
COMPUT METH SCI TECH 19(1) 25-33 (2013)

Solving RFIC Simulation Tasks Using GPU Computations

Mihail-Iulian Andrei1, Sebastian Kula2

1Politehnica University of Bucharest, Electrical Engineering Faculty, Numerical Methods Laboratory, LMN
Splaiul Independentei 313, 060042 Bucharest,Romania

E-mail: iulian@lmn.pub.ro
2Kazimierz Wielki University, Institute of Mechanics and Applied Computer Science

ul. Kopernika 1, 85-074 Bydgoszcz, Poland
E-mail: skula@ukw.edu.pl

(Received: 12 November 2012; revised: 19 February 2013; accepted: 19 February 2013; published online: 14 March 2013)

Abstract: New generation of General Purpose Graphic Processing Unit (GPGPU) cards with their large computation
power allow to approach difficult tasks from Radio Frequency Integrated Circuits (RFICs) modeling area. Using different
electromagnetic modeling methods, the Finite Element Method (FEM) and the Finite Integration Technique (FIT), to model
Radio Frequency Integrated Circuit (RFIC) devices, large linear equations systems have to be solved. This paper presents the
benefits of using Graphic Processing Unit (GPU) computations for solving such systems which are characterized by sparse
complex matrices. CUSP is a GPU generic parallel algorithms library for sparse linear algebra and graph computations
based on Compute Unified Device Architecture (CUDA). The code is calling iterative methods available in CUSP in order to
solve those complex linear equation systems. The tests were performed on various Central Processing Units (CPU) and
GPU hardware configurations. The results of these tests show that using GPU computations for solving the linear equations
systems, the electromagnetic modeling process of RFIC devices can be accelerated and at the same time a high level of
computation accuracy is maintained. Tests were carried out on matrices obtained for an integrated inductor designed for
RFICs, and for Micro Stripe (MS) designed for Photonics Integrated Circuit (PIC).
Key words: GPGPU computing, iterative methods, Radio Frequency Integrated Circuits, Photonics Integrated Circuits

I. INTRODUCTION

Emergence of the CUDA technology and TESLA series de-
vices in 2006 opened new perspectives for computational and
engineering science. NVIDIA’s Tesla architecture, first introduced
in the GeForce 8800 GPU, unifies the vertex and pixel processors
and extends them, enabling high-performance parallel computing
applications written in the C language using CUDA [1]. TESLA
is one of the first dedicated GPGPU. High computational power,
multicore structure and relatively large Random Access Memory
(RAM) make TESLA GPU cards an alternative for classical CPUs.

There are many applications that could not be run, because
their requirements imply high execution time and high hardware
resources like large quantity of memory, fast CPU or high speed
interconnect.

Using the parallel computing provided by GPGPUs, along
with distributed computing provided by clusters or supercom-
puters, very fast hybrid algorithms can be developed. The
hybrid algorithm achieves an average speedup of 30% com-
pared to a pure GPU algorithm thereby indicating the benefits
of the hybrid approach [2]. This means that the development
of classical computers into high performance computers, and
sequential algorithms into parallel hybrid algorithms, gives a
possibility to approach high complexity applications. A new
concept is introduced as parallelism. The task of applying par-
allel or distributed computing refers to the parallelization of
the sequential algorithm. In order to use parallel computing,
the algorithm has to fulfill certain conditions. The main and
the most important condition is that the operations must be
independent. Therefore a preliminary analysis must be carried

26 Mihail-Iulian Andrei, Sebastian Kula

out in order to identify the step of the sequential algorithm
that requires the use of the parallel computing.

