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I.  INTRODUCTION 
 

 The occurrence of a photonic band gap, or a band of 
frequencies strictly forbidden to propagating electro-
magnetic waves in 3D periodic dielectric structures was 
first suggested by Yablonovitch [1] in 1987. Referred to as 
photonic crystals, structures with a photonic band gap have 
by now found many applications in practice. The idea of 
such macrocrystals was extended to media for other types 
of classical waves, generally referred to as wave crystals 
(WC) and including photonic crystals, sonic crystals, 
elastic wave crystals (a subclass of phononic crystals), 
plasmonic crystals and magnonic crystals. The common 
physical property of all these macrocrystals is the occur-
rence of energy gaps, or bands of disallowed frequencies of 
propagating waves of the given type. Therefore, most 
devices using electromagnetic waves and based on 
photonic crystals have their counterparts that use other 
types of the classical waves mentioned above, including 
elastic waves. 
 The propagation of elastic waves in periodic structures 
has been the subject of research in recent years [2-8]. 
Composed of elastic centers (e.g. cylinders, in the two-

dimensional case) embedded in a matrix of a different 
elastic material and disposed in sites of a crystal lattice, 
phononic crystals show in their band structure frequency 
ranges forbidden to propagating elastic waves. Due to this 
property these structures have extensive practical appli-
cations, e.g. in the construction of sound shields and filters 
[9-16], and recently also in refractive devices such as 
sound-wave focusing acoustic [17] or acoustic interfero-
meters [17, 18]. Other noteworthy applications of phononic 
crystals include selective frequency waveguides [19] and 
acoustic diodes [20].  
 Phononic crystals with periodicity in a single direction 
also include superlattices (SL) and multilayers composed 
of materials of different elastic properties. Vibrational 
modes in such structures are described by a dispersion 
relation characteristic of SL, with the folding of phononic 
branches to the first Brillouin zone of size π/ay, where ay is 
the period of the structure. One of the basic properties of 
SL is the Bragg reflection of elastic waves fulfilling the 
condition: 2aysin(α) = nλ, where α denotes the angle of 
incidence measured between the ray of the incident elastic 
wave and the interface normal, λ is the length of the 
incident wave, and n is an integer. Each phonon that obeys 
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this relation is reflected from the structure and cannot 
propagate through the SL, which is equivalent to the 
condition of band gap occurrence in 1D phononic crystals.  
 In the present study we have performed a numerical 
investigation of phononic crystals composed of two 
semiconducting materials, GaAs and AlAs. Such systems 
have been intensively studied because of their electronic 
properties: the quantum states and the transport properties. 
Also their elastic properties arouse interest because of the 
possibility of reducing the heat transport by appropriate 
modeling of the phononic dispersion [21]. The conditions 
at the interfaces between adjacent materials are of major 
importance for the thermal transport properties [22-25]. 
Therefore, we investigate the effect of periodic inhomo-
geneities introduced at interfaces on the phononic spectrum 
of the SL, in particular on the position and width of the 
phononic band gaps. Our calculations are based on two 
complementary methods: the plane wave method (PWM), 
which allows to determine the dispersion relation for 
phonons in infinite superlattices, and the finite difference 
time domain (FDTD) method used for the determination of 
the transmission coefficient for elastic waves propagating 
in a crystal of finite thickness. 
 The paper is organized as follows. In Section II we 
discuss the FDTD method. Section III presents the PWM 
technique and the results obtained for an ideal GaAs/AlAs 
superlattice which can be compared to those reported in the 
literature. Section IV presents and discusses our results 
obtained for SL with periodically modulated interfaces. 
The results are summed up in the closing Section V. 
 
 

II.  FINITE  DIFFERENCE   
TIME  DOMAIN  METHOD 

 
 The starting point of our considerations is the wave 
equation describing the propagation of elastic waves in an 
inhomogeneous elastic medium [26]: 

m mn

n

U T
ρ xt

∂ ∂=
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2

2

1 , 
 

(1) 

where the stress tensor mnT  reads: 

( ) ( )mn ll mn mnT λ r U δ μ r U= + 2 , (2) 

l, m and n = 1, 2 or 3, and represents Cartesian coordi-
nation’s: x, y or z, respectively. The deformation tensor 

mnU  has the form: 
( )m n m n

mn
U x U xU ∂ ∂ + ∂ ∂=

2
, (3) 

( )λ r  and ( )μ r  are Lamé parameters, and ( )ρ r  is the 
mass density. The Lamé parameters λ  and μ  can be 
expressed by the longitudinal and transversal velocity of 
wave propagation in the material, lc  and tc , respectively: 

tμ ρc= 2 , 

l tλ ρc ρc= −2 2 . 

