meant to model SPMD computation written using MPI
and recently evolved to cover generic Grid components as
well. AFPAC programmers have complete control over the
adaptivity process. This means that a set of mechanisms are
provided within AFPAC to implement an adaptivity schema
fitting the one of Fig. 10 (that in fact has been developed in
a joint work with the AFPAC researchers) but programmers
must take care of inserting proper “adaptation points” in their
code as well to completely take care of implementing adap-
tivity policies and commit phases.
 COPS [30] is a design pattern based Java programming
environment that allows users to design experiment and
include in the environment new parallel patterns. To our
knowledge this is the only one structured parallel pro-
gramming environment providing such possibility to the
users. Despite the fact that ASSIST parmod parameters are
thought to allow users to express a variety of different
parallelisms exploitation patterns, both ASSIST and its
supercomponents are far from reaching the same degree of
reconfigurability allowed in COPS.
 Other approaches aimed at providing Grid program-
ming environments are far from achieving the invisible
Grid goal and do not provide any kind of support for adap-
tivity. The only project with a deep support to user pro-
vided performance contracts and adaptivity is the GrADs
project in the U.S. [27]. The GrADs project also accommo-
dated the development of higher level programming tools for
Grids, such as the Grid-RPC model [38]. This programming
model, although higher level than classical Grid program-
ming at the Grid middleware level is far from the abstraction
level provided by either ASSIST or HOC, however. Recent
papers on GrADs adaptivity present results that can be con-
sidered preliminary to the ones achieved in ASSIST [37].
 The Fractal component framework developed in France
by INRIA and France Telecom [34], although not explicitly
designed for parallel or Grid processing, defines a concept
of “component membrane” which is meant to encapsulate
component controllers (or managers) in a way which is
very similar to the way of instrumenting ASSIST compo-
nents with managers.

8. CONCLUSIONS

 We shortly outlined the main features of the ASSIST
Grid-programming environment, and we discussed its lay-
ered implementation. We then discussed new results con-
cerning adaptivity. Overall, the ASSIST environment can be
considered a programming environment fulfilling the “in-
visible Grid” goal, that is, allowing programmers to write
efficient Grid programs without actually being concerned
with all the details related to the (efficient) usage of the Grid
middleware. ASSIST is currently being released under open

source license and can be downloaded from the ASSIST web
site at the address www.di.unipi.it/Assist.html.

Acknowledgments
 We wish to thank all the people that participated in
the development of ASSIST and of the related tools: Carlo
Bertolli, Sonia Campa, PierPaolo Ciullo, Gianni Giaccherini,
Silvia Magini, Andrea Paternesi, Paolo Pesciullesi, Alessandro
Petrocelli, Edoardo Pistoletti, Laura Potiti, Roberto Ravazzolo,
Massimo Torquati, Gianni Virdis, Luca Veraldi, Pietro Vitale.

References
 [1] M. Aldinucci, F. Andr´e, J. Buisson, S. Campa, M. Coppola,

M. Danelutto and C. Zoccolo, Parallel program/component
adaptivity management, In: PARCO 2005: Parallel Comput-
ing, Malaga, Spain, 2005. To appear.

 [2] M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Van-
neschi, L. Veraldi and C. Zoccolo, Self-Configuring and Self-
Optimising Grid Components in the GCM model and their
ASSIST Implementation, Proceedings of the HPC-
GECO/Compframe workshop held in conjunction with
HDPC-15, IEEE Press, Paris, June 2006.

 [3] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Dane-
lutto, P. Pesciullesi, R. Ravazzolo, M. Torquati, M. Vanne-
schi and C. Zoccolo, ASSIST demo: a high level, high per-
formance, portable, structured parallel programming envi-
ronment at work, In: 9th Intl Euro-Par: Parallel and Distrib-
uted Computing, volume 2790 of LNCS, 1295-1300,
Springer Verlag, Klagenfurt, Austria, August 2003.

 [4] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Dane-
lutto, P. Pesciullesi, R. Ravazzolo, M. Torquati, M. Vanne-
schi and C. Zoccolo, A framework for experimenting with
structure parallel programming environment design, In: Par-
allel Computing: Software Technology, Algorithms, Archi-
tectures and Applications, PARCO 2003, vol. 13 of Ad-
vances in Parallel Computing, 617-624, Dresden, Germany,
Elsevier 2004.

 [5] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. La-
forenza, D. Puppin, L. Scarponi, M. Vanneschi and C. Zoc-
colo, Components for High-Performance Grid Programming
in GRID.it, In: Component modes and systems for Grid ap-
plications, CoreGRID. Springer Verlag, 2005.

