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Abstract: We study properties of slowness surfaces and energy focusing patterns of cubic elastic media. 
We restricted ourselves to the region of the stability triangle where Poisson's ratio σP of the specimen 
stretched in the [001] direction and measured for [100] is negative, i.e. we consider all cubic auxetic 
materials. We study properties of surfaces and energy focusing patterns for all elastic auxetic media 
characterized by σP = - 1/3. 

1. INTRODUCTION 

Recently there is considerable interest in auxetics - elastic materials with negative 

Poisson's ratio (cf. [1-3]). Generally the calculation of Poisson's ratio is complicated for 

directions oblique to the crystal axes [4]. Therefore, in our previous papers [5, 6] we restricted 

ourselves to Poisson's ratio for [001] stretch measured for [100] lateral direction and 

established the region of the stability triangle (ST) (cf. [6]) where the mentioned Poisson's 

ratio is negative. We shall underline that the characteristics of particular region of auxeticity 

depends on the choice of the stretch direction n and the direction m of measurement [7]. To 

indicate this dependence we shall use notation nm-auxeticity region of ST. 

The present paper is devoted to the study of geometrical properties of slowness surfaces of 

long wavelength acoustic phonons [8, 9] in the [001][100]-auxeticity region (for simplicity we 

shall use a short notation zx-Poisson's ratio and zx-auxeticity region). We also obtained the 

energy focusing patterns [8, 9] which are images of these surfaces under the mapping induced 

by phonon focusing, which is mathematically known as the Gauss maps (cf. [10]). These maps 

are obtained in time-of-flight experiments with ballistic phonon beams [8, 9]. 

2. CHOICE OF ELASTICITY PARAMETERS 

2.1. Partition of the stability triangle 

Within the framework of theory of elastic media, in a chosen Cartesian coordinate system, 

the phase c and group velocities v, as well as polarization vectors e of long wavelength acous-
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Fig. 1. Various regions of the stability triangle abc. 
The polarization anomalies line (PAL) s2 = s3 (i.e. 
C12 = - C44) is indicated (the dotted line). The line 
s2 = 0 is called the vertical polarization anomalies 
line (VPAL) [5]. On the af-line the zx-Poisson ratio 
attains the value 0 

tic phonons depend on parameters characterizing elastic properties of the medium. The most 

commonly used is the set of elastic constants { C i j : i, j = 1, 2, 3} and the mass density ρ. 

However, following Every [11], in our previous papers [12, 13] for cubic crystals we used 

a linear combination of C11 and C44 

(1) 

and two dimensionless parameters s2, s3 

(2) 

Notice that the triple (s1, s2, s3) is equivalent to the set (C 1 1, C12, C44) of elastic constants. Since 

the parameter s3 vanishes for isotropic media, we shall call it the elastic anisotropy parameter. 

The parameter s1 is a scaling parameter. The phase and group velocities are proportional to it. 

The Poisson ratio does not depend on s1. 

We shall remind that elastic properties of all media belonging to the cubic crystallographic 

are described by the same set of parameters of elasticity. 

The condition of mechanical stability imposes certain restrictions on values of the parame-

ters s1, s2 and s3. Namely, s1 should be positive and 

system, i.e. to the crystallographic classes 23 (T), 

(3) 
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2.2. zx-Poisson's ratio 

Consider the dependence of the zx-Poisson ratio σP on parameters of elasticity 

(4) 

In Sect. 3.3 we shall study properties of slowness surfaces in zx-region of auxeticity along 

a line of constant value of σP. 

From Eq. 4 it follows that the parameters s2 and s3 are related by a linear relation 

The zx-Poisson ratio σP vanishes for C12 = 0, i.e. on the section of line. 

Above this line σP is negative while below it is positive. According [14] in the case of cubic 

intermediate valent compounds the vanishing σP indicates the semiconductor-metal transition. 

Plot of σP is presented in Fig. 2. 

We shall underline that the region of auxeticity (cf. also Fig. 3) forms a finite part of the 

stability triangle, i.e. defines a continuous set of finite measure of cubic auxetic compounds. 

Hence, one may expect that auxeticity could be a common phenomenon. 

As we shown [5], the stability triangle abc, can be divided into four separate regions in 

which corresponding crystalline media exhibit different acoustic properties. These regions are 

shown in Fig. 1. The region I is lying left to the s3 axis, i.e. for it s2 < 0. We shall call the line 

s2 = 0 the vertical polarization anomalies line (VPAL). The region II is located between VPAL 

and the line which we call the polarization anomalies line (PAL), which lies slightly below the 

acoustic anomalies line (AAL), i.e. s3 = s2 line. The PAL can be found only numerically, and 

not necessarily is straight. The region III is placed between PAL and AAL, while region IV is 

a part of the stability triangle lying above AAL. 

