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Abstract: Monte Carlo simulations of the fcc phase of polydisperse hard spheres near close packing are reported. An
experimental equation of state (EoS) is determined numerically in the NpT" ensemble with variable shape of the periodic box.
The close packing volume extrapolated from the obtained data shows a good agreement with earlier experiments performed
by other methods. A new theoretical EoS, based on the free volume approximation, is proposed. The modified EoS fits
experimental data for polydisperse hard spheres better than the approximation used before.
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I. INTRODUCTION

Hard spheres, interacting through a hard potential, being
infinity when any particles overlap and zero without any over-
lap, constitute one of the simplest models of various physical
systems, like dense gases, simple liquids, glasses, amorphous
metals, etc. The model of monodisperse (equidiameter) hard
spheres has been extensively studied for more than fifty years
and its thermodynamic and structural properties are well es-
tablished [1-13]. In particular, it is known that monodisperse
hard spheres exhibit the melting transition [1,2,5] and their
thermodynamically stable solid phase corresponds to the face
centered cubic (fcc) crystalline phase [8—11].

In some materials, like colloidal suspensions [14], the
particles are not identical but exhibit some size distribution
around the average size, called polydispersity. To model them,
polydisperse hard spheres are used [14, 15]. The influence
of polydispersity on the phase behavior of hard spheres has
been investigated by experiments [15—18], computer simula-
tions [19-24], density functional theories [25,26], and simpli-
fied analytical approaches [22,27-32]. Thermodynamic prop-
erties [33], elastic properties [34], and structure of crystals

of hard colloidal spheres [24,35,36] have been investigated.
Recently, it has been shown that also in the case of polydis-
perse hard spheres (like for monodisperse hard spheres), the
fce structure is more stable than any hexagonal close packing
(hep) structure [37].

In the present paper the fcc crystal of polydisperse hard
spheres is considered. The aim of the investigations is twofold.
First, the EoS of the studied system is simulated near close
packing in order to determine the close packing volume (CPV).
The CPV of polydisperse hard spheres in the fcc crystalline
phase is determined as a function of the size polydispersity.
Second, an extension of the EoS obtained within the free
volume approximation (FVA) [3, 4] for monodisperse hard
spheres is proposed for description of the EoS of polydisperse
hard spheres. It should be added here that the FVA is a kind
of a mean field theory in which the configurational partition
function of the system is approximated by a product of config-
urational partition functions of individual spheres moving in
cages formed by their neighbours frozen in their site (average)
positions. The applicability of the proposed EoS to the studied
system is verified and compared with the version of the EoS
known in literature [31,32].

The paper is organized as follows. In Sec. II simulation
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details are described. In Sec. III the results of the simulations
are discussed. Finally, conclusions are presented in Sec. IV.

II. PRELIMINARIES

I1. 1. Simulation details

All simulations were done for the fcc crystal of polydis-
perse hard spheres in the NpT ensemble. The initial configu-
rations corresponded to sphere centres forming an ideal fcc
lattice occupying a cubic box of side 4n x v/2aq (ag is the
nearest-neighbor distance) with periodic boundary conditions.
Typical simulations were done for systems of N=256 parti-
cles, i.e. for n = 4. Typical lengths of the runs were equal
107 trial steps per particle (cycles), after equilibration. Some
test runs performed for larger /V did not reveal any systematic
errors exceeding the simulation errors. Therefore, one can ex-
pect that the data obtained for N = 256 should approximate
the thermodynamic limit with reasonable accuracy.

Remark: The runs performed in this work are much longer
than standard runs necessary to determine the EoS. The rea-
son is that during these runs not only the EoS but also elastic
properties of the system were determined. The latter are the
subject of a separate work.

10 T T T T T T

8_

p(0)

Fig. 1 Typical size distribution obtained for a system consist-
ing of N = 256 spheres with polydispersity § = 0.05; 10
different initial structures were simulated.

At the beginning of each simulation run the diameters o;
of the spheres centered on sites of an ideal fcc lattice were
generated with a size distribution of a given polydispersity
parameter, . (In further discussion, the indices ¢ enumerating
spheres are neglected. The initial lattice constant was chosen
in such a way as to avoid overlaps of the spheres.) The poly-
dispersity parameter was defined as the standard deviation of
the particle size distribution, divided by the mean diameter of
the particle (o)
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The particle size distribution, p(o), was the Gaussian one [20,
22]

5= (1

@

_(02—62@)2} '

plo) = 5\/1% exp [

To obtain reasonable statistics, simulations of a given
phase point were performed at least for 10 different initial
structures (i.e. distributions of sphere diameters on the lattice
sites) and then average values of volume and density were
computed. The typical size distribution obtained during a
simulation using the above mentioned procedure is shown in
Fig.1.

The terminus polydispersity, i.e. the polydispersity above
which no fluid-solid coexistence and no crystallization can
occur [38] for the hard polydisperse spheres, is about 0.07.
That is why the simulations discussed in this paper were per-
formed within the range 0 < ¢ < 0.06, where the solid phase
of polydisperse spheres is stable and well defined.
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Fig. 2 The inverse pressure dependence of the relative volume
for polydisperse hard sphere systems at a few polydispersities.
The lines are polynomial fits to the data points.

I1. 2. Definitions and dimensionless quantities

The volume corresponding to the most dense packing of
hard bodies is called close packing.

