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Abstract: The Born-Oppenheimer (BO) potential energy curve, the adiabatic and the relativistic
corrections for the EF state of the hydrogen molecule are calculated for the internuclear distances
ranging from 0.01 to 20 bohr. 600-term variational expansions of exponentially correlated Gaussian
(ECG) functions are used. The BO energies and the adiabatic corrections are more accurate than
previously reported and the relativistic calculations confirm existing literature values.

1. INTRODUCTION

The EF 12; state of the hydrogen molecule is the lowest excited state having the same
symmetry as the ground state. Its most striking feature is the potential energy curve with two
deep and well separated minima, resulting from the avoided crossing of two diabatic states, E
and F [1]. The united atom configuration is 'S (Is2s). The dominant configuration for the inner
part of the potential is (1s0,2s0,), whereas in the outher part of the energy curve the (2p0u)2
configuration is contributing the most to the wave function, although the (1s0,2s0,) and
(lsog)2 configurations are also present. Finally, the state dissociates onto H (1s)+ H(2s). AS
a result of the two-minimum potential, two separate band systems can be observed in certain
energy regions. The EF state has drawn significant interest and a number of variational
calculations of increasing accuracy has been reported over the last 40 years [2-8]. The current
most accurate electronic energy was obtained in 1999 by Orlikowski et al. [8], who used
a 443-term expansion of the Kotos-Wolniewicz-type (KW) wave function [3] and evaluated
also the adiabatic corrections. At R = 1.5 bohr, the Born-Oppenheimer (BO) energy of Ref. [8]
is, however, over 0.3 phartree higher than the older result [9] obtained by the present authors
as a test of our exponentially correlated Gaussian (ECG) package. In the present paper we
extend our ECG calculation to the complete BO energy curve of the EF state and calculate
the adiabatic and relativistic corrections. The aim of this work is twofold. Firstly, to generate

new and more accurate benchmark results. Secondly, to test the performance of our correction
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packages. We use the direct perturbation theory (DPT) of Kutzelnigg [10] and Rutkowski [11]
in relativistic calculations and the Bom-Handy approach [12-14] to adiabatic corrections, both

methods never used before in studies of excited states ofthe hydrogen molecule.

2. METHOD OF CALCULATION

2.1. Born-Oppenheimer energy

The electronic wave function used in this work is expressed in the form of the linear

combination of properly symmetrized two-electron basis functions, ¥,
. K

W(r,r) = (+ o)A +)Y, ey, (n, 1), ()
k=1

where Pu and fe are the electron exchange and the inversion operators, respectively. The ex-
pansion terms were assumed in the form of the ECG functions [15, 16], which in the two-

electron case are equivalent to Gaussian type geminals (GTG) [17-19]

2 2 2 2 2
Vi(n,n) = CXP[‘ Aty = Benp = CuFa = Milap — Ykrn], 2

where 1 and 2 denote electrons and @ and b - nuclei. The linear, ¢, and the nonlinear

"
parameters a,, B, ¢, n, and y were determined variationally. The wave function was
optimized with respect to the second eigenvalue of the Hamiltonian using Powell's conjugate
directions method [20]. More details on the optimization ofthis type of the wave function can
be found in Refs. [9,21].

Historically, the most successful ansatz used in the studies ofthe hydrogen molecule was
the KW function, which contains terms linear in electron-nucleus and electron-electron
distances and, in contrast to the ECGs, fulfills the necessary cusp conditions. All existing
complete high-accuracy potentials of the EF state were obtained in this way [5, 6, 8]. Only in
the last 10 years it was discovered that the ECG functions, which can easily be integrated
analytically and therefore allow one to use larger and carefully optimized expansions without
stability problems or prohibitive cost, can surpass the accuracy provided by the KW functions
[9, 22, 23].

2.2. Adiabatic corrections

Traditionally, the adiabatic corrections to the BO energies of molecules are obtained as
expectation values of a perturbation operator ﬁ' defined by first separating off the center-of-
mass (COM) motion and then collecting all the terms depending on nuclear masses. Such
approach has been many times successfully used in studies of various states of the hydrogen
molecule, including the EF state [5, 8], but becomes prohibitively complicated for larger

molecules, because the operator /' contains in such cases extremely cumbersome terms
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coupling electronic and nuclear coordinates [24]. As shown in 1997 by Kutzelnigg [14],
the complications occurring after the separation of the COM motion can be entirely avoided if

one chooses to work in the laboratory (instead ofrelative) coordinates. The use ofthe operator