Solutions based on the parallel computing are the answer
for challenges facing the academic world, but also engineering
problems from the industry area. Integrated circuits working
in high frequency (HF) are used in many of today’s products
such as mobile computer networks, mobile devices, fiber net-
works, sensors, and wires computer networks. Applications of
these devices are very broad, therefore the design process re-
quires high specialization and special care. The operation fre-
quencies, bandwidths and data capacities of communications
systems are continuously increasing by employing advanced
technologies and aggressive scaling of device dimensions [3].
However, the restrictions inherent in scaling make the design
of RFICs a demanding task. Therefore the design, modeling
or simulation process in the HF has to include electromag-
netic (EM) field effects, but this leads to a more demanding
computational power.

In this paper we present some techniques regarding the use
of the GPU computing for acceleration of the electromagnetic
modeling methods used in RFICs.

II. ELECTROMAGNETIC MODELING METHODS
(FIT and FEM)

The electromagnetic process presented in [4] has two im-
portant steps. The first one is the generation of the state space
model, and the second one is the extraction of the reduced
order model.

The presented method is using the Finite Integration Tech-
nique (FIT) which is the name of a class of numerical methods
dedicated to find solutions of field problems in various physic
areas based on spatial discretization. The name of the Finite
Integration Technique (FIT) was proposed by Thomas Wei-
land from the Technical University of Darmstadt, Germany
[5].

The process, in order to generate the state space model,
consists of the continuous model description and continuous
model discretization. Extraction of the continuous model is
based on Maxwell equations for the electromagnetic elements.
In order to discretize the continuous model the FIT method
was used [5]. The discretized FIT model is assembled as a
semi-state space model presented in Eqs.(1). Details on using
the FIT in this concept are given in [6].{

C
dx

dt
+Gx (t) = Bu(t)

y(t) = Lx (t)
(1)

u = [v i]T , x = [ve vm]T

where v is the electric voltages, i the electric current, ve the
electric voltages defined on the electric grid and vm is the
the magnetic voltage (also called the magnetomotive force)

defined on the magnetic grid [6]. The concept of magnetic
voltage is applicable in quasi-magnetic fields when the rate
of change of electric field normal to the subsystem energy
boundary is negligible. Grids are necessary to solve the elec-
tromagnetic simulation problem, the structure of the device
has to be spatially discretized by a grid division of the compu-
tational domain. The geometrical model mesh (grid) is based
on a dual, orthogonal grid, one for the electric and one for
the magnetic characteristics of the electromagnetic field. The
matrices C, G, B, L are semi-state space matrices. The C and
G are matrices with very sparse structures, and B and L are
topological matrices with a sparse structure as well. The C
matrix contains mainly different types of capacitances, and
the G matrix – mainly different types of conductances, B is
the matrix that relates the input vector u to the state x, and L is
the matrix that links those inner states to the outputs y, more
at [7]. The resulted model contains sparse, large, complex
and unsymmetrical matrices (Fig. 5).

For a new test the state space model will be generated
using the commercial software COMSOL (linked with MAT-
LAB) based on the Finite Element Method (FEM). This model
has a similar formulation with the previous one:MC

dx

dt
= MAx+MBu

y = Cx
(2)

where MC is the mass matrix and MA is the stiffness matrix
[8]. The matrices contained by this model are still sparse and
complex, but with improved conditioning due to the distribu-
tion of nonzero elements, which is diagonally dominant and
close to a symmetrical matrix (Fig. 4).

The state space matrices obtained with the two methods
are used as input data for the second step of the electromag-
netic modeling process which is the extraction of the reduced
order model. This step will be described in the next section.

III. APPLYING PARALLEL COMPUTING

The extraction of the reduced order model is done by
using Adaptive Frequency Sampling by Vector Fitting (AFS-
VF) [4][9]. This is an accurate method for modeling passive
components of the high frequency integrated circuits.

The AFS-VF algorithm has steps of:

1. Generating the semi-state space model, in our case ob-
tained with two different methods: by FIT and FEM.

2. Choosing an initial set S of sampling frequencies in the
frequency range and flagging them as unmarked.

3. Choosing a set S’ of test sampling frequencies, inter-
leaved between the sampling frequencies and flagging
them also as unmarked.