The simulations were performed using the following di-
mensionless variables. The reduced volume of the hard sphere
system is defined as v* = V/Vop where V is the volume
of the system and Vop = No3 / V2 is the volume of N
monodisperse hard spheres of diameter o at close packing.
The reduced volume of the polydisperse hard spheres is de-
noted by v*(§) = V/V2p where Vp is the volume of N
polydisperse hard spheres of the polydispersity parameter &
at close packing. The dimensionless pressure in polydisperse



Free Volume Approximation and Equation of State for the fcc Phase of Polydisperse Hard Spheres 61

system is p* = p(o)3/kT, where k is the Boltzmann constant
and T is the temperature, and (o) = o for the monodisperse
system. The packing fraction is defined as ¢ = w(o)3N/6V
and its maximum value corresponds to the volume at close
packing.

III. RESULTS AND DISCUSSION

II1. 1. Close packing

At any positive temperature 7' the close packing can be
reached only at infinite pressure p. Thus, the practical way
of determinig the close packing volume is by taking the limit
1/p—0.
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Fig. 3 The reduced close-packing volume of the polydisperse
hard sphere system as a function of polydispersity. The line
represents a fit to the data described by eq.(3).

In order to determine the close packing volume Vg p for
given polydispersity ¢ and to calculate the maximum packing
fraction (¢pa = 7Vop/ 3\/§VC5 p) as a function of polydis-
persity, one can extrapolate to zero the dependence of the
relative volume of the studied system on the inverse pressure,
see Fig. 2. It can be seen in Fig.2 that the close-packing
volume grows with increasing polydispersity. The values of
the close packing volumes Vg p were determined from linear
extrapolations done for 5 highest density points in Fig.2. The
dependence of the reduced close packing volume on polydis-
persity is shown in Fig. 3. This dependence is well described
by the following formula
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Fig. 4 Maximum packing fraction versus polydispersity for
the fcc phase. Results of the present work are marked by open
squares. Small circles represent results of simulations done in
Ref. [20].

0.06

In Fig. 4 the maximum packing fraction is presented as
a function of polydispersity. To check the reliability of the
simulations performed in this work, the obtained results are
compared with the literature data [20]; a good agreement can
be seen.

II1. 2. EoS

The EoS of hard sphere solids is well approximated by
the free volume theory which predicts the following asymp-
totic dependence of the pressure, p, on the volume of the
system [3,4, 13]

a kT a kT
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where a = 3v/2.

The free volume theory for polydisperse hard sphere sys-
tem was proposed by Xu and Baus [31] and used by Huang
and Xu [32] in a study of three-component mixtures of hard
spheres. The EoS of the hard sphere solids obtained within
this approximation was written [31,32] in the form

p kT
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where p = N/V is the number density. In Fig. 5, the results
of the MC simulations performed in this work are compared
with the theoretical approximation (5), see dashed lines. As
expected, the agreement between the experiment and theory
is good at high pressures.
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Fig. 5 The equation of state of polydisperse hard spheres. The
dashed lines correspond to eq.(5). The solid lines correspond
to eq.(6).

It can be seen, however, in the same figure (Fig. 5) that at
lower pressures the dashed lines show worse agreement with
the MC data than continuous lines. The latter represent the
equation below

P = prv(0)? _ a(d) a(9)

kT V/Vip —1 -
where a(0) is presented in Fig. 6 and approximated by the
equation a(d) = 2.7013 + 1.5353/(1 + 1249).
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Fig. 6 Dependence of the coefficient a(d) on the polydisper-
sity. The line represents the fit to the data described in the
text.

Comparing (4) and (6), and taking into account the def-
inition (3), one can see that (6) is obtained by replacing the
close packing volume V¢ p of equidiameter hard spheres in
the formula (4) by Vg p for the studied polydispersity J and
making the coefficient ¢ a function of the polydispersity a(9).
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Fig. 7 Log-log plot of pressures of the polydisperse hard
sphere system as functions of the ‘excess’ volume V'/ VC‘S p—1
for various §. The solid line corresponds to the equation of
state given by eq. (6).

It can be easily checked that for monodisperse hard
spheres both (5) and (6) have the same asymptotics at the
close packing limit but differ at lower densities. The data
in Fig. 6 were extracted from fits to simulation results using
eq. (6) for each polydispersity, see Fig. 7.

Remark: The EoS described by (6) is based on the results
obtained for systems of N = 256 particles. In the thermo-
dynamic limit (i.e. when N — oc0) the values of the close
packing volume Vg p of polydisperse spheres can be slightly
different. However, this may affect only the values of v*(9)
and coefficients a(J) but not the form of the equation (6).

IV. SUMMARY AND CONCLUSIONS

The equation of state of the fcc polydisperse hard sphere
crystals was determined by Monte Carlo simulations in the
NpT ensemble with a variable shape of the periodic box. The
obtained results are in good agreement with earlier literature
data obtained by other methods [20]. The dependence of
the close packing volume of polydisperse hard spheres on
polydispersity was determined and approximated by a poly-
nomial fit. The EoS, described by (6), has been proposed for
polydisperse hard spheres, obtained by generalization of a
variant of FVA for monodisperse hard spheres. The new EoS
describes the simulation data better than the approximation
(5) used earlier.
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