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Abstract: Using simple Metropolis Monte Carlo simulations, the series of virtual porous carbons (VPCs) is generated.
During the computations, the carbon EDIP potential is employed. Structures in the series have systematically changing
porosity due to the differences in the carbon density. The obtained VPCs are similar to the model proposed by Harris et al.,
but they do not show its main drawback, because they contain curved fullerene-like sheets, which are interconnected and
form one three-dimensional structure. The porosity of VPCs is characterised using a simple geometrical method proposed
by Bhattacharya and Gubbins. In order to confirm the reality of the obtained new model carbons and their usefulness for
modelling of adsorption phenomena, Monte Carlo simulations of argon adsorption on them are performed. The obtained
isotherms are analysed using standard adsorption methods like αs-plots, adsorption potential distributions curves and
Dubinin-Astakhov model. The results reveal a close relationship between the systematic changes in the porosity and the
adsorption properties. The observed regularities correspond with experimental observations and theoretical studies.
Key words: virtual porous carbons, carbon EDIP potential, computer modelling, Monte Carlo simulations

I. INTRODUCTION

The term virtual porous carbon (VPC) was proposed by
Biggs and Buts [1]. It is used ”to describe computer-based
molecular models of nanoporous carbons that go beyond the
ubiquitous slit pore model and seek to engage with the geomet-
ric, topological and chemical heterogeneity that characterises
almost every form of nanoporous carbon“ [1]. Different VPC
models were proposed [1-3]. The most popular VPC models
were proposed by Biggs et al. [1,4-7], Do et al. [8-14], and Har-
ris et al. [15-21]. VPCs are also generated using a combination
of experimental diffraction data and Monte Carlo simulations
(reverse Monte Carlo (RMC) or hybrid reverse Monte Carlo
(HRMC) techniques) – see for example [22-29]. HRMC meth-
ods seem to be the most sophisticated way to generate realistic
VPCs. However, they have some drawbacks [3]. For the given
carbon it is possible to generate an infinitive number of replicas
that are not unique. Obtained in this way VPCs models are not
”flexible“, either, i.e. systematic modification of their properties

(like porosity) is practically impossible [3]. Also other simula-
tion methods (based mainly on minimization of carbon structure
energy and different force fields) are still used to generate new
VPCs – see for example [30-32].

The VPCs based on above mentioned Harris model were
successfully used in numerous papers of the author and the
co-workers for modelling the adsorption properties of activated
carbons [3,33-43]. Harris et al. [15-21] proposed their model
basing on the studies of typical non-graphitizing microporous
carbons using high-resolution transmission electron microscopy
(HRTEM). A careful examination of the obtained HRTEM im-
ages exhibited the presence of curved carbon sheets (fullerene-
like). Therefore, they proposed a new model of non-graphitizing
carbon consisting of discrete fragments of curved carbon sheets,
in which pentagons and heptagons are dispersed randomly
throughout networks of hexagons. The presence of curved
fullerene-like fragments explains important properties of this
type of activated carbon like their porosity and high resistance
to graphitization. The fact that Harris model contains individual
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unbound carbon fragments (see for example figure 1 in [34]) is
its main drawback. In the case of real carbons it can be expected
that particular fullerene-like fragments are interconnected and
form a three-dimensional structure. Despite this failure, the util-
ity of Harris et al. model is unquestionable. It may be treated as
a good model approximation of the microstructure of real acti-
vated carbons, as proven, for example, by recovering different
experimentally observed empirical correlations [36].

Powles et al. [30] showed that thermally stable structures con-
sisting of a disordered arrangement of highly curved sheets (sim-
ilarly to Harris model) can be generated via molecular dynamics
(MD) simulations employing the environment-dependent inter-
action potential (EDIP) for carbon proposed by Marks [44,45].
The obtained in this way structures contain folded fullerene-like
fragments with different degrees of curvature, but they are inter-
connected [30,46]. The employment of EDIP potential during
MD simulations is quite sophisticated because it requires the
calculation of the derivatives of complex formulas in order to
determine the forces. Metropolis Monte Carlo (MMC) simu-
lations [47] are a simpler alternative to MD simulations. They
also lead to the energetically stable VPCs, but do not require the
calculation of derivatives (they are based only on calculations of
the energy values).