Solving RFIC Simulation Tasks Using GPU Computations 27

4. Computing transfer function H(S) and H(S’) by solving
the system

y/u = H(ω) = L (G+ jωC)
−1

B (3)

for all unmarked frequencies in the sampling set S and
the test sampling set S’. Flag every entry in S and S’ as
marked when its associated system has been solved.

If we introduce

A = G+ jωC

b = B
(4)

it means that the linear system of equations (LSE) has
to be solved

A−1 · b = x (5)

Finally the transfer matrix will be computed as

H(ω) = Lx (6)

5. Computing the parameters using an interpolation an-
swer frequency by impoving the rational approximation

HVF =

q∑
i=1

Ki

jω − pi
+K∞ + jωK0

called Vector Fitting (VF). The order q is succes-
sively increased until the fitting error described by
the Frobenius norm ||H(ωk)-HV F (ωk)||/||H(ωk)||gets
smaller than the imposed threshold εV F .

6. Computing HV F (S’) using the parameters obtained in
step 5 and the relative error εi for each test frequency
ωi ∈ S’, where εi = ||H(ω’k)-HV F (ω’k)||/||H(ω’k)||.

7. If εi < εAFS for every test frequency in S’, then the
algorithm will stop. Otherwise, move all the test fre-
quencies from S’ to S and interleave a new set of test
frequencies in the new intervals thus created. Add the
new test frequencies to S’ and flag them as unmarked.

8. If no other stopping criteria are met, repeat from step 4.
Otherwise stop.

The analysis revealed that the main bottleneck of this algo-
rithm is Step 4 (Fig. 1) which involves the solving of several
large, sparse and complex linear systems (A*x = b). That is
why parallel versions of this algorithm were proposed in [10].

Fig. 1 AFS-VF algorithm

Numerical results revealed another important bottleneck
of those parallel versions. This bottleneck refers to the limita-
tion of the solver used in step 4. In this case the UMFPack is
used [11], a direct solver which requires a lot of memory for
solving such large linear systems. That is why the iterative
solvers have to be approached in order to test if it is possi-
ble to increase the size of the solving system which will be
equivalent to a larger problem (finer discretization grid).

IV. ITERATIVE SOLVERS OVERVIEW

Iterative solvers can be slow, because they need a lot of
iterations to find the solution. That is why the use of the
parallel computing is reasonable to speed up the process of
solution finding.

There are a lot of iterative methods, such as Conjugate-

28 Mihail-Iulian Andrei, Sebastian Kula

Gradient (CG), Biconjugate Gradient (BiCG), Biconjugate
Gradient Stabilized (BiCGstab), Generalized Minimum Resid-
ual (GMRES) and others [12][13]. The above-mentioned al-
gorithms of the iterative solvers revealed a lot of Basic Linear
Algebra Subprograms Level 2 (BLAS 2) operations (matrix-
vector operations). They in turn are involved for each iteration,
and since the iterations are not independent (the main require-
ment of the parallel computing), the only solution to apply
the parallel computing and to obtain a parallel iterative solver
is to use a parallel version of BLAS 2 operation for sparse
matrices.

One way to parallelize the matrix-vector operation is by
using CUDA programming on the GPU devices [14]. Due to
the fact that the A matrix of linear system (A*x = b) is sparse
and stored in different formats (COO, CSR, CSC, HYB [15]),
the performance of the parallel solver depends on the effi-
ciency of the algorithm used for matrix-vector operation, but
also depends on the specifications of the GPU card (CUDA
cores, Processor Clock, Memory Clock).

The aim of this work is to check the efficiency of us-
ing GPU computing along with iterative solvers. In order to
achieve this goal, a CUDA library, called CUSP library [16],
was used to access parallel iterative solvers based on the GPU
computations.