ﬁ].__E Vi
5, 3)

leads to the correct value ofthe adiabatic correction, because the COM degrees of freedom are
zeroed out when the expectation value of (3) is calculated with electronic wave functions,
which are translation- and rotation-invariant. The sum in Eq. (3) is over all the nuclei (with

masses M)). To calculate the adiabatic correction

AE, = J‘Pfl“f’dr , o)

one has to evaluate the derivatives of the electronic wave function with respect to the Carte-
sian nuclear coordinates, Q, (= X,, Y,, Z). These derivatives can be approximated numerically

by a three-point differentiation quotient

¥ (0 +A0,12)-¥(0, - AQ,2 )

a0, AQ, ©
leading to the following compact expression for AE ;:
AEadZZS—SIX_S},;S[Z, ©)
7 M, (AQ))
where S represent the overlap integrals oftwo distorted wave functions
sP = [(Q + 80,12)¥(Q, - 8 /2)dr. ™

In the case of the hydrogen molecule placed on the x axis, the evaluation of the adiabatic

correction at a given internuclear distance requires two different expectation values,

(1 1Y/ 2
AEy = -+ = 7) T2 2/ ®)
2\ M, ", || \ax? 372

which can be calculated as

02 =2(S,Q—1) o
007 (ag)

Formally speaking, the distorted functions in Eq. (7) should be solutions of the Schrddinger
equation corresponding to the nuclear configurations Q; + AQ,/2 and Q, - AQ,/2. In practice,

it is sufficient to construct them from the original function ¥(Q,) by recalculating the linear
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coefficients only. If the expansion (1) is long enough, the changes of ¢, can compensate for
the slightly non-optimal values of nonlinear parameters. Evidently, the accuracy of
the numerical evaluation of (4) depends critically on the chosen value of AQ, in Eq. (5). As
follows from tests on the ground state of H, [25], the choice of AQ, = 5 x 10 bohr gives
an accuracy of 6-7 significant digits and we used this value in the present work. An additional

check ofthe calculated adiabatic corrections exploits the identity

2 2
jsu SV, | =qu SV, |, (10)
1 i

resulting from the total momentum conservation condition. The right-hand side of Eq. (10)
represents an ordinary expectation value (the operator depends only on the electronic co-
ordinates) and can be evaluated analytically. This value can then be confronted with the left-

hand-side value obtained numerically, if one uses Eq. (5) to calculate also the off diagonal

nuclear expectation values <32/(8Xaa/\',,)> and <82/(8Ya8)’,,)>.

2.3. Relativistic corrections

According to the DPT, the lowest-order relativistic correction can be calculated from
the expression [10, 23,26]

E, :<[:]BP>+ADPT’ (11
where
Appr = %c_2<f(ﬁ0 - Eo)> (12)

and <HBP> is the expectation value of the Breit-Pauli (BP) Hamiltonian [27], which for

singlet states oftwo-electron systems can be expressed as

ﬁBp =c'2(f{,+1:12+f14+1}5), (13)
with
1:11 = _15(7:'3 + f’zz), (14)
- 11
Hy =—=—/| p\p, + ’12("1221’1)1’2 (15)
2 1y 1

A, =Z2”_ Zz,[a(r,,) +8(r)] - 28(r2) 7 (16)
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1:15 =276 (r,). (17)

In the Eqgs. (12)-(17), ¢ = 137.03600 a.u. is the speed of light, f’ is the kinetic energy operator,
[:IO and E, are the nonrelativistic Hamiltionian and energy, p is the momentum operator, and

0 the Dirac delta function. In all previous relativistic calculations on excited states of H,,
including the work on the EF state by Wolniewicz [7], the conventional BP theory was used
instead of the DPT, that is, the corrections were calculated as the expectation values of
the operator (13). Both theories become equivalent (to the lowest order) in the limit of
the exact nonrelativistic wave function, because (12) vanishes in such a case. In practical
calculations, the DPT is preferable and leads to faster convergence towards the basis set limit
[28]. It can be explained by the fact that the operators present in the BP Hamiltonian,
especially PAII and 1314, are highly singular, whereas the whole sum in Eq. (11) can be alterna-

tively written using only global operators with fast convergent expectation values [26].