In the present paper, the new series of VPCs is generated
using simple MMC simulations employing the above mentioned
carbon EDIP potential. The systematic changes in the series
are caused by the changes in density of carbon atoms in the
simulation box in the range 0.5-1.3 g/cm3. The porosity of
VPCs is characterised by a simple geometric method proposed
by Bhattacharya and Gubbins (BG) [48]. In order to confirm
the usefulness of the obtained structures in the modelling of ad-
sorption phenomena, the hyper parallel tempering Monte Carlo
(HPTMC) simulations [49] of argon adsorption are performed.
The obtained isotherms are analysed using standard adsorption
methods: high-resolution αs-plots, adsorption potential distribu-
tions (APDs) curves, and fitting by Dubinin-Astakhov model.
These methods are widely used for the characterisation of carbon
materials porosity. The obtained VPCs will be also used in the
future to perform systematic simulation studies on the adsorption
of polyatomic gases and their mixtures. The modification of the
surface chemistry of the structures via the introduction of surface
groups is also planned.

II. METHODS

VPCs generating

The structures of VPCs were modelled via the simple
MMC simulation in the canonical ensemble (NVT). Nine
different densities of VPC were considered. They were 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3 g/cm3 (the subsequent
structures were denoted as dx.x, where x.x is the density). For
each VPC, the starting configuration of carbon atoms in the

simulation box (having size 4.5×4.5×4.5 nm) was generated
randomly. Periodic boundary conditions were applied in all
three directions. 600 cycles were performed during simula-
tions for each VPC. During one cycle 100 ×Nc (where Nc

is the number of C atoms in the box) attempts of the change
of the system state were performed. The state of the system
was changed only by random displacement of a randomly
selected C atom. The probability of the change acceptance
(Pacc) depended only on the change in the total energy of the
system (Utot) [50]:

Pacc = min

{
1; exp

[
−∆Utot

kBT

]}
(1)

where kB and T denote the Boltzmann constant and the
absolute temperature, respectively. The energy of the sys-
tem was calculated using the above mentioned carbon EDIP
potential [44,45]. The temperature was changed during the
simulation (see figure 1). It was equal to 4500 K for the first
100 cycles. Then it was linearly reduced to 100 K during 400
cycles and, finally, the last 100 cycles were performed for a
constant temperature equal to 100 K.

The generated in such a way VPCs contained usually a
small number of artificial 3-member rings. These rings were
usually not connected with the rest of carbonaceous structure
or bound with the edges of graphene sheets. The atoms of
3-member rings were removed and the remaining structures
were relaxed. In order to relax the VPCs, the energy of
the remaining structures was minimised during the above
described MMC simulation but starting with the temperature
equal to 1000 K. In order to avoid the decrease in density
(caused by removing C atoms) the calculated (from the den-
sity) initial number of atoms in each case was increased
by 30 extra-atoms. This number was the same for all the
structures to simplify the calculations and it was associated
with the estimated maximum number of 3-member rings. The
assumed number of the extra-atoms was close to the number
of atoms which were removed in fact (i.e. between 15 and 44
C atoms).

Porosity of VPCs

In order to characterise the porosity of the obtained VPCs
the above mentioned simple geometrical BG method was used
[48]. During the calculation, for each structure the uniform
grid (100×100×100) of points was generated in the box. For
each point (located in a pore), the largest sphere containing
this point and situated in the pore was found in an iterative way
(for details see for example [37,46]). Its diameter corresponds
with the size of the pore containing the point. The collection
of the data for all the points makes it possible to determine the
histogram of pore sizes (i.e. the probabilities of finding the
pores having the given effective diameter (deff )− P (deff )).
The integral curves connected with the histograms were also
calculated [46]:
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Pint (deff ) =
∑

d≤deff

P (d) (2)

The Pint(deff ) value provides the information what per-
centage of pores has a diameter not larger than deff . The
obtained histograms were also used to calculate the average
size of the pores accessible for argon atoms (deff,acc,av) [46]:

deff,acc,av =

∑
deff≥0.3405 nm

deff × P (deff )∑
deff≥0.3405 nm

P (deff )
. (3)

The used lower limit of pore size (0.3405 nm) is the
diameter of Ar atom (the collision diameter – see below).
For the obtained VPCs the ring statistics were also computed
using the shortest-path algorithm of Franzblau [51]. During
the calculations, bonds were determined by a cut-off distance
of 0.185 nm [46] and the rings up to 8-member ones were
considered.