These inequalities mean that s2 and s3 can only vary inside the stability triangle (abc triangle 

in Fig. 1) bounded by (ab-side), (ac-side) and s2 = 1 (bc-side) lines. 

185 
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3. PROPERTIES OF L O N G - W A V E L E N G T H ACOUSTIC PHONONS 

Weakly disturbed states of crystalline lattices can be described in terms of phonons. Here 

we consider only long wavelength acoustic phonons (LAPs) - fast (j = 0), slow (j = 1) and 

medium (j = 2) [11]. As a rule the fast mode is quasilongitudinal and the remaining modes are 

quasitransverse. However, there exists regions on ST and directions for which j = 0 mode is 

quasitransverse and at least one of the remaining modes is quasilongitudinal [5] (cf. also 

Sect. 3.4). 

and on parameters of elasticity. of LAPs depends on The slowness 

(9) 

namely one can introduce the slowness Having the phase velocity 

3.2. Local geometrical characteristics of slowness surfaces 

(8) 

has the direction of the maximum rate of the frequency change and is perpendicular to a j-th 

sheet of surface of constant frequency (ω - surface), which is defined as 

(7) 

For long wavelength acoustic phonons the group velocity also depends only on The 

group velocity vector 

The coefficient c, called the phase (sound) velocity, depends only on the polarization j and the 

direction of the wave vector We shall use a brief notation 

( j = 0,1,2) . (6) 

course, the frequency ω, depend on the wave vector q and on the index j. The dispersion law 

of LAPs is linear in the magnitude q of the wave vector 

A phonon carries the energy and quasimomentum The energy ε and, of 

3.1. Phase and group velocities of long-wavelength phonons 

From Eq. 5 it follows that to the borders of auxeticity region correspond to σP = 0 (the line af 

in Fig. 1) and σP = -1 (the ab-side of the stability triangle (cf. Fig. 1)). 

(5) 

(or on the angles θq and 
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For each j the polar plot of the slowness gives a slowness surface (SlS). For LAPs the 

equation of a slowness surface is equivalent to 

( j = 0 , 1 , 2 ). (10) 

(15) 

For each j the constant frequency surface, or constant energy surface, is similar to the 

corresponding slowness surface. Thus, an ω-surface of LAPs of j-th branch has the same 

shape as the corresponding slowness surface. Each slowness surface has the symmetry of the 

considered crystalline medium and generally a nonspherical shape. Similarly as the Fermi 

surface of metals, the slowness surfaces plays a distinguished role in transport phenomena in 

gases of LAPs. Further we shall term j = 0 SIS - the inner sheet, j = 1 SIS - the outer sheet, 

and j = 2 - the middle sheet. 

Assume that long wavelength phonons are radiated in form of very short pulses by a point 

source located at the origin of a Cartesian coordinate system. An energy sensitive detector (a 

bolometer) is placed at the point r = (r, θ r, r) lying in a plane with a normal A phonon 

with the wave vector q = (q, θq, q) falls onto the detector if its group velocity direction 

coincides with the direction of the radius vector r of the detector. Generally, due 

to the complicated nonspherical shape of surfaces of constant energy, there is more than one 

solution to the vectorial equation 

(11) 

(12) 

or to the two equations for angles 

( j = 0,1, 2) . 

Denote them by (i = 1,2,...,n j). For an arbitrary function Fj of 

we introduce the notation 

(13) 

The total density of energy en(r) of LAPs falling on a small region around a point r of the 

surface with the normal can be expressed by the focusing (enhancement factor) [12] 

(14) 

The focusing factor is related to the local geometric characteristics of the suitable slow-

ness-surface at the point of intersection of this surface with the vector q. These local charac-

teristics are the length of the vector q, the angle between q and vj and the Gaussian curvature 

Γj of the j-th sheet of slowness surface, and 
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Fig. 3. Cubic crystals are mechanically stable for 
s1 >0 and for s2 and s3 belonging to the triangle 
abc. In the shaded region C12 < 0. The interval 
(isotropy line) represents stable isotropic media. 
The dotted line is the polarization anomalies line. 
The dashed line is defined by Eq. (16). Points of 
the zx-auxeticity region for which slowness sur-
faces and energy focusing patterns are calculated 
are indicated by × sign 

Notice that the line given by Eq. (16) crosses all four regions shown in Fig. 1. In our 

previous paper [5] we studied selected properties of SlS in all these regions of ST. Hence we 

can make reference to results obtained there. 