3. RESULTS AND DISCUSSION

The 600-term wave functions ofthe form of Eq. (1) and (2) were generated for internuclear
distances ranging from R = 0.01 to R = 20.0 bohr. The extensive nonlinear optimization proc-
ess was led separately at each distance. Table 1 lists the energies and the derivatives at a large
selection of distances. The derivatives of the energy were inferred from the virial theorem.
Our ECG curve lies everywhere below the best previous Born-Oppenheimer curve calculated
by Orlikowski ef al. [8], the improvement AE,, ranging from 0.007 ¢cm™' at R = 3.0 bohr to as
much as 0.5 cm™ at R = 0.5 bohr, see the last column of Table 1 and Fig. 1. Note that the full
list of energy values and adiabatic corrections obtained by Orlikowski er al. is available on
their web page [29]. Since the integrals containing the KW wave function are too time
consuming for a full optimization of nonlinear parameters, the usual procedure is to optimize
them in the most relevant regions and interpolate between them. This probably explains
a relative drop of accuracy of results from Ref. [8] around 10 bohr and at very short distances.
In Ref. [9] we analyzed the convergence of our ECG expansions for various two-electron
systems, including the EF state of H, at R = 1.5 bohr. We concluded that it was difficult to
estimate the error of the 600-term expansion for the EF state because of a somewhat irregular
convergence pattern. However, the 600-term expansions for other excited states of H, yielded
accuracy of the order of 0.001 cm™', and even in the least favorable (because of the lack of
the inversion symmetry) case of HeH' it was better than 0.01 cm™'. We can, therefore,
conservatively estimate the error ofthe present BO energies as about 0.01 cm™ (0.05 phartree)
in the vicinity of R = 1.5 bohr, which corresponds to the accuracy better by almost one order
of magnitude than the best previous results. Since our wave functions were fully optimized at
each value of R, the error should not change dramatically along the potential energy curve,
although we expect some gradual lowering of accuracy when moving from larger towards

smaller internuclear distances.
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Table 1. Born-Oppenheimer energy curve for the EF 'Z‘Z, state of H,. The last column denotes
the improvement with respect to Ref. [8]

R E dE/dR AFgq R E dE/dR AEpq
bohr hartree hartree/bohr phartree | bohr hartree hartree/bohr phartree
0.010  97.854294759 -9999.9467812 - 3.150 -0.689736266 —0.0053293 -0.067
0.125 5.887275372  —63.5347143 - 3.200 -0.690223204 —0.0140858 —0.091
0.250 1.958420900 -15.3590224 - 3.300 —0.692387386 —0.0280531 -0.118
0.500 0.127042176 —3.3305808 -2.354 [3.350 -0.693901153 -0.0321672 -0.133
0.750  -0.381959097 —1.1911454 - 3.500 -0.699079636 —0.0349556 -0.121
1.000  -0.580085574 —0.5035865 -0.473 {3.750 -0.706850445 —0.0259588 -0.186
1.250 —0.666021558 -0.2215005 - 4.000 -0.711884469 —0.0144330 —0.208
1.500  —0.703000229 —0.0899254 -0.321 {4.200 -0.713939091 -0.0063453 -0.226
1.600  —0.710336960 —0.0582442 -0.244 [4.300 -0.714395534 -0.0028456 —0.231
1.700  —-0.714897926 —0.0340535 -0.279 |4.350 -0.714497162 -0.0012348 -
1.750  -0.716348139 —0.0241746 - 4400 -0.714520534  0.0002849 —0.237
1.800 —0.717335853 —0.0155265 —0.187 |[4.450 -0.714470159  0.0017154 -
1.900 -0.718147401 —0.0013378 -0.169 |4.500 -0.714350439  0.0030592 -0.242
1.910 -0.718154650 —0.0001176 - 4.600 -0.713919902  0.0054975 -0.245
1.920 -0.718149864 0.0010700 - 4750 -0.712855991  0.0085783  —
1.950 —0.718066446 0.0044449 - 5.000 -0.710203357  0.0123922 -0.261
2.000 -0.717715240 0.0094868 —0.143 |5.250 -0.706769219  0.0148918 -
2.100 -0.716337865 0.0176695 -0.153 |5.500 -0.702838682  0.0164139 -0.290
2200 -0.714251301 0.0237474 -0.144 |5.750 -0.698621148  0.0172270 -
2300 -0.711645171 0.0281165 —0.119 [6.000 -0.694267005  0.0175361 -0.334
2.400 -0.708675417 0.0310580 -0.103 |[6.500 -0.685540178  0.0172103 -0.380
2.500 -0.705475032 0.0327503 -0.088 |7.000 -0.677165620  0.0162183 -—0.444
2.625 —0.701333700 0.0331978 - 8.000 -0.662220979  0.0136172 —0.573
2750  —0.697261256 0.0315667 -0.060 [9.000 -0.649936051  0.0109705 —0.766
2.900 ~0.692910016 0.0254689 -0.052 [10.000 -0.640254736  0.0083915 -0.920
3.000 -0.690747014 0.0170127 —-0.033 |12.000 -0.628742051  0.0032091 -0.825
3.050  —0.690044969 0.0108307 -0.050 [[5.000 -0.625202952  0.0002006 -0.097
3.100  —0.689687326 0.0032597  -0.050 20.000 -0.625005625  0.0000026 —0.008