If every node of a computer cluster is equipped with a
GPU card, then the parallel approach of the AFS-VF algo-
rithm [4] can be used with the proposed parallel iterative
solvers. Unfortunately, our current cluster has only one GPU
card so for further test only the performances of the iterative
solvers will be presented.

V. CODE IMPLEMENTATION

Iterative solvers based on the GPU computing are available
inside Matlab. Two mex files were written in order to be able
to call real and complex solvers from the CUSP library and
to exchange data between Matlab workspace and GPU card
memory. The tree structure of the program is:

| -- cuda_programs

| | -- iterative_solver.m

| | -- matrix_conv

| | ‘-- csc2coo_matrix.m

| ‘-- solvers

| | -- solver_complex_mex.cu

| ‘-- solver_real_mex.cu

| -- main_test_script.m

| -- make_install.m

‘-- read_me_first.txt

• read_me_first.txt - file with install, uninstall and use
instructions;

• make_install.m - the installation file;

• main_test_script.m – the starting file with settings of
input data;

• solver_complex_mex.cu – the CUDA source file with
complex solvers, compilable under Matlab;

• solver_real_mex.cu – the CUDA source file with real
solvers, compilable under Matlab;

• csc2coo_matrix.m – a procedure that converts sparse
matrices from CSC to the COO format, because CUSP
solvers do not agree with the CSC format (only COO,
CSR, HYB, etc);

• iterative_solver.m – a m-file which calls the convert
procedure and selects the real or complex solver (de-
pending the matrix that is received).

In the code four iterative methods provided in the CUSP-
library were implemented. These four methods (GMRES,
GMRES with preconditioner, BiCGstab, and CG) are placed
in the code as functions, which can be called from the Matlab
workspace. The only differences between these functions in
the content of the code concern commands which are used to
call the GMRES, preconditioned GMRES, CG or BiCGstab
method. These commands in the CUDA programming lan-
guage and CUSP-library are presented below:

// solve the system with the GMRES
cusp::krylov::gmres(A, x, b, restart, monitor);
// solve the system with the preconditioned GMRES
// set preconditioner (identity)
cusp::identity_operator<ValueType_complex,

gpu_MemorySpace>
// solve
cusp::krylov::gmres(A, x, b,restart, monitor,M);
// solve the system with BiCGstab
cusp::krylov::bicgstab(A, x, b, monitor, M);
// solve the system with CG
cusp::krylov::cg(A, x, b, monitor, M);

Below is presented part of the code from the
solver_complex_mex.cu file. This part is the function for
the GMRES method with a preconditioner dedicated to solve
the linear system with sparse and complex matrices (complex
solver). The fragment of the code is the following:

// GMRES with PRECONDITIONER complex solver
/* solve system */

// set stopping criteria:
// iteration limit "no_it"
// relative tolerance "rel_tol"
// default_monitor - no information
// verbose_monitor - display information

cusp::default_monitor<ValueType_real>
monitor(b, no_it, rel_tol);

Solving RFIC Simulation Tasks Using GPU Computations 29

int restart = dimension;
mexPrintf("restart =%dtextbackslash n",

restart);

// set preconditioner (identity)
cusp::identity_operator<ValueType_complex,

gpu_MemorySpace> M(A.num_rows, A.
num_rows);

// solve the linear system A*x=b with the
GMRES

cusp::krylov::gmres(A, x, b,restart,
monitor,M);

/* default_monitor */
if (monitor.converged()){
std::cout << "Solver converged to " <<

monitor.tolerance() << " tolerance";
std::cout << " after " << monitor.

iteration_count() << " iterations";
std::cout << " (" << monitor.

residual_norm() << " final residual)"
<< std::endl;

}
else {
std::cout << "Solver reached iteration

limit " << monitor.iteration_limit()
<< " before converging";

std::cout << " to " << monitor.tolerance
() << " tolerance ";

std::cout << " (" << monitor.
residual_norm() << " final residual)"
<< std::endl;