Simulations of argon adsorption isotherms

Argon adsorption isotherms on generated VPCs were
simulated using the above mentioned HPTMC method [49].
The simulations were performed for Ar boiling temperature
(T = 87 K). For each system, 142 replicas (corresponding to
the relative pressures from 1.0× 10−10 to 1.0) were consid-
ered. The HPTMC simulations utilized 1× 107 cycles (one
cycle = 100 attempts of the change of each replica state by (i)
creation, (ii) annihilation or (iii) displacement of a randomly
chosen atom with equal probabilities, and one attempt of a
configuration swap between a pair of randomly chosen repli-
cas). The first 2 × 106 cycles were discarded to guarantee
equilibration.

Each argon atom and each carbon atom building the VPCs
were modelled as a simple Lennard-Jones (LJ) centre. The
truncated LJ potential was used [50]. The following val-
ues of LJ parameters (i.e. the collision diameter (σ) and
the potential well depth (ε)) were used: (i) for Ar atoms:
σff = 0.3405 nm, εff/kB = 119.8 K [52] and (ii)
for C atoms: σss = 0.34 nm, εss/kB = 28.0 K [53].
Cross-interaction parameters were calculated using Lorentz–
Berthelot mixing rules [50]. For each type of interactions, the
cut-off distance was assumed as equal to 5.0× σij .

The average number of Ar atoms in each replica (〈N〉)
corresponds to the adsorption amount. It makes it possible
to calculate the absolute adsorption value per unit of carbon
mass [46]:

a =
〈N〉

NC ×MC
(4)

whereNC andMC are the number of carbon atoms in the box
and the molar mass of carbon, respectively. In order to illus-

trate the degree of filling of pores accessible for the adsorbate,
the argon density in pores was also calculated:

ρ =
〈N〉

NAv × Vacc
(5)

where NAv is the Avogadro number and Vacc is the volume
of pores accessible for Ar atoms. Vacc was computed using
Monte Carlo integration. The size of pores (limiting their
accessibility) was determined analogically as in the above
described BG method. The isosteric enthalpies of adsorption
were calculated from the theory of fluctuations [50]:

qst = RT − 〈UN〉 − 〈U〉 〈N〉
〈N2〉 − 〈N〉2

(6)

where R is the universal gas constant, 〈. . . 〉 is the ensemble
average and U is the configuration energy of the system.

Analysing adsorption isotherms

The high-resolution αs-plots method [54] was the first
technique used for analysing the obtained Ar adsorption
isotherms. αs-plot presents the values of adsorption on the
studied material as a function of the normalised adsorption
on a reference material [54]. The reference material should
have the same chemical nature as the studied one and should
be nonporous. In the case of adsorption on real carbonaceous
materials, carbon black is usually used as the reference, but in
the case of the simulated isotherms the reference isotherm is
very often obtained also via the simulation [46,54-58]. In this
work, the reference Ar adsorption isotherm was simulated (us-
ing the above described HPTMC method) for an ideal slit-like
pore having an effective diameter equal to 20.0 nm.

The obtained isotherms were also converted into APDs
curves [59-61]. The APDs curve is the first derivative of the
so called characteristic curve, which presents adsorption as a
function of the adsorption potential (Apot) defined as:

Apot = RT × ln
ps
p

(7)

where p and ps are equilibrium and saturated pressure of ad-
sorptive. The differentiation was performed numerically by
the approximation of the data by the empirical function (the
results were calculated with the resolution of 0.01 kJ/mol).