of
;""\"w.

Fig. 1. Born-Oppenheimer energy improvement
over the best previous calculations of Orlikowski et
al. [8] as afunction of R
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Table 2: The expectation values of the nuclear coordinate derivative operators (in atomic
units). X is the direction parallel and Y - perpendicular to the internuclear axis. In Eq. (5)

AQ;=0.0005 bohr. n =1-((Z,V,;)2){(Z;V;)?)~1 and a(b) stands for a x 10°

a2 82 a2 82
R/boh - e
o ax? XX, ay,2> <8Y18Y2> K

0.010  —-0.3600307 —0.3581237 -0.3591528 -0.3591082  8.8(-7)
0.125  —0.4164156 —0.2643921 -0.3479757 -0.3436510 -8.7(-6)
0.250  -0.4649744 —0.1453421 -0.3264068 -0.3138338  3.4(-6)
0.500  -0.4639602 -0.0103415 —0.2828173 -0.2538456 —3.8(-6)
0.750  -0.4163910 0.0424656 —0.2485876 —0.2067459  9.1(-7)
1.000  -0.3660064 0.0624198 -0.2232351 —0.1714003 -1.5(-6)
1.250  -0.3228201 0.0687900 —0.2045268 -0.1444724  2.6(-6)
1.500  -0.2879138 0.0691512  -0.1907203 -0.1234153  7.0(-6)
1.600  -0.2761016 0.0684294 —0.1862934 -0.1162245  6.8(-6)
1.700  —0.2654376 0.0674294 —0.1824064 -0.1096031  2.8(-6)
1.750  -0.2605258 0.0668609 —0.1806519 -0.1064812 -1.2(-6)
1.800  -0.2558934 0.0662727 —-0.1790177 -0.1034751 -2.7(-6)
1.900  -0.2474827 0.0650953  -0.1760952 -0.0977718  3.4(-6)
1.910 - -0.2467073 0.0649834 —0.1758277 -0.0972235 -2.6(-7)
1920  —0.2459479 0.0648777 -0.1755649 -0.0966784 —1.8(-6)
1.950  -0.2437351 0.0645616 —0.1748016 -0.0950612  6.8(-6)
2.000  —0.2403099 0.0640913  -0.1736186 —0.0924355 -3.2(-6)
2.100  —0.2345823 0.0635351 —0.1715768 —0.0874048 —1.2(-6)
2200  -0.2307858 0.0639486  —0.1699783 -0.0826189  3.3(-6)
2300  —-0.2298658 0.0662756 —0.1688530 —0.0780077  5.9(-6)
2400  —0.2337740 0.0724234 —0.1682688 —0.0734847 —3.3(-6)
2500  -0.2466014 0.0863705 —0.1683480 -0.0689257 -5.1(-6)
2,625  -0.2900189 0.1292561  -0.1697603 -0.0628660 —3.7(-6)
2.750  -0.4111460 0.2468319  -0.1735777 —-0.0556895  1.3(-6)
2900  —0.8885486 0.7131977 -0.1846863 —0.0431693  7.4(-6)
3.000 -1.7230149 1.5332348  —0.2001394 —0.0295062  3.2(-6)
3.050 —2.3612874 2.1613619 —0.2116850 —0.0200779 —2.1(-6)
3.100  -3.0499390 2.8379566  —0.2260603 —0.0087302 —5.6(-6)
3.150 -3.5648001 3.3395418  —0.2426247 0.0040418 —1.2(-6)
3.200 -3.6607205 3.4222607 -0.2597756 0.0170402  7.9(-6)
3300 —2.6610613 24017673  —0.2879108 0.0379024 —7.3(-6)
3350  -2.0145710 1.7488409  -0.2966649 0.0442161  1.7(-6)
3.500  -0.8513577 0.5787460 —0.3049550 0.0497455 -5.7(-6)
3.750  -0.3979030 0.1323681 —0.2927160 0.0407324 —5.2(-8)
4.000 -0.3182442 0.0658013  —0.2744055 0.0286684 —1.8(-6)
4200  -0.2948685 0.0533061 —0.2606282  0.0203057  7.9(-6)
4300 —0.2867201 0.0503626 -0.2543534 0.0166954 —4.3(-6)
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Table 2 - continued
4.350 —-0.2830812 0.0492416 02513825 0.0150325 -6.0(-7)
4.400 -0.2796533 0.0482667 —0.2485248 0.0134622 -4.2(-6)
4.450 -0.2764002 0.0473962  —0.2457775 0.0119777 -1.6(-6)
4.500 -0.2732889 0.0465986  —0.2431417 0.0105798 -2.3(-6)