}

/* save solution */
//saving solution under *x_res_re and *

x_res_im memory address
for (i=0;i<dimension;i++){
x_res_re[i] = x[i].real();
x_res_im[i] = x[i].imag();
}

VI. RESULTS

In order to validate the created code, which is dedi-
cated to solve the linear systems of a state space model,
the results of tests will be presented and discussed in this
section. Two types of tests were carried out on ATLAS
Cluster, serial computation (on CPU) and parallel computa-
tion (on GPU). ATLAS Cluster has the following hardware
configuration:

• CPU – node Psi, 2 x Intel Xeon i7 CPUs running at
2.66 GHz with 8 MB of cache memory, for a total of 8
cores per node, and 24 GB of RAM memory;

• GPU – NVIDIA Tesla C1060, 240 cores, 1.296 GHz
per core, 4GB of RAM memory.

Also serial and parallel computing tests were made on a classi-
cal PC containing a GPU card. PC has the following hardware
configuration:

• CPU – Intel Core2 Duo E7600 @ 3.06GHz, 2GB of
RAM memory.

• GPU – NVIDIA Tesla C2070, 448 cores, 1.150 GHz
per core, 6GB of RAM memory.

The (FEM) Ushape inductor tests were executed on the
ATLAS cluster and PIC (FIT) tests on a classical PC with a
GPU card.

The state matrices used to test the parallel solvers are
obtained with COMSOL (Finite Elements Method) for an
inductor (Fig. 2) and with prototype software developed in
LMN, called CHAMY (Finite Integration Technique) for
MS PIC (Fig. 3)[17]. The inductor depicted in Fig.2 is
made from Al and is placed in the structure which has three
layers: air, SiO2 and Si. The MS-type element from Fig. 3
has on the top metallization layer made from Au, and be-
low there is a dielectric layer made from benzocyclobutene
(BCB). Under BCB there is ground metalization made from
Au, and below an InP substrate. Three tests (FEM1 - Fig.
4a, FEM2 - Fig. 4b, FEM3 - Fig. 4c, PIC FIT1 - Fig. 5a,
PIC FIT2 - Fig. 5b, PIC FIT3 - Fig. 5c) were considered
for each method.

Both tests (FEM and PIC FIT) consist of a solution of
the LSE equation by using the created code. In the descrip-
tion of the AFS-VF algorithm it can be seen that the aim
is to compute the frequency response, meaning that matrix
A of system (A*x = b) is complex, so the tests will be ex-
ecuted only for the complex parallel solvers. Because the
matrix A has the same sparsity for every frequency, Figs.
4/5 are not frequency dependent. After the execution of test
(A*x = b), residual norm, R = (norm(b-A*x)/(norm(b))),
and speedup, S = Tsequential/Tparallel, are computed.

Fig. 2 Inductor problem, used for FEM tests

30 Mihail-Iulian Andrei, Sebastian Kula

Fig. 3 Micro Stripe line PIC problem, used for tests, where
w-width (of metallization), t-thickness (of metallization), h-
height (of BCB dielectric) [18]

Regarding the FEM tests (Table 1), DoFs are Degrees of
Freedom. In case of FIT discretization DoFs are physically
measurable global quantities as voltages, fluxes, currents and
charges on grid elements (edges, faces or cell volumes). In
FEM tests, three meshes (grids) with 7196, 11568 and 19486

number of DoFs were used. The maximum number of iter-
ation for parallel solvers was set hundreds of times bigger
than the maximum number of iterations for sequential solvers.
However, it can be seen that the parallel solvers obtained faster
the solution for the linear systems. While executing the tests,
it was also observed that the accuracy and performance of the
parallel solvers from the CUSP library strongly depends on
three factors: the required tolerance, the number of iterations
and the restart value. Due to that fact, before using these
solvers, some preliminary tests must be carried out in order
to set the best values for the parameters mentioned above.