Finally, the simulated isotherms were fitted by the
Dubinin-Astakhov (DA) model, which is one of the most
popular equations used in the adsorption area [36,62,63]. The
DA adsorption isotherm equation may be written as [46]:

a = a0 × exp

[
−
(
Apot

βE0

)n]
(8)

where a0 is the maximum adsorption value, Apot is defined
by equation (7), β is the affinity coefficient (for Ar β = 0.31
[64]), E0 is the characteristic energy of adsorption, and n
is the parameter related to the material heterogeneity. The
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isotherms were described by DA model in the range of the
relative pressure up to 0.1 (this range is also widely used in
the case of fitting the real adsorption isotherms). During the
fitting, the genetic algorithm proposed by Storn and Price [65]
was employed (this method was previously successfully used
for fitting different data sets [66-73]). The goodness of the
fit was estimated using the determination coefficient (DC)
defined as [46]:

DC = 1−

∑
i

(atheo,i − asim,i)
2

∑
i

(asim,i − āsim)
2 (9)

where atheo,i and asim,i are the predicted by DA model and
the simulated adsorption amount for i–th point, and āsim is
the average value of simulated adsorption.

III. RESULTS AND DISCUSSION

Figure 1 presents the changes in the total energy of the
system during MMC simulation for the d1.0 structure (simi-
lar regularities are also observed for the other systems). One
can see that the high energy of the initial randomly-generated
configuration is gradually minimised. The initial reduction in
the total energy value (for T = 4500 K) is connected with the
creation of bonds network among carbon atoms. The further
stabilization takes place with a decrease in temperature. The
changes in the total energy decrease with the temperature re-
duction. Simultaneously, the percentage of accepted attempts
of atoms displacement also decreases (not shown). For the last
100 cycles (T = 100K), it is less than 0.1 % and the energy
reaches the stable final value. Figure 2 presents schematically
structures of the obtained VPCs (it may seem that there are
some single atoms or unbound several-atoms fragments, but this
is only an illusion, because the bonds formed via the periodic
boundary conditions are not shown). The presented structures
contain folded graphene sheets with a different degree of curva-
ture. They are similar to above mentioned Harris model, but they
do not have its main drawback – the sheets are interconnected
and they form one three–dimensional structure.

Fig. 1 The changes in total energy and temperature during the
MMC simulation for the d1.0 structure.

Fig. 2 Schematic representation of the obtained VPCs (the
frames reflect the size of the simulation box).

Table 1 collects the basic parameters of the obtained
VPCs. The ring statistics show that the 6-member rings in
structures are dominant for all the VPCs. There are also
5-member, 7-member, and 8-member rings. The presence
of these rings (especially of the first two kinds) is respon-
sible for the observed curvature of the carbon sheets. The
4-member rings appearing in the case of some structures
are usually formed at the connection of fragments of differ-
ent sheets. Obviously, the volume of pores accessible for
Ar atoms decreases with the rise in the number of carbon

atoms in the box.
Figure 3 presents the histograms of pore diameters ob-

tained from BG method for all the considered VPCs. All
the structures are strictly microporous (i.e. pore sizes do
not exceed 2 nm). One can also see that the change in the
carbon density in the box causes systematic changes in the
porosity. Generally, the rise in the density is connected
with wider pores vanishing. The d1.1 structure is the only
exception. In this case, a certain percentage of the big-
ger pores (ca. 1.6 nm) is also present. This fact may be
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Tab. 1 Basic characteristics of the obtained VPCs

VPC Number of
carbon atoms

Average diameter of
pores accessible for
Ar atoms deff,acc,av

Volume of pores
accessible for Ar atoms Vacc

Number of N-member rings
N

[nm3/box] [cm3/g] 4 5 6 7 8
d0.5 2262 1.224 69.86 1.548 1 222 495 162 35
d0.6 2737 1.125 65.37 1.198 1 234 682 200 35
d0.7 3192 1.053 60.82 0.955 0 336 458 261 51
d0.8 3658 1.002 56.25 0.771 0 378 928 286 73
d0.9 4119 0.907 51.91 0.632 1 409 1087 335 76
d1.0 4573 0.789 47.05 0.516 1 477 1219 395 85
d1.1 5035 0.787 42.39 0.422 0 531 1384 418 115
d1.2 5492 0.672 36.66 0.335 1 613 1509 467 125
d1.3 5949 0.670 32.18 0.271 1 641 1704 511 148

Fig. 3 (a) Histograms of pore diameters for the considered VPCs obtained from BG method (the dashed line represents the size of
Ar atoms, subsequent histograms were shifted by 0.15 from the previous ones). (b) Integral curves related to the histograms (the
arrow shows the direction of changes from the d0.5 structure up to the d1.3 one).

caused by the non-uniform distribution of carbon atoms in
the randomly-generated initial configuration. Nevertheless,
the average pore size decreases from the d0.5 structure
up to the d1.3 one (see table 1). The last two VPCs (i.e.
d1.2 and d1.3) have only quite small pores up to ca. 1 nm.
In addition, the rise in the density of carbon atoms in the

box is connected with the increase in the percentage of the
smallest pores which are inaccessible for Ar atoms.