 
 

(4) 

 For 2D phononic macrocrystals, after the decomposi-
tion into the x and y Cartesian components we get a system 
of two conjugate wave equations [26]: 
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 Since the z axis is parallel to the cylinder axis, the 
values of parameters ( )λ r , ( )μ r  and ( )ρ r  do not depend 
on the z coordinate. Hence, the solutions of the wave 
equations along the direction of the translational symmetry, 
i.e. along the z axis, will be plane waves. As we are only 
interested in the propagation in the plane of periodicity, we 
shall look for solutions with wave-vector component kz = 0. 
A segment of the composite under consideration, with the  
 

 
 

Fig. 1. Segment of the composite studied by the FDTD method; 
periodic boundary conditions (PBC) are set at the x limits (broken 
lines), and absorption boundary conditions (ABC) at the y limits 
                 (solid lines); y is the direction of propagation 
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system of coordinates and basic parameters defined, is 
depicted in Fig. 1. 
 In the first step of the FDTD method the studied com-
posite is divided to form a discrete lattice of rectangular 
cells of size x yΔ × Δ  along the x and y axes, respectively. 
This allows to introduce a discrete grid with points indexed 
,i j . The magnitude of the deformation vector component 

( , , )lU x y t  at any point ( , )i j  of the discretization grid will 
be defined by the following rule: 

   
( ), , ; ,l lU i j k U i x x j y y k t⎛ ⎞= Δ − Δ Δ − Δ Δ⎜ ⎟

⎝ ⎠
1 1
2 2

, 
 

(10) 

where ,l x y=  only; i ≥ 1 , j ≥ 1  and k ≥ 0 . 
 The additional index k  is the calculation time count 
with step .tΔ  The time step must be appropriately adjusted 
to assure the convergence of the results obtained [26-28]; 
we shall discuss this issue further in this Section. 
 In the next step the wave equation is discretized by the 
approximation of the space and time derivatives in Equa-
tions (5) and (6) to finite differences at points ( , , ).i j k  
Central differences are used in the case of space deriva-
tives: 
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 The second time derivative of the deformation vector in 
Equations (5) and (6) is represented as the product of two 
difference operators, 

tD+  and tD−  [26]: 
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and still l = x  or y. 
 Replacing the derivatives in (5) with the above finite 
differences leads to the following difference equation: 
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where the formulas for ,xxT  yyT  and xyT  are as specified 
in Appendix A at the end of this paper, and ( , )ρ i j  is the 
material density at point ( , ).i x j yΔ Δ  
 By a similar procedure applied to the derivatives in (6) 
we get the formula for ( ), ,yU i j k+ + +1 1

2 2 1 : 
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Below we present the algorithm of the FDTD-based 
determination of the transmission coefficient for elastic 
waves propagating in a 2D (or a 1D) phononic crystal: 
1. Establish the geometry and size of the composite by 

the appropriate settings of the material and structural 
parameters. 

2. Use a rectangular grid to divide the composite into 
small x yΔ × Δ  cells. The values of xΔ  and yΔ  are 
determined by the established density of the grid. 

3. Set the time step tΔ , which must meet the stability 
condition: 

t
c

x y

Δ ≤
+

Δ Δ2 2

1

1 1
2

, 

 where c  is the highest of the velocity values, longitudi-
nal or transversal, in one of the component materials of 
the composite under consideration. The step tΔ  must 
be adjusted so as to prevent an unlimited increase of 
results of the numerical calculations with time, i.e. as-
sure their convergence. 

4. Set the initial conditions or generate a wave packet at 
one side of the composite (left in this paper) starting 
from time t = 0  till the entire packet is formed. For this 
purpose, the magnitudes of the components of the 
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deformation vector lU  are calculated on the grid ( , )i j  
by formulas: 

sin( )expy
l l

y yU α ωt β ωt
c c

⎡ ⎤⎛ ⎞
⎢ ⎥= − − −⎜ ⎟
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 where the factor α is the maximum wave amplitude (for 
convenience we assume its value to be comparable with 
the size of the composite along the x axis); lc β  is the 
full width at half maximum. 