Another important issue for these tests is the quantity of
memory needed, which was more than 4GB on CPU, and
less than 4GB on GPU. Therefore, the parallel solvers and
GPU card can be used also when the host computer does not
have a big quantity of memory. Using an improved tolerance
for parallel solvers, it is shown that a higher accuracy and a
smaller execution time can be obtained in comparison with
sequential solvers.

(a) FEM1 test (b) FEM2 test (c) FEM3 test

Fig. 4 Matrices A of FEM tests, (a) FEM1, (b) FEM2, (c) FEM3

(a) PIC FIT1 (b) PIC FIT2 (c) PIC FIT3

Fig. 5 Matrices A of PIC FIT tests, (a) PIC FIT1, (b) PIC FIT2, (c) PIC FIT3

Solving RFIC Simulation Tasks Using GPU Computations 31

Tab. 1 Numerical results for FEM tests

Problem FEM1 FEM2 FEM3
No. of DoFs 7196 11568 19486

GMRES

Results Time[s] Norm Time[s] Norm Time[s] Norm
Sequential
restart=50

5086 7.60e-2 11860 7.40e-2 26766 2.80e-2

Parallel
restart=50

62 9.10e-2 161 4.00e-2 452 3.80e-2

Speedup1 82 73 59
Parallel2

restart=5000
3165 7.30e-6 476 2.98e-5 15875 3.73e-6

Speedup2 1.6 24 1.7

Tab. 2 Numerical results for PIC FIT tests

Problem PIC FIT1 PIC FIT2 PIC FIT3
No. of DoFs 110 2104 3332

GMRES Results Time[s] Norm Time[s] Norm Time[s] Norm
Sequential 145 6.94e-11 210 5.15e-11 1459 3.70e-11
Parallel1

restart=50
11 0.99 2 0.99 5 1.00

Speedup1 13.63 116.90 316.92
GMRES restart=n k = 1

Parallel2
16 0.71 68 0.28 269 0.25

Speedup2 8.80 3.09 5.42
GMRES restart=2n
k = 2 Parallel3

58 8.85e-11 273 7.15e-11 1084 5.91e-11

Speedup3 3.04 0.77 1.35

Tab. 3 CPU memory usage for PIC FIT tests

Problem PIC FIT1 PIC FIT2 PIC FIT3
No. of DoFs 110 2104 3332

GMRES

Results Time[s] Norm Time[s] Norm Time[s] Norm
Sequential 0.19 6.94e-11 298.11 5.15e-11 2289.18 3.70e-11

Parallel
restart=2n

1.24 8.85e-11 1.58 7.15e-11 1.96 5.91e-11

Ms/Mp 0.16 188.90 1169.68

Regarding PIC FIT tests (Table 2) due to matrix A of
system (A*x = b) is very sparse, complex and ill-conditioned,
calculations were more demanding than in case of FEM tests.
To obtain rewarding results, regarding the computation time
and also accuracy, preliminary tests were conducted. These
tests consisted of checking different iterative solvers (GM-
RES, CG, BiCGstab) with and without preconditioners, as
well as changing values of three factors: the required toler-
ance, the number of iterations and the restart number.

For comparison purposes the sequential computations
were executed on CPU of the classical PC and parallel com-
putations were made on the GPU Tesla C2070 card which

was placed in this classical PC. Regarding sequential compu-
tations of PIC FIT for all tests the following factors were set:
the relative tolerance rel_tol=1e-9, the number of iterations
no_it=k*n (where n is the matrix dimension), the restart =n.

Preliminary tests of the parallel GPGPU computations
revealed that the LSE (A*x=b) was successfully solved with
the GMRES and the GMRES with an identity preconditioner
iterative solver. The rest of iterative solvers available in the
CUSP-library failed to calculate the x vector, which means
that the LSE was not solved. Due to that fact, the GMRES
method was used for further tests.