Figure 4 presents the comparison of the simulated Ar
isotherms and the related isosteric enthalpy of adsorption
for all the considered VPCs. In addition, figure 5 presents
the snapshots of equilibrium configuration of Ar atom for
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the selected structures and relative pressures. The observed
changes in the shapes of isotherms (from the d0.5 structure
up to the d1.3 one) reflect the differences in the properties
of VPCs. The maximal number of Ar atoms in the box and
the adsorption capacity (per unit of carbon mass) decrease
with the rise of the carbon density. This is caused by the
decrease in the volume of accessible pores. The decrease
in the adsorption capacity is higher, because it is also af-
fected by the rise in the number of carbon atoms in the
box (see equation (4)). However, the maximum density of
Ar in pores (figure 4c) is similar for all the structures and
close to the density of liquid Ar (35 mol/dm3) but below
the density of solid Ar (40.5 mol/dm3 [74]). Thus, argon
atoms for high relative pressures fill the accessible volume
of pores. The maximal density is slightly higher for the
few last VPCs. This fact may indicate a higher uptake of
Ar atoms in the smallest pores.

Fig. 4 Comparison of Ar adsorption simulation results
(T = 87 K). (a) average number of Ar atoms in the simu-
lation box, (b) adsorption per unit of carbon mass, (c) Ar
density in pores, (d) relative adsorption, (e) related αs-plots,
and (f) related isosteric enthalpy of adsorption. The arrows
show the direction of changes from the d0.5 structure up to
the d1.3 one.

Also the shape of the isotherms changes regularly from
the d0.5 structure up to the d1.3 one. The changes are com-
patible with the differences in the porosity of VPCs. The
isotherms become sharper with the decrease in the average
pore diameter, i.e. a lower pressure value is necessary to
obtain a certain coverage. Differences in the shape are
clearly seen especially when the isotherms are presented
as the relative adsorption (a/amax) – see figure 4d. These
changes are caused by the rise in the adsorption energy
with the decrease in the pore size. The reduction of the
pressure needed to fill the pore is also confirmed by the
snapshots presented in figure 5. For example, in the case of
the d0.5 structure, the pores are not filled for p/ps = 10−4,
while the same pressure is sufficient to almost completely
fill pores of the d1.3 structure. The rise in the adsorption
energy for VPCs with the smallest pores is also confirmed
by the isosteric enthalpy of adsorption (figure 4f), which
increases from the structure d0.5 up to the d1.3 one. It
is worth noticing that similar relations between the shape
of isotherms and the porosity are observed experimentally
(see for example [59]).

Fig. 5 Selected snapshots of equilibrium configurations for the
selected structures (the view after dividing simulation boxes
into two equal parts).

Figure 4e collects the αs-plots connected with the ob-
tained Ar adsorption isotherms. Both the filling swing (FS)
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and the condensation swing (CS) [54] are presented for all
the curves. These deviations from the linearity reflect the in-
crease in the adsorption energy in micropores in comparison
with adsorption on the flat surface of the reference material.
The FS swing (for small αs values) is connected with the
filling of pores having the diameter below 1 nm [54]. There-
fore, in the case of d0.5 structure (having mainly the pores
larger than 1 nm) this swing is only slightly marked. The FS
swing increases passing to the d1.3 structure. The opposite
trend is observed in the case of the CS swing which is con-
nected with condensation in the larger micropores [54]. This
is caused by the decrease in the percentage of pores above 1
nm. The observed changes correspond with the theoretical
results obtained by Setoyama et al. [54] and the results of
other simulation studies [34,46].