In the regions II and III of the stability triangle the middle ( Σ 2 ) and the outer (Σ1) surfaces 

touch each other tangentially in the <100> and conically in the <111> directions. The inner 

sheet Σ0 is completely separated from the remaining two sheets. In the region I the behavior of 

the slowness surfaces is different. For example on VPAL (s 2 = 0) Σ0 makes tangential contact 

with the Σ1 and the Σ2 along <100> directions, while Σ1 and Σ2 sheets touch each other at 

<100> and conically in <111> directions (cf. Fig. 4). Situation in the region IV is opposite -

Σ0 and Σ2 sheets meet conically in directions of threefold symmetry axes, while Σ1 and Σ2 

tangentially in directions of fourfold ones. 

On A A L line Σ1 and Σ2 contact not only along the <001> and the <111>, but also along 

whole lines connecting these and equivalent points of the unit sphere. The Σ0 and Σ2 sheets 

The σP = -1/3-line defined by Eq. (16) lies in the middle of the zx-auxeticity region (cf. 

Fig. 3). We distinguished on this line seven points indicated in Fig. 3. 

3.3. Slowness surfaces in zx-auxetic region 

Assume that σP = -1/3. To this value of the zx-Poisson's ratio it corresponds the line 

(16) 

On parabolic lines and at flattening points (e.g. the points of crossing of parabolic lines) of 

an slowness surface the Gaussian curvature vanishes, hence at such points the densities of 

energy and of quasimomentum are singular. 
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contact along lines connecting the neighboring <111>. Since small changes of elasticity 

parameters lift these degeneracies along lines (of course leaving unchanged degeneracies 

along acoustic axes) they are unstable. 

We built a program which calculates and depicts Σij-surfaces and additionally we imple-

mented techniques which allows one to establish their polar coordinates. Results obtained with 

this program for the point no. 2 of the σP = - 1/3-line are presented in Fig. 4. 

exactly to 1. 

of radii . Note that for degenerate directions the reach the global maxima equal 

For each pair (i, j) the tips of these vectors form a surface which we shall call Σ i j-surface. In 

fact these new surfaces are normalized mirror images of the Δsij, where the mirrors are spheres 

For given i and j the tips of these vectors defines a surface, which we shall call Δs i j-surface. 

Because each slowness surface consists of three sheets, for a given crystalline medium there 

are three different such surfaces, namely Δs2 0, Δ s 1 2 and Δs 1 0. From the definition of the 

Δsij--surfaces it is obvious that at degenerate directions these surfaces attain the value 0. 

The above approach is simple and efficient, but has two disadvantages: it is hard to 

precisely locate degenerate directions and it is not easy to distinguish between directions in 

which phase velocities are close and directions in which they are equal. To overcome this dif-

found, and new vectors are introduced 

ficulty we transformed the Δs i j-surfaces: the global maximum of a Δs i j-surface is 

(18) 

(17) 

The most straightforward way of representing degenerate directions is to calculate surfaces 

of slownesses difference, i.e. calculate and vectors 

Fig. 4. Extremal points of Σi j surfaces indicate directions in which i and j (i, j = 1, 2, 3, sheets of SlS 
touches each other for point no. 2 of the σP = - 1/3-line, for which S2 = 0.00, S3 = -0.25. Edges of cubes 
are directed along <001> rangle directions 
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Table 1. Sheets of slowness surface for cubic elastic media for all long wavelength acoustic phonons in 
points nos. 1-7 of σP = -1/3 line. In fact various sheets differ by linear dimensions. Regions where Γ < 0 
are shaded. Regions with positive Gauss curvature are white. The borders of these regions indicate lines 
of parabolic points (Γ = 0) 
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Results of more systematic calculations of the slowness surfaces are presented in Table 1. 

The curvature of regions of slowness surfaces are indicated: shaded regions have negative, 

whereas white regions - positive Gauss curvature. Therefore, on lines separating them Γ = 0. 

They are called lines of parabolic points. 

We notice that the SIS of fast phonons ( Σ 0 ) have no lines of parabolic points. When one 

approaches VPA line (Fig. 3 point no. 2) and PA line (Fig. 3 point no. 7) Σ0 previously rounded 

edges becomes sharp, and the Gaussian curvature Γ becomes large. Hence, according formulas 

(14) and (15), phonons with propagation vectors directed toward points lying on these edges are 

defocused. Inspection of Table 1 shows that the sheets Σ1 and Σ2 have sharp edges too. 

The behavior of Σ1 and Σ2 sheets is more complicated. On the isotropy line (s3 = 0) outer 

and inner sheets coincide and all sheets Σj (j = 0, 1, 2) are perfectly spherical. When one 

moves along σP = - 1/3-line dimples emerge, and next, they develop into furrows. When one 

changes s2 and s3 these dimples evolves - become narrow or broader and within them new 

structures emerge. 