32 Mihail-Iulian Andrei, Sebastian Kula

Table 2 depicts the results of the sequential computations,
the parallel preliminary tests (with different values of factors)
and final results obtained after setting proper values of the
factors. Based on this table it has been observed that for
the same values of the factors (rel_tol=1e-9, no_it=k*n, k=1,
restart =n) which were set for the sequential and the parallel
computations, the parallel computations were running much
faster than the sequential one but the accuracy, defined as
a value of the residual norm, was extremely wrong compar-
ing to sequential accuracy. The perfect result for accuracy is
when the residual norm equals zero. To improve the accuracy
of the GPGPU computing, the number of iterations and the
value of restart were doubled to no_it=k*n, k=2, restart =2n.
With such values of parameters the accuracy of the parallel
computing in PIC FIT tests was just slightly worse than in the
sequential case. Better accuracy affected longer computation
time of GPGPU, which in case of PIC FIT2 test means longer
computation time for the GPU than for the CPU. However, it
can be observed that with an increase of the matrix dimension,
there is increasing computation accuracy, and also for PIC
FIT1 and PIC FIT3 tests the computation time is lower than
in the sequential computations even though values of factors
are twice bigger in the GPU than in the CPU computations. It
is expected that, as in FEM tests also in FIT tests, higher per-
formance of the GPU than in the CPU computations will be
seen for bigger matrices. Supremacy of the GPU will increase
with the increase of the matrix dimension.

Table 3 depicts CPU memory usage for PIC FIT tests. As
it was expected during the parallel computations, the CPU
memory usage is relatively small because mainly GPU mem-
ory is used. Due to that fact, the classical PC equipped with
the GPU card is a useful machine to solve relatively large
computation problems. Also, parallel solvers of the CUSP-
library are able to solve the linear systems that require a bigger
quantity of memory than the physical memory installed on the
GPU card, because memory that these implementations are
using to execute the dot product operation is the main RAM
memory.

VII. CONCLUSIONS

The solver is one of the most important components for
the modeling process, because the final results depend on its
accuracy. That is why the tolerance for parallel solvers tested
in this paper has to be adapted to the application in order to
obtain precise results and improved execution time.

Conducted FEM and FIT tests revealed that the parallel
computations with the use of the CUSP-library speed-up com-
putations for RFIC and PIC problems. From iterative methods
available in the CUSP-library, the best results were obtained
for the GMRES iterative solver. For the biggest matrices in
case of FEM tests the GPU achieved 1.7 times faster results of
matrix calculation, and in case of FIT tests 1.35 times faster

results of matrix calculation than during the sequential CPU
computations.

By using GPU cards the acceleration of computation was
achieved with the high level of accuracy. An important part
presented in the paper is the created code based on the CUSP-
library [10], which was prepared to be applied in solving
problems of the RFIC and PIC design, modeling and computa-
tion. These problems reveal in the form of large, very sparse,
complex and ill-conditioned matrices of the LSE (A*x=b).
Without any doubts, the parallel computing results obtained
with the code confirm usefulness and reasonableness of us-
ing GPU cards in design, modeling and simulation of the
integrated circuits which are working in the HF.

References

[1] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym,
NVIDIA Tesla: A Unified Graphics and Computing
Architecture, Micro, IEEE, 39 – 55 (2008).

[2] K.K. Matam, S.R.K. Bharadwaj, and K. Kotha-
palli, Sparse Matrix Matrix Multiplication on Hybrid
CPU+GPU Platforms, in Proc. of 19th Annual Inter-
national Conference on High Performance Computing
(HiPC), Pune, India, (2012).

[3] F. Ellinger, Radio Frequency Integrated Circuits and
Technologies, Springer, 2nd edition 2008.

[4] I.-A. Lazar, G. Ciuprina, and D. Ioan, Effective extrac-
tion of accurate reduced order models for hf-ic using
multi-CPU arhitectures, Inverse Problems in Science
and Engineering, 1-13 (2011).

[5] T. Weiland, A discretisation method for the solution of
Maxwell’s equations for six-component fields, Interna-
tional Journal of Electronics and Communication AEU
31 116–120 (1977).