4.600  —0.2674348 0.0451521  -0.2381913  0.0080265  3.9(-6)
4750  -0.2594209 0.0431903  —0.2315358 0.0047496 -6.8(~7)
5.000  -0.2477945 0.0402020 -0.2222808 0.0005396  2.4(-6)

5250  -0.2380820 0.0374813  -0.2149687 -0.0024383 -2.8(-6)
5.500  -0.2300557 0.0350483  —0.2092101 -0.0044987 -2.1(-6)
5750  -0.2234685 0.0329114  -0.2046771 -0.0058856 —2.4(-6)
6.000  -0.2180621 0.0310407 —0.2010997 -0.0067832 —2.8(-6)
6.500  ~0.2100193 0.0280768 -0.1960138 —0.0076176 -7.7(-7)
7.000  -0.2046584 0.0260305  —0.1927722 -0.0077040 -3.2(-6)

8.000 -0.1993553 0.0245875 —-0.1893611 -0.0069124  5.4(-6)
9.000 -0.2004066 0.0277029 —0.1882512 -0.0056460 -3.9(-7)
10.000 -0.2104451 0.0386223 —0.1888564 —0.0041058 -2.7(-6)
12.000 -0.2474153 0.0707733  -0.1956154 -0.0003236  2.2(-6)
15.000 -0.2516821 0.0517939 —0.2058240 0.0003343 5.6(-6)
20.000 -0.2084313 0.0003027 -0.2083102 -0.0000701 1.5(-6)
500 ]
01}
400} -
b E 0.2r
£ 300 5
g W 03 .
W’ 200! 8 "
< W 04 2
100 ”‘v \ o ) ] 05}
0 . . . N N X . N X 06L . e . N .
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Ria, R/a,

Fig. 3. Differences in the adiabatic correction of 'H,

Fig. 2. Adiabatic correction of"H,
obtained from ECG and KW wave functions

The optimized electronic wave functions were used to calculate the expectation values of
the second derivatives over the nuclear coordinates according to (9). The results are listed in
Table 2, along with the off-diagonal expectation values obtained from an analogous equation.
The coefficients m in the last column are measures of the inaccuracies introduced by the nu-
merical differentiation (see Eq. (10)) and —log,, |n| roughly corresponds to the number of
exact significant digits in the results calculated at a given value of R. The adiabatic corrections
calculated from Eq. (8) are listed in Table 3 for all six isotopomers ofthe hydrogen molecule
and presented graphically (for H,) in Fig. 2. Judging from the very high quality of
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Table 3. The adiabatic correction curves (in cm™) for 6 isotopic species. The following nuclear masses
were used (in units of electron mass): M(H) = 1836.153, M(D) = 3670.483, M(T) = 5496.921.
The conversion factor 1 Ey = 219474.631 cm™ has been used throughout the table