 [6] M. Aldinucci, S. Campa, M. Coppola, S. Magini, P. Pe-
sciullesi, L. Potiti, R. Ravazzolo, M. Torquati and C. Zoc-
colo, Targeting heterogeneous architectures in ASSIST: Ex-
perimental results, In: 10th Intl Euro-Par: Parallel and Dis-
tributed Computing, vol. 3149 of LNCS, 638-643, Pisa, Italy,
August 2004. Springer Verlag.

 [7] M. Aldinucci, M. Danelutto and M. Vanneschi, Autonomic
QoS in ASSIST grid-aware components, In: Euromicro PDP
2006: Parallel Distributed and network-based Processing,
Montb`eliard, France, February 2006. IEEE. to appear.

 [8] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati,
M. Vanneschi, L. Veraldi and C. Zoccolo, Dynamic recon-
figuration of grid-aware applications in ASSIST, In: 11th Intl
Euro-Par: Parallel and Distributed Computing, vol. 3648 of
LNCS, 771-781, Portugal, Springer Verlag, August 2005.

 [9] M. Aldinucci and M. Torquati, Accelerating apache farms
through ad-HOC distributed scalable object repository, In:
10th Intl Euro-Par: Parallel and Distributed Computing, vol.
3149 of LNCS, 596-605, Pisa, Italy, Springer Verlag, Au-
gust 2004.

 M. Aldinucci et al. 30

 [10] M. Alt, J. Dünnweber, J. Müller and S. Gorlatch, HOCs:
Higher-order components for grids, In: V. Getov and Th.
Kielmann (ed.) Component Models and Systems for Grid
Applications, CoreGRID, 157-166. Springer Verlag, June
2004.

 [11] F. André, J. Buisson and J.-L. Pazat, Dynamic adaptation of
parallel codes: toward self-adap table components for the
Grid, In Workshop on component Models and Systems for
Grid Applications, June 2005.

 [12] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti and
M. Vanneschi, P3L: A Structured High level programming
language and its structured support, Conc. Practice and
Experience, 7(3), 225-255, 1995.

 [13] A. Benoit, M. Cole, S. Gilmore and J. Hillston, Flexible
Skeletal Programming with eSkel, In: 11th Intl Euro-Par:
Parallel and Distributed Computing, vol. 3648 of LNCS,
761-770, Lisbona, Portugal, Springer-Verlag August 2005.

 [14] J. Buisson, F. Andr´e and J.-L. Pazat, Enforcing consistency
during the adaptation of a parallel component, In: Proceed-
ings of the 4th Int. l Symposium on Parallel and Distributed
Computing, July 2005.

 [15] A. Clematis, D. D’Agostino and V. Gianuzzi, Parallel
Compression of 3D Meshes for Efficient Distributed Visu-
alization, In: Proc. of International Conference on Parallel
Computing 2005 (PARCO 2005), 2005.

 [16] M. Cole, Algorithmic Skeletons: Structured Management of
Parallel Computations, Research Monographs in Parallel
and Distributed Computing. Pitman, 1989.

 [17] M. Cole, Bringing Skeletons out of the Closet: A Pragmatic
Manifesto for Skel etal Parallel Programming, Parallel
Computing, 30(3), 389-406, 2004.

 [18] M. Coppola and M. Vanneschi, Parallel and Distributed
Data Mining through Parallel Skeletons and Distributed
Objects, In: Data Mining: Opportunities and Challenges,
pp. 106-141. IDEA Group Publishing, 2003.

 [19] S. Crocchianti, A. Laganà, L. Pacifici and V. Piermarini, Par-
allel skeletons and computational grain in quantum reactive
scattering calculations, In: Parallel Computing: Advances and
Current Issues. Proceedings of the International Conference
ParCo2001, 91-100. Imperial College Press, 2002.

 [20] M. Danelutto, QoS in parallel programming through appli-
cation managers, In: Proceedings of the 13th Euromicro
Conference on Parallel, Distributed and Network-based
processing. IEEE, Lugano, 2005.

 [21] M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto,
R. Baraglia, T. Fagni, D. Laforenza and A. Paccosi, HPC
application execution on grids, In: Future Generation Grids,
CoreGRID series. Springer-Verlag, November 2005.

 [22] J. Darlington, A. J. Field, P.G. Harrison, P. H. J. Kelly,
D. W. N. Sharp, Q. Wu and R. L. While, Parallel Pro-
gramming Using Skeleton Functions, In: M. Reeve A. Bode
and G. Wolf (ed.) PARLE’93 Parallel Architectures and
Langauges Europe. Springer Verlag, June 1993. LNCS, No.
694.

 [23] J. Dünnweber and S. Gorlatch, HOCSA: A grid service
architecture for higher-order components, In IEEE Interna-
tional Conference on Services Computing, Shanghai, China,
pp. 288-294. IEEE Computer Society Press, September 2004.