[6] G. Ciuprina, D. Ioan, D. Mihalache, Magnetic Hooks in
the Finite Integration Technique: A Way Towards Do-
main Decomposition, Proceedings of the IEEE CEFC,
2008.

[7] G. Ciuprina, D. Ioan, D. Mihalache, and E. Seebacher,
Domain partitioning based parametric models for pas-
sive on-chip components, Scientific Computing in Elec-
trical Engineering, in the series Mathematics in Industry
(J. Roos, L. Costa Eds), Vol. 14, pp. 37-44, Springer,
2010.

[8] LiveLin for MATLAB User’s Guide COMSOL 2011.
[9] B. Gustavsen and A. Semlyen, Rational approximation

of frequency domain responses by vector fitting, IEEE
Trans. Power Delivery, 1052-1061 (1999).

[10] I.-A. Lazar, M.-I. Andrei, E. Caciulan, G. Ciuprina, and
D. Ioan, Parallel algorithms for the efficient extraction
of fitting based reduced order models, Proceedings of
the 7th International Symposium on ADVANCED TOP-
ICS IN ELECTRICAL ENGINEERING, 1–13 (2011).

Solving RFIC Simulation Tasks Using GPU Computations 33

[11] T. Davis, Algorithm 832: Umfpack, an unsymmetric-
pattern multifrontal method, ACM Transactions on
Mathematical Software (TOMS), 196-199 (2004).

[12] Y. Saad, Iterative Methods for Sparse Linear Systems,
Society for Industrial and Applied Mathematics, 2003.
Second edition with corrections.

[13] Y. Saad, and M. H. Schultz, GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems, SIAM J. Sci. Stat. Comput., 856-869
(1986).

[14] J. Sanders and E. Kandrot, CUDA by Example: An
Introduction to General-Purpose GPU Programming,
Addison-Wesley Professional; 1st edition 2010.

[15] D. B. Kirk and W. mei W. Hwu, Programming Mas-

sively Parallel Processors:

A Hands-on Approach (Applications of GPU Comput-
ing Series), Morgan Kaufman Elsevier, 2010.

[16] N. Bell and M. Garland, Cusp: Generic parallel algo-
rithms for sparse matrix and graph computations, 2012.
Version 0.3.0.

[17] H. H. J. M. Janssen, J. Niehof, W. H. A. Schilders, Ac-
curate Modeling of Complete Functional RF Blocks:
CHAMELEON RF, Scientific Computing in Electrical
Engineering, Mathematics in Industry, 81-87 (2007).

[18] S. Kula, Interconnect Elements Propagation Quantities
in PIC, Poznan University of Technology Academic
Journals, Series Electrical Engineering, Iss. 70, 83-89
(2012).

Mihail-Iulian ANDREI is a Research Assistant – Numerical Modeling Laboratory, Faculty of
Electrical Engineering, University "Politehnica" of Bucharest, Romania. He received his M.Sc.
degree in Electrical Engineering in 2009, and currently he is finishing his Ph.D. thesis entitled
“Electromagnetic modeling of integrated inductors using multiprocessor systems”. His research
interests are electromagnetic modeling, high performance computing and parallel computing.

Sebastian Kula is an Assistant Professor at the Kazimierz Wielki University in Bydgoszcz, Poland.
He received his M.Sc. Eng. degree in Electronics and Telecommunication in 2004. In 2010, he
received his Ph.D. Eng. degree in Electrical Engineering at the University "Politehnica" of Bucharest
as part of the FP6 RTN Comson project; the thesis focused on reduced order models of high frequency
integrated circuits. In 2011/2012 he was a postdoc at Chalmers University, Goteborg, Sweden. His
research interests are in design of RFIC and PIC, parallel, GPU computing and electromagnetic
modeling.

COMPUT METH SCI TECH 19(1) 25-33 (2013)