Fig. 6 (a) Characteristic curves connected with isotherms pre-
sented in figure 4 (the arrow shows the direction of changes
from the d0.5 structure up to the d1.3 one), (b) comparison of
APDs for all the considered systems (subsequent curves were
shifted by: 0.0, 0.75, 1.1, 1.4, 1.65, 1.85, 2.0, 2.15 and 2.3, re-
spectively) (c) correlation between the location of maximum
on APD curve and the average diameter of pores (the dashed
line was drawn to guide the eye).

Figure 6 presents the comparison of the APDs curves re-
lated to the simulated Ar isotherms. Also in this case, the
relation between porosity and the shape of curves is clearly
seen. One can see that the sharp peak observed for the d0.5
structure (connected with condensation in relatively large mi-
cropores of this VPC) becomes smoother and it shifts toward
higher values of the adsorption potential for VPCs having
smaller pores. This also reflects the changes in the adsorption
mechanism connected with the vanishing of the wider micro-
pores. Figure 6c presents the relation between the location of
the maximum on the APD curve (Apot,max) and the average

pore size. The same hyperbolic-like shape of this relation was
reported by Kruk et al. [59] in the case of the experimental
data and was confirmed by other simulation studies [34,46].

Tab. 2 Values of the best-fit parameters obtained using DA
model (equations (7) and (8)) for the description of the simu-
lated Ar adsorption isotherm in the range p/ps ≤ 0.1.

VPC a0
[mmol/g]

E0

[kJ/mol]
n DC

d0.5 85.47 8.822 1.729 0.9943

d0.6 49.15 12.70 2.325 0.9970

d0.7 36.50 15.63 2.515 0.9984

d0.8 28.57 18.28 2.590 0.9992

d0.9 22.88 21.19 3.044 0.9980

d1.0 18.31 24.38 3.143 0.9995

d1.1 15.01 27.70 3.260 0.9993

d1.2 12.10 30.36 3.447 0.9990

d1.3 9.899 31.88 3.440 0.9990

Fig. 7 Correlation between the parameters of the DA model
(table 2) and the average diameter of pores ((a) characteristic
energy, (b) parameter n; the lines were drawn to guide the
eye).

Table 2 collects the values of the best-fit parameters ob-
tained during the fitting of the simulated isotherms by DA
model (equations (7) and (8)) in the range p/ps ≤ 0.1. The
quality of data description is satisfactory as evidenced by the
high values of the determination coefficient. The rise in the
values of characteristic energy is related to the changes in
adsorption energetic caused by the decrease in the average
pore diameter. A lot of different mathematical relations con-
necting a characteristic energy and an average pore size were
proposed based on both the experimental measurements and
the simulation results – see for example [34] and references
therein. The most popular equations assume the inverse pro-
portionality between these two values. As one can see in
figure 7, the obtained values of E0 may be treated as linearly
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correlated with 1/deff,acc,av (the blue dashed line). A similar
correlation may be also observed in the case of parameter n
in the DA equation (figure 7b). However, a careful analysis
of plots E0 = f(1/deff,acc,av) and n = f(1/deff,acc,av)
suggests rather a saturating character of the both relations
(see the red lines in figure 7).

IV. CONCLUSIONS

The proposed method of MMC simulation makes it pos-
sible to generate a new series of systematically changing
VPCs. The obtained structures are similar to Harris model
of the activated carbon microstructure. They contain folded
carbon sheets with a different degree of the curvature but
they do not show the main drawback of Harris model, be-
cause curved fullerene-like fragments are interconnected and
form one three-dimensional structure. The usefulness of the
obtained VPCs for modelling adsorption phenomena is con-
firmed by the performed simulation of argon adsorption. The
differences in the shape of isotherms reflect the changes in
the porosity of VPCs in the series and are analogical to the
experimentally observed regularities. The results of the use
of a typical adsorption method (like αs-plots, APDs curves
or DA model) are also intuitively related to the systematic
changes in the porosity. They correspond with the results of
the experimental observations and theoretical studies. These
facts independently confirm the reality of the obtained VPCs.

Since only the adsorption of the simple gas (argon) was
studied, further studies seem to be justified. The obtained
VPCs will be used to simulate the adsorption of polyatomic
gases and their mixtures. The modification of the surface
chemistry of the structures via the previously proposed proce-
dure of virtual oxidation [37] is also planned.
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