R/bohr H, HD HT D, DT T,
0.010 128.893 96.686 85.974 64.49 53.767 43.055
0.125 132.961 99.737 88.687 66.513 55.463 44.413
0.250 133.609 100.223 89.119 66.838 55.734 44.630
0.500 123.067 92316 82.088 61.564 51.336 41.108
0.750 109.198 81.912 72.837 54.626 45.551 36.476
1.000 97.115 72.848 64.777 48.582 40.511 32.440
1.250 87.481 65.621 58.351 43.762 36.492 29.221
1.500 80.008 60.016 53.366 40.024 33374 26.725
1.600 77.537 58.163 51.719 38.788 32.344 25.900
1.700 75.334 56.510 50.249 37.685 31.425 25.164
1.750 74.327 55.755 49.577 37.182 31.005 24.828
1.800 73.383 55.046 48.947 36.710 30.611 24.512
1.900 71.679 53.768 47.811 35.857 29.900 23.943
1.910 71.522 53.650 47.706 35.779 29.835 23.891
1.920 71.368 53.535 47.604 35.702 29.771 23.839
1.950 70.921 53.200 47.306 35.478 29.584 23.690
2.000 70.229 52.681 46.844 35.132 29.295 23.459
2.100 69.057 51.801 46.062 34.545 28.806 23.067
2.200 68.221 51.174 45.504 34.127 28.458 22.788
2.300 67.842 50.890 45.251 33.938 28.300 22.661
2.400 68.169 51.135 45.470 34.101 28.436 22.771
2.500 69.721 52.300 46.505 34.878 29.084 23.289
2.625 75.249 56.446 50.192 37.643 31.389 25.136
2.750 90.639 67.991 60.458 45.342 37.809 30.277
2.900 150.359 112.788 100.292 75.217 62.721 50.225
3.000 253.796 190.379 169.286 126.961 105.869 84.776
3.050 332.849 249.678 222.016 166.507 138.845 111.183
3.100 418.600 314.002 279.213 209.404 174.615 139.826
3.150 484.101 363.136 322.903 242.171 201.938 161.706
3.200 499.666 374.812 333.286 249.957 208.431 166.905
3.300 386.903 290.226 258.071 193.548 161.393 129.238
3.350 311.721 233.830 207.923 155.938 130.032 104.125
3.500 174.665 131.020 116.504 87.376 72.860 58.344
3.750 117.538 88.168 78.400 58.798 49.030 39.261
4.000 103.639 71.742 69.129 51.845 43.232 34.619
4.200 97.551 73.175 65.068 48.800 40.693 32.585
4.300 95.077 71.320 63.418 47.562 39.661 31.759
4350 93.932 70.461 62.654 46.989 39.183 31.376

4.400 92.839 69.641 61.925 46.443 38.727 31.011
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Table 3. - continued

4.450 91.793 68.856 61.228 45919 38.291 30.662
4.500 90.791 68.105 60.559 45418 37.873 30.327
4.600 88.908 66.692 59.303 44.476 37.087 29.698
4.750 86.359 64.780 57.603 43.201 36.024 28.847
5.000 82.757 62.078 55.200 41.399 34.521 27.644
5.250 79.848 59.896 53.260 39.944 33.308 26.672
5.500 77.512 58.144 51.702 38.775 32.333 25.892
5.750 75.641 56.740 50.454 37.839 31.553 25.267
6.000 74.140 55.614 49.452 37.088 30.927 24.765
6.500 71.962 53.981 48.000 35.999 30.018 24.038
7.000 70.547 52.919 47.056 35.291 29.428 23.565
8.000 69.097 51.832 46.089 34.566 28.823 23.081
9.000 68.958 51727 45.996 34.496 28.765 23.034
10.000 70.302 52.735 46.893 35.169 29.326 23.483
12.000 76.337 57.262 50.918 38.188 31.843 25.499
15.000 79.288 59.476 52.886 39.663 33.074 26.485
20.000 74.712 56.043 49.834 37.375 31.165 24.956

the electronic wave functions and from the fact that the numerical differentiation affected
the expectation values at most at the sixth significant digit, we believe that all the numbers in
Table 3 are exact, possibly with the exception of the Ilast digit in the cases where
the corrections have exceptionally large values. In the ground state of H,, where a careful error
analysis has been performed [25], a 600-term ECG wave function yields a relative accuracy of
10°°. The behavior of the adiabatic correction mirrors that of the electronic wave function,
which is most clearly pronounced in the region between 3.0 and 3.5 bohr. Because of the
avoided crossing between the diabatic E and F states, the BO function rapidly changes its
character, which causes large values of the derivatives over the nuclear coordinates.

The difference between the present adiabatic corrections for the H, isotopomer and
the results of Orlikowski et al. [8, 29] is presented in Fig. 3. It reaches its absolute maximum
value of 0.4 cm™ where the correction itself reaches the maximum. Since we estimate
the error of our results as much less than 0.4 cm™', these discrepancies are probably due to
the fact that the wave functions used in Ref. [8] were less accurate.

