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I.  INTRODUCTION 
 
 Translocation of polymers across a narrow pore is 
ubiquitous in biology. Examples include the motion of 
DNA and RNA molecules across nuclear pores, the 
injection of viral DNA into a host cell, translocation of 
protein from cis to trans side of a membrane through 
channels [1]. Also in the industry, processes such as the 
separation and purification of synthetic and biological 
macromolecules, the recovery and separation of oil, the 
production of foods and drugs are related to the trans-
location of polymer chains.  
 Numerous experiments [2, 3] aimed at the translocation 
process examination were performed: the ionic current 
blocade duration in single-channel conductance measure-
ments and the time distributions for a single-stranded DNA 
polymers during voltage-driven translocations were meas-
ured. In parallel to these experimental investigations, theo-
retical and computational studies (such as Monte Carlo, 
kinetic Monte Carlo, Langevin dynamics methods) aimed 
to model the translocation process and imitate the experi-
mental results report only moderate success. For example, it 
has been shown recently that the forced translocation model 
using MC with basic Metropolis sampling gives the correct 
time dependence at moderate pore potentials but presents an 
artifact at large pore potentials [4].  
 This paper reports the results of the exact calculations 
of a polymer driven through the pore with the Rubinstein-
Duke (RD) rules. The computational complexity limits the 

accessible chain length, but the details of the phenomena 
(repton-repton or repton-wall interactions, where a repton 
corresponds to one persistence length of the chain) investi-
gated even for a short chains are interesting and give some 
additional insight into the translocation process.  
 
 

II.  MODEL 
 
 The 3D translocation phenomena is for simplicity con-
sidered here as an one-dimensional process. One of the 
justifications is that hernia creation and annihilation plays 
the same role in one-dimensional RD models as the 
sideways motion in the two- and three-dimensional ver-
sions [5].  
 Identical reptons building the chain are characterised by 
N + 1 position variables x0, ..., xN (self-avoidance is ne-
glected as it would make the one-dimensional version 
trivial). The two successive positions xi and xi + 1 are either 
the same or a nearest-neighbour distance apart. We call the 
difference yi = xi − xi−1 a link. If the two successive reptons 
i − 1 and i are located in the same cell, the link is zero or 
slack. Otherwise, it is a nearest-neighbour distance and the 
link is taut one. The links determine the configuration of 
the chain. So, the configurations of the chain are given by 
vector y = (y1, ..., yN). The number of configurations is 3N, 
which is an enormous number for long polymers. In our 
problem the number of configurations is diminished by the 
presence of a wall preventing a chain from multipassing the 
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pore. A sketch of the chain in the lattice is given in the 
upper part of Fig. 1. The slack links represent elements of 
stored length, which are the basic ingredients for reptation. 
To accelerate the process, we allow the motion to be more 
general than reptation: when both links are slack, the 
middle repton can hop to any of its two neighbouring cells, 
thereby changing the slack links in a pair of opposite taut 
links, which is the creation of a hernia. The reverse process 
is a hernia annihilation. We give these hopping rates value 
h. When any repton moves through the pore, there is a bias 
which has the form of a Boltzmann factor B = exp(ε /2) 
involving the energy difference between both sides, 
favouring jumps aligned with the direction of the external 
electric field E and discouraging jumps against the field 
direction1.  
 Our model is, as all the hopping models, governed by 
the Master equation:  
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where P(y, t) indicates the probability of finding the poly-
mer in a configuration y at time t and W(y′|y) is a transition 
rate per unit of time from configuration y to configuration 
y′. Matrix H contains both the gain and loss terms and is 
stochastic in the sense that the sum over all columns 
vanishes, as required from the conservation of probability.  
 
 

 
Fig. 1. Upper part: a picture of the polymer chain consisting of 
reptons and allowed repton motions. Bottom part: an example of 
                     coupled configurations (ΔXi = 3 here)  
 
 

When a process is stationary, the time derivative at the 
left hand side of the Master Equation vanishes and a sta-
tionary state will be reached (corresponding to the zero 
eigenvalue of the Master Equation). Moreover, the ele-
ments of the stationary state are the probabilities P(yi). In 

fact, the translocation is not a stationary process but can be 
modelled by a semiperiodic model by identification of 
some coupled states.  
 
 

III.  METHOD 
 
 Interchanges of slack and taut links, according to the 
Rubinstein rules, are the main moves in the model. Stored 
length moves through the pore (represented by a taut link) 
only when the slack link interchanges, as in a RD move, 
with the pore (the W(y′|y) transition rates are then set to B if 
the move is aligned with the field direction and 1/B when 
the chain threads through the pore in a reverse direction). 
The pore is considered as fixed in space, but its position 
with respect to the numbering of the chain links changes. 
When the pore link is at the end of the chain, it may 
interchange with a slack link at the other end – this is the 
identification of (coupled) configurations (see Fig. 1) that 
keeps the process to run around forever. This interchange is 
done again with the bias B from left to right and with 1/B in 
the opposite direction. On the other hand, as long as the pore 
is not at an end of the chain, the end reptons move freely, 
thereby refreshing the tube configuration. By allowing hernia 
creation and annihilation, the motion is not reptative but 
crosses over to faster dynamics. The origin is that taut links 
are blocked by the pore. They have to be first converted into 
slack links by hernia annihilation and then pass through the 
pore as slack links and may be recreated at the other side by 
hernia creation. It is clear that the hernia creation and 
annihilation plays an important role in this translocation. So, 
it may be anticipated that the rate of hernia creation and 
annihilation functions as a cross-over parameter.  
 Drift velocity v (the velocity of the reptons constituting 
the chain) is the same for all reptons on the average (the 
formal expression for v is given by [7]). As we are interested 
in the translocation time, we need a quantity corresponding 
to the displacement along the x axis. The natural measure is 
a distance between the chain ends (ΔX) because when the 
pore link interchanges with a slack link at the other end, it is 
equivalent to the motion of the whole chain along the x axis 
on the same distance. Therefore, we can define  
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1 The reduced field ε = qEa/kBT is a dimensionless parameter, where the numerator represents the energy needed to move a repton 
a distance a against the electric force acting qE on it [6].  
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where w = B or 1/B and a tilde means summing only over 
configurations with the pore link at an end on the condition 
that the opposite end link is taut. An example of such 
coupled configurations is presented in the bottom part of 
Fig. 1. Now we can define the translocation time as:  