 [24] J. Dünnweber and S. Gorlatch, Component-based Grid
Programming using the HOC-Service Architecture. In:
I. H. Fujita (ed.) New Trends in Software Methodologies,
Tools and Techniques, Frontiers in Artificial Intelligence
and Applications, IOS Press, 2005. Accepted for publica-
tion.

 [25] I. Foster and C. Kesselmann, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1998.

 [26] The GRID.it home page, 2005. http://www.grid.it.

 [27] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper,
L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert,
D. Angulo, I. Foster, D. Gannon, L. Johnsson, C. Kessel-
man, R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar and
R. Wolski, Toward a framework for preparing and execut-
ing adaptive Grid programs, In: Proc. of NSF Next Genera-
tion Systems Program Workshop (IPDPS 2002), 2002.

 [28] H. Kuchen, A Skeleton Library, In: Euro-Par 2002, Parallel
Processing, no. 2400 in LNCS, 620-629. Springer Verlag,
August 2002.

 [29] D. Laforenza, Grid programming: some indications where
we are headed, Parallel Computing, 28(12), 1733-1752,
(2002).

 [30] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szaf-
ron and K. Tan, From Patterns to Frameworks to Parallel
Programs, Parallel Computing, 28(12), 1663-1683 (2002).

 [31] S. Magini, P. Pesciullesi and C. Zoccolo, Parallel software
interoperability by means of CORBA in the ASSIST pro-
gramming environment. In 10th Intl Euro-Par: Parallel and
Distributed Computing, vol. 3149 of LNCS, 679-688,
Springer-Verlag, Pisa, Italy, August 2004.

 [32] I. Merelli, L. Milanesi, A. Clematis, D. D’Agostino,
M. Vanneschi and M. Danelutto, Using Parallel Isosurface
Extraction in Superficial Molecular Modeling, In: Proc. 1st
Conference on Distributed Frameworks for Multimedia
Applications (DFMA’05), 288-294. IEEE Computer Soci-
ety, 2005.

 [33] Future for European Grids: GRIDs and Service Oriented
Knowledge Utilities Vision and Research Directions 2010
and Beyond, January 2006. available at

 http://www.cordis.lu/ist/grids.
 [34] ObjectWeb Consortium. The Fractal Component Model,

Technical Specification, 2003.
 [35] D. Snelling and K.-Jeffrey et al., Next Generation Grids 2 –

Requirements and Options for European Grids Research
20052010 and Beyond, 2004. available at
ftp://ftp.cordis.lu/pub/ist/docs/.

 [36] D. Thain, T. Tannenbaum and M. Livny, Condor and the
grid, In: F. Berman, G. Fox and T. Hey (ed.) Grid Comput-
ing: Making the Global Infrastructure a Reality, John
Wiley & Sons Inc., December 2002.

 [37] S. Vadhiyar and J. Dongarra, Self adaptability in grid com-
putting, Concurrency & Computation: Practice & Experi-
ence, 17(2-4), 235-257, 2005.

 [38] S. Vadhiyar, J. Dongarra and A. YarKhan, GrADSolve –
RPC for high performance computing on the Grid. In Proc.
of the Euro-Par 2003, no. 2790 in LNCS, 394-403.
Springer, August 2003.

 [39] Rob V. van Nieuwpoort, J. Maassen, Th. Kielmann and
H. E. Bal, Satin: Simple and efficient Java-based grid pro-
gramming, Scalable Computing: Practice and Experience,
6(3), 19-32 (2005).

 [40] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hof-
man, C. Jacobs, Th. Kielmann and H. E. Bal, Ibis: a flexible
and efficient Java based grid programming environment,
Concurrency and Computation: Practice and Experience,
17(7-8), 1079-1107 (2005).

 [41] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, Th. Kiel-
mann and H. E. Bal, Adaptive load balancing for divide-
and-conquer grid applications, Accepted for publication in
Journal of Supercomputing, 2004.

 [42] M. Vanneschi, The Programming Model of ASSIST, an En-
vironment for Parallel and Distributed Portable Applica-
tions, Parallel Computing, 12, December 2002.

High level Grid programming with ASSIST

31

MARCO ALDINUCCI got the PhD in Computer Science in 2003, he has been researcher at the Institute of
Information Science and Technologies of the Italian National Research Council (ISTI-CNR, 2003-2006),
and he is currently research associate at Computer Science Dept. of the University of Pisa, Italy. He is
author of about 40 papers appearing in journals and international refereed conference proceedings, together
with more than 15 different co-authors. He has been and is currently participating in more than 10 national
and international research projects concerning parallel computing and Grid topics, including the Grid.it
Italian national project, CoreGRID EC Network of Excellence, GridComp EC-STREP, BEinGRID EC-IP,
XtreemOS EC-IP, GridCoord EC-SSA. His main research is focused on parallel/distributed computing in
network of workstations and grids, and in particular on models and tools for high-level parallel program-
ming, component-based frameworks, autonomic computing, and distributed shared memory systems. He
contributed to the design and the development of a number of tools for parallel processing, including com-
pilers, libraries and frameworks, both in industrial and academic teams.