Table 4 contains the expectation values of the relativistic operators (14)-(17) and
the relativistic corrections calculated both from the DPT expression (11) and from the BP
theory, the latter choice corresponding to the neglect of A,,, in Eq. (11). The quantities
depending on the electron-nucleus coalescence, described by operators (14) and (16), are
known to converge very poorly in Gaussian basis sets. Indeed, a comparison with previous
results obtained with the KW wave functions [7, 30] reveals an agreement in only 3 to 4

significant digits, and there is no doubt that the expectation values calculated by Wolniewicz



Table 4: The relativistic corrections and their components

Exponentially Correlated Gaussian Functions in Variational Calculations

R () (i1, (A1,) (75) E,(BP)  E,(DPT)
bohr a.u. a.u. a.u. a.u. ey cm™
0.000 -10.275860 —0.009255  8.196487  0.054871 —23.7692 —23.7694
0.010 -10.100664  —0.009251  8.026765  0.054404 —23.7106 —23.7110
0.125 —7.902042 —0.009015  6.144947  0.051470 —20.0395 —20.0396
0.250 —5.951883 —0.008511  4.602686  0.045635 —15.3346 —15.3347
0.500 —3.607864 —0.007346  2.805998  0.033842 -9.0620 -9.0620
0.750 -2.423061 —0.006301 1.905735  0.024923 ~5.8285 -5.8285
1.000 —1.769578 —0.005446  1.406808  0.018600 —4.0861 —4.0861
1.250 —1.379315 -0.004763 1.106149  0.014071 —3.0838 -3.0838
1.500 -1.131757 —0.004227 0913375  0.010734 —2.4762 —2.4763
1.600 —1.058365 —0.004049  0.855742  0.009637 -2.3028 -2.3028
1.700 —-0.995795 —0.003892  0.806357  0.008646 —2.1585 —2.1585
1.750 —0.968003 —0.003821  0.784332  0.008184 -2.0956 —2.0956
1.800 —0.942254 —0.003755  0.763868  0.007743 -2.0382 —2.0382
1.900 ~0.896367 —0.003638  0.727240  0.006915 -1.9383 —1.9383
1.910 —0.892154 —0.003627  0.723865  0.006835 —-1.9293 —-1.9293
1.920 —0.888005 -0.003617  0.720540  0.006757 -1.9205 -1.9205
1.950 —0.875931 —0.003587  0.710847  0.006524 —1.8951 —-1.8951
2.000 —0.856999 —0.003542  0.695604  0.006148 —1.8558 —-1.8558
2.100 —0.823290 —0.003468  0.668305  0.005432 —1.7884 —-1.7884
2.200 —0.794566 -0.003419  0.644818  0.004755 —-1.7345 —1.7345
2.300 ~0.770360 —0.003397  0.624777  0.004108 -1.6932 —-1.6931
2.400 —0.750352 —0.003404  0.607914  0.003482 —1.6638 -1.6638
2.500 -0.734452 ~0.003446  0.594120  0.002868 -1.6469 —1.6469
2.625 —0.720680 -0.003546  0.581343  0.002114 —1.6452 —-1.6452
2.750 —0.715187 —0.003684  0.574459  0.001396 -1.6715 -1.6715
2.900 —0.725319 -0.003759  0.577713  0.000781 —1.7599 ~1.7599
3.000 —0.749016 —0.003454  0.591321  0.000939 ~1.8724 —1.8724
3.050 —0.768078 —0.003034  0.602991  0.001428 —1.9482 —~1.9482
3.100 -0.792070 —0.002341  0.618018  0.002346 —2.0341 —2.0342
3.150 —0.819595 -0.001352  0.635547  0.003779 —2.1227 —2.1227
3.200 —0.847693 —0.000135  0.653690  0.005698 -2.2024 —2.2024
3.300 —0.892246 0.002290  0.683129  0.010232 —2.2977 -2.2978
3.350 —0.905309 0.003183  0.692119  0.012400 —2.3095 —2.3095
3.500 —0.914323 0.004218  0.699942  0.017353 —2.2534 ~2.2534
3.750 —0.884261 0.002962  0.683238  0.021458 —2.0640 —2.0640
4.000 ~0.841711 0.000840  0.657172  0.023016 -—1.8780 —1.8780
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Table 4 - continued