  Xt
v

Δ
= . (3) 

 

 
Fig. 2. The plot visualises the enormous gain of possible chain 
states along with the number of links that compose the chain 
(notice the semi-logarithmic scale) as well as the influence of the 
        presence of the “wall” to the reduction of processed states  
 
 
3.1. Computational details  

 The determination of translocation time t (Eq. 3) of 
a chain that is built up with N links is a nontrivial task. The 
enormous growth of the possible chain states (configura-
tions) along with chain length (see Fig. 2) makes data 
processing a challenging problem.  
 In order to calculate the exact value of the translocation 
time of a chain that threads through the pore, one has to 
construct and evaluate the stochastic matrix H defined by 
elements that describe the probability of transition between 
the states of a chain (see Eq. 1). This process involves the 
following general steps:  
  A –  constructing all possible states for a chain,  
  B –  processing those states to exclude the forbidden ones 

(the wall condition),  
  C –  processing the “proper” states to determine the tran-

sitions linking them,  
  D –  constructing the sparse stochastic matrix,  
  E –  calculating the matrix null-space and dependent quan-

tities.  
 The steps listed above could be seen as two abstract 
processes: the system preparation (A, B, C) and the system 

evaluation/examination (D, E). While the former process 
goal is to create and store the general (symbolic) system 
information, the latter is intended to apply specific 
numerical values to the output of the former one and to 
perform algebraic calculations. The two processes meet at 
the data storage level which is driven by a SQL database 
engine. 
 
 

 
Fig. 3. The log-log dependence of the translocation time with 
respect to reduced field ε  that drives the polimer motion through 
          the pore. The calculations are done for the 8-link chain  
  
 
 The construction of possible chain states is performed 
with the tree approach, by a recursive links pairing (i.e. taut 
and slack states) that define the specific chain configura-
tion. The outgoing configurations are next validated to 
check the ”wall condition” – invalid states are excluded 
and the resulting states are saved in the SQL database to 
avoid further repetitive calculations. The validation proce-
dure is implemented as a parallel process with OpenMPI 
[8] cluster interface: the chain configurations set is distrib-
uted to the computer cluster, each MPI process analyses the 
subset of the configurations and (with parallel access to the 
SQL server) stores the results. The results of such 
a filtering are presented in Fig. 2. To construct the 
stochastic matrix, the allowed states must be next related 
with each other by a transition definition. Each transition 
(i.e. hernia creation/annihilation, driven motion through 
a pore, thermal motion) can be assigned a specific value of 
probability rate that will be used to create the stochastic 
matrix cell value. The found transitions are next stored in 
the SQL database in a generic manner, i.e. the probability 
rate is encoded with a symbolic value to allow further 
flexible system evaluation and analysis. Each transition 
combines the two chain states.  
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 When each transition has its symbolic probability rate 
substituted by a real number, the stochastic matrix is 
defined. This is a sparse matrix that we process using LU 
factorization (by means of the supernodal sparse LU fac-
torization package SuperLU [9] embedded in the PySparse 
Python module) to calculate its null-space. The out-coming 
information describes the states probability, i.e. each eigen-
vector component value is directly related to the state 
probability. Eigenvector values combined with transitions 
information are next used to calculate translocation time 
according to the Eq. 3.  
 
 

 
Fig. 4. The log-log dependence of the translocation time with 
respect to the number of links for different values of the reduced 
field .ε  The h = 0 case corresponds to the pure reptation, whereas 
h = 0.5 is connected to the presence of hernia creations/anni- 
                                               hilations  
 
 

IV.  RESULTS 
 
 First we determined the dependence of the translocation 
time on the field strength. Our results presented in Fig. 3 
confirm the results of Kasianowicz et al. [2] that the 
channel blockade life-time is inversely proportional to the 
applied voltage.  
 In order to determine the N dependence of the trans-
location time, we performed a series of calculations on 
polymers with a length up to 10 at a various field strength. In 
order to check the influence of the hernia creation/annihi-
lation, we assumed two values, zero and non-zero, for h.  
 Although our chains are too short to give concluding 
results, the plots presented in Fig. 4 indicate at substantial 
difference between the translocation time behaviour in the 
presence and in the absence of hernias.  

 
V.  CONCLUSIONS 

 
 The original translocation process has been formulated 
as a semi-periodic stochastic model with the Rubinstein-
Duke rules for hopping reptons. The dynamics of short 
polymers were investigated using the exact calcucations, 
i.e. all allowed polymer states were used to build and 
evaluate the matrix H (see. Eq. 1). The crossover from 
reptation to faster dynamics has been found and the rate of 
hernia creation and annihilation is a cross-over parameter.  
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