MASSIMO COPPOLA was born in 1969 in Civitavecchia, Italy. He obtained the MS and PhD in Computer
Science from the University of Pisa (October 2002), with a PhD thesis on the application of Structured
Parallel Programming to Data Mining. He has been Research Assistant of the C.S. Dept. of Pisa (2002-
2003), working on the same topic. He collaborated with QSW-Alenia Spazio (1997), and Consorzio Pisa
Ricerche (1997, 2002), and has been Assistant Professor with the ISTI/ CNR institute in Pisa (2003-2006).
He is currently Research Associate with the Department of Computer Science of Pisa, where he teaches
Advanced Parallel Programming (CCP). He mainly works on High-level Parallel Programming Environ-
ments, collaborating to the development of the ASSIST environment, and on Component programming
Models for Computational Grids, in the framework of several Italian (Grid.it) and European Research
Projects (CoreGRID, GridComp, XtreemOS). His interests include languages, tools and performance mod-
els for structured parallel computing, run-time support, deployment and distributed management of parallel,
self-adapting applications over large-scale heterogeneous Grids, and paradigms for parallel, I/O intensive
applications to efficiently exploit distributed I/O over large Clusters.

MARCO DANELUTTO received the PhD in Computer Science in 1990 and since 1998 he is an associate
professor at the Department of Computer Science of the University of Pisa. His main research interests are
in the field of parallel, distributed and grid architectures and in the design and implementation of structured
parallel programming environments for such kind of architectures. In the '90s, he has been one of the main
designers of P3L, the Pisa Parallel Programming Language, a skeleton based structured parallel program-
ming environment targeting clusters and workstation networks. Recently, he actively participated in the
development of the ASSIST programming environment and he currently maintains the muskel Java skele-
ton library. He is author of more than 80 scientific publications on international journals and conferences.
He is member of the program committees of several conferences, including Europar, that he organized and
co-chaired in 2004. In the recent years, he has been the national coordinator of the activities of work pack-
age 8 in the GRID.it Italian national project, aimed at developing the ASSIST component based parallel
programming environment, and he is currently leading the Programming model Institute of the EU Core-
GRID network of excellence and member of the CoreGRID executive committee.

NICOLA TONELLOTTO received the “Laurea” degree (cum Laude) in Computer Engineering in 2002 at the
faculty of Engineering, University of Pisa. Currently, he is a PhD student in Information Engineering at the
Information Engineering Department of the University of Pisa jointly with the University of Dortmund. He
holds a research fellowship at the High Performance Computing Laboratory of the Information Science and
Technologies Institute of the Italian National Research Council from 2002. He is author of about 10 papers
appearing in journals and international refereed conference proceedings. He participated in the develop-
ment of several Grid-related softwares. He has been and is currently participating in more than 5 national
and international research projects concerning high performance computing and Grid topics, including the
Grid.it Italian national project, CoreGRID EC Network of Excellence, GridComp EC-STREP, XtreemOS
EC-IP. His main research is focused on parallel/distributed computing in network of workstations and
grids, and in particular on models and tools for high-level parallel programming, component-based frame-
works and Grid middlewares integration.

 M. Aldinucci et al. 32

MARCO VANNESCHI is a full professor at the Department of Computer Science of the University of Pisa.
His research and teaching activity is mainly related to Computer Systems Architecture, and in particular
High Performance Computing systems: hardware and firmware architectures and organizations, computa-
tional models for parallel computing, high performance enabling platforms, programming tools and envi-
ronments for the development of parallel and distributed applications, Grid computing. In this area, he has
participated to some European projects and he has coordinated several national projects. He is the coordi-
nator of the National Basic Research Programme on Grid Computing (Grid.it: Enabling Platforms for High
Performance Computational Grids oriented to Scalable Virtual Organizations), funded by MIUR. He is
author of more than 170 scientific papers published in international journals and conferences, of three
books on computer architecture and parallel programming, and he is scientific editor of six international
books.

CORRADO ZOCCOLO graduated “cum Laude” at “Scuola Normale Superiore” of Pisa and got the PhD in
Computer Science in 2005 at University of Pisa. He is author of about 15 papers appearing in journals and
international refereed conference proceedings. He has been a research collaborator of the Computer Sci-
ence Dept. of the University of Pisa, Italy. He partecipated in 4 national and international research projects
on High Performance and Grid computing, as well as in industrial projects where these technologies were
applied. His research work is focused on high-level programming tools and abstractions for high-
performance computing. His main interest is in automatic QoS enforcement on performance unstable plat-
forms. Currently, he is Senior Software Engineering at Ask.com Italy, a division of IAC Search & Media.

1

1 COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 21-32 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