4.200 —0.808528 —0.000762  0.636130  0.023397 -1.7503 -1.7503
4.300 —0.793045 —0.001481 0.626148  0.023414 —-1.6942 -1.6942
4.350 —0.785636 —0.001817  0.621338  0.023390 —1.6681 —1.6680
4.400 —0.778464 —0.002137  0.616664  0.023349 —1.6431 —1.6431
4.450 —0.771541 —0.002442  0.612136  0.023291 -1.6194 -1.6194
4.500 —0.764855 —0.002731 0.607744  0.023218 —-1.5968 —1.5968
4.600 —0.752203 —0.003265  0.599386  0.023039 —1.5549 —1.5549
4.750 —0.735018 —0.003960  0.587936  0.022702 —-1.4999 —1.5000
5.000 —0.710848 —-0.004864  0.571636  0.022023 —-1.4265 —1.4265
5.250 —0.691608 —0.005507  0.558472  0.021273 -1.3718 -1.3718
5.500 —-0.676470 —0.005945  0.5479659  0.020506 -1.3317 -1.3316
5.750 —0.664631 -0.006225  0.539633  0.019744 -1.3029 -1.3029
6.000 —-0.655429 —0.006384  0.533047  0.019015 —-1.2827 -1.2827
6.500 —0.642814 —0.006448  0.523749  0.017656 —1.2606 —-1.2606
7.000 —0.635398 -0.006290  0.517929  0.016439 —1.2543 -1.2543
8.000 -0.629080 -0.005596  0.511851 0.014272 -1.2687 —1.2685
9.000 —0.629647 -0.004537  0.510187  0.012053 —-1.3083 -1.3083
10.000 —0.635176 -0.003064  0.511067  0.009521 -1.3750 -1.3750
12.000 —0.662412 0.000724  0.521311 0.003353 -1.6014 -1.6014
15.000 -0.710661 0.000726  0.550702  0.000159 -1.8591 —-1.8592
20.000 —0.725792 0.000008  0.561763  0.000001 -1.9170 -1.9170

are more accurate than ours, because the KW wave functions describe properly the electron-
nucleus and electron-electron cusps. However, the big advantage provided by the DPT is
the fact that the total correction, E, (DPT), has usually much smaller error than its
components, because it is an expectation value of a global operator. Indeed, the values of
E, (DPT) are very close to that reported by Wolniewicz [7, 30], the difference being in
mosteases smaller than 0.001 cm" and reaching the maximum value of 0.0033 cm’ at
R= 1.0 bohr, where the result that can be extracted from the data given in Ref. [30] amounts
to -4.0828 cm™. It is rather hard to find out which results are more accurate without
performing a detailed convergence analysis, but it is worth noting that the expectation value of
(15), fast convergent in the ECG functions, is actually the least accurate of the four relativistic
expectation values in some reported calculations involving the KW functions [23], apparently
because of the numerical problems caused by the necessity to use series expansions [7], In
some cases, the agreement between the expectation values of (15) from Table 4 and those in
Ref. [30] hardly reaches one significant digit, for example our value of 0.000726 versus
Wolniewicz's 0.000660 at R = 15.0 bohr. In the ground state of H, [23], a 600-term ECG wave
function yields more than 5 significant digits of accuracy and it is rather unlikely that
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the values in the third column of Table 4 are much less accurate. This discrepancy between
the present results and those in Ref. [30] does not cause significant differences in the total
relativistic corrections, because the expectation values of (15) are fairly small in the EF state.
The fact that the last two columns of Table 4 are almost indistinguishable seems to
contradict the superiority of the DPT and question the purpose of calculating the DPT term
(12). However, this near-equality of DPT and BP results is not a general behavior, but rather
a manifestation of an interesting phenomenon first observed and explained in Ref. [23], In
the special case of Gaussian functions with all linear and nonlinear parameters completely
optimized, the errors of expectation values of (14) and (16) cancel to a large extent and
the term (12) vanishes even for a finite basis set expansion. The value of (12) is in such cases
determined more by the quality of the nonlinear optimization than by the overall accuracy of

the wave function.

4. CONCLUSIONS

The results presented in this work represent the current most accurate adiabatic curve of
the EF state of the hydrogen molecule. The obtained relativistic corrections have, for all
practical purposes, the same accuracy as those obtained from the Kotos-Wolniewicz expan-
sions, despite the well-known deficiencies of the Gaussian functions in describing the electron
density in the close vicinity of the nuclei. The Born-Handy approach to adiabatic corrections
with numerical computation of derivatives over nuclear coordinates, as introduced in Ref.

[25], proved very efficient and sufficiently accurate even in the cases where the adiabatic

corrections reach several hundreds of cm™.
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