3.4. Behaviour of polarization of phonons 

In the case of familiar compounds (as a rule placed in the region II of ST) the fast phonons 

are quasilongitudinal, whereas slow and medium are quasitransverse. However, with the 

exception of the region II, there exist directions in which fast phonons are quasitransverse 

whereas slow and medium phonons are quasilongitudinal. In Table 2 we illustrate this unusual 

situation for the points no. 1 and 7 of σP = -1/3 line (cf. Fig. 3). Segments of Σ0 subtending 

Table 2. Sheets of slowness surfaces for cubic elastic media for all kinds of LAPs. Various sheets differ 
by linear dimensions. Polarization anomalies are indicated by grey tones 
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body angles for which phonons are quasitransverse are indicated by white colour. The 

remaining gray part of Σ0 corresponds to quasilongitudinal phonons. Analogously segments of 

Σ1 and Σ2 sheets for which slow phonons are quasilongitudinal are grey, and the remaining 

part corresponding to transverse phonons are white. 

3.5. Energy focusing patterns 

From Eqs. (14), (15) it follows that to parabolic lines there corresponds infinite, but 

integrable energy density e. Lines lying in the chosen plane on which the density of energy 

transported by phonons is infinite are called caustics. In fact in experiments with ballistic 

phonon beams mainly caustics are observed. In Table 3 we collected focusing patterns 

corresponding to slowness surfaces assembled in Table 1. These patterns are obtained with the 

use of MC AnScat program of Monte Carlo simulations [15]. A bolometer is placed in various 

points of the plane perpendicular to the z-axis. Regions in which the energy density is large are 

dark. In white regions e(r) = 0. White structures corresponds to antifocusing parts of Σj (j = 0, 

1, 2). Dark structures reflect the existence of parabolic lines. 

in Table 4. 

for cubic auxetic media defined by points no. 1-7 on the σP = - 1/3-line. They are shown 

Using our program [15] we performed Monte Carlo experiments and obtained maps of 

faces (such as, for example, the Gaussian curvature). 

enhancement factors A are not related to local geometrical characteristics of some sur-

that, differently than the enhancement factors of the group velocity, the polarization 

surface perpendicular to set of polarization vectors does not exist. This means 

Since for each j the field of polarization vectors is not potential a closed 

(19) 

limit of the ratio of solid angles and when 

as the We may regard A e 
subtending the body angle tion vectors around 

To this bundle there corresponds a bundle of polariza-subtending the solid angle ΔΩq 

ment factor for the group velocity (15). Let us choose a bundle of wave vectors around 

change of E we introduce the enhancement factor A e 
resembling the familiar enhance-

Consider j-th mode for arbitrarily selected values of s2 and s3. To characterize the rate of 

changing and with varying elasticity parameters is a quite complicated task [5]. 

changes with s2 and s3. The quantitative characterization of a rotation of with 

Generally orientation of the introduced set of Cartesian axes is now not arbitrary and 

(j = 0, 1, 2) specify a Cartesian set of axes 

For each set three mutually perpendicular polarization vectors 

3.5.1. Polarization enhancement factors 
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Table 3. Energy focusing patterns corresponding to SIS gathered in Table 1. Gray tones reflect value of 

energy density e(r). Regions where e(r) is large are intensively dark. Dark structures are caustics 

reflecting the presence of lines of parabolic points. White structures corresponds to regions antifocusing 

parts of Σj (j = 0, 1, 2) where Γ is large 
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Table 4. The maps of the polarization enhancement factors for all j modes and all points of the 
σP = -1/3-line. Dark regions correspond to large enhancement factors. The darkness scale of different 

patterns is not the same 
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The < 0 0 1 > a x e s are represented by a points located in the center of the square-shaped 

reg ion of the polar and azimuthal angles, by the centers of their vert ical s ides and by w h o l e 

horizontal s ides (cf. patterns b e l o n g i n g to the s ixth r o w of T a b l e 4). Three-leaf c lovers seen in 

the f i r s t pattern of the f i r s t r o w surround the <111>. Spots seen in the second e lement of the 

third r o w are centered around [110] and the equiva lent directions ( four of them are p l a c e d on 

vert ical s ides of the square). A l l "caus t ic" l ines w h i c h are seen in patterns f r o m T a b l e 4 j o i n 

h igh s y m m e t r y directions. In all reg ions there ex i s t whi te "dis t r ic ts" w h e r e polarizat ion 

vectors are s t rongly de focused. W h e n m o v i n g t o w a r d A A L a v e r y strong f o c u s i n g o f 

polarization vectors i s o b s e r v e d in < 1 0 0 > directions (s ixth r o w of T a b l e 4). This i s in 

agreement wi th observat ion that o n A A L these vectors are f i x e d a long f o u r f o l d s y m m e t r y 

axes . One should underl ine that intensities of var ious patterns depicted in Table 4 d i f f e r im-

mense ly . 
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