5. Perform the simulation. At each successive moment 
(k > 1) and each point ( , )i j  of the grid, with the 
exception of the limiting points miny j=  and max ,y j=  
calculate the values of lU  using the formulas (14) and 
(15). The values of potential lU  at intermediate points 
not included in the grid should be calculated as the 
arithmetic mean of lU  values at neighboring grid points. 

6. Set the boundary conditions. It should be emphasized 
that the system studied by the finite difference method 
must always be finite. This implies the necessity of 
setting adequate boundary conditions at the limits of 
the calculation area; from a number of possibilities, in 
our calculations we assume periodic boundary 
conditions along the y axis and absorption boundary 
conditions along the x axis. The periodic boundary 
conditions along the x axis read: 

max( , , ) ( , , ),l lU i j k U j k+ =1 1  

max( , , ) ( , , )l lU i j k U j k= 0 , 
 where i = imax and i = 0 correspond to the last and the 

first plane of the calculation area, respectively; l = x or y. 
 Along the direction of propagation (the y direction), i.e. 

for points with indices minj j=  and max ,j j=  we set 
Mur’s first-order absorption boundary conditions [29]. 
Thus: 
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 where δ x= Δ  for ,l x=  δ y= Δ  for ,l y=  and c is the 
longitudinal or transversal velocity of wave propaga-

tion, respectively, in the material at the extremities of 
the composite under consideration.  

7. Perform the Fourier transformation of the obtained 
time dependence ( )lU t  to the frequency space ( )lU ω  
by the fast Fourier transformation technique. 

8. Determine the transmission coefficient Γ  as the am-
plitude ratio of the outgoing wave (out) (at the right 
side of the composite) to the incoming signal (in), by 
the formula: 

out

in

( ) ( ) |
.

( ) ( ) |

x y

x y

U ω U ω

U ω U ω

+
Γ =

+

2 2

2 2

 
 We tested the method and the developed computer 
program by carrying out numerical simulations of 
longitudinal modes of elastic waves propagating through 
a superlattice composed of two semiconductors, GaAs and 
AlAs. Such systems have already been studied intensively 
and reference data are available in the literature. Considering 
the subject matter of this study, we decided to refer to a paper 
by S. Mizuno et al. [30] and use the parameter values 
specified therein. Thus, we performed a full simulation for a 
multilayer structure composed of two subsystems. Subsystem 
1 is a multilayer consisting of 20 layers of AlAs, each 6 
monolayer (ML) thick, alternating with GaAs layers of the 
same thickness. Subsystem 2 is a composite consisting of 15 
layers, each 9 ML thick, alternating with GaAs layers of the 
same thickness. The assumed thickness of a single AlAs or 
GaAs monolayer along the [100] direction is 2.83 Å, which 
means the total thickness of the system is 510 Å. 
 The results of the numerical simulations are shown in 
Fig. 2 (dotted line). In the same Figure we indicate the values 
of transmission coefficient obtained by the transfer matrix 
method in paper [30]. Two band gaps, or frequency ranges 
with a very low transmission coefficient, are seen to occur in 
the frequency range from 0.45 THz to 0.85 THz. The 
occurrence of two gaps is a consequence of the presence of 
two subsystems with respective lattice constant values 
12 ML and 18 ML. The lower-frequency gap corresponds to 
the latter. It should be stressed that though the results are in 
qualitative agreement with the literature data, quantitative 
differences persist and could not be eliminated by increasing 
the accuracy of the discretization step. The main difference 
is a shift of the bottom limits of both band gaps to higher 
frequency in the simulation results. This is probably due to 
the way of determination of the transmission coefficient. 
Mizuno et al. [30] determine Γ from equations that only 
describe the propagation of longitudinal waves, while our 
FDTD simulations are based on full conjugate equations 
describing both the longitudinal and the transversal waves, 
hence the observed transmission differences.  
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Fig. 2. The transmission coefficient vs. frequency for elastic 
waves propagating through 1D phononic crystal consisting of two 
composites. Composite 1 comprises 20 layers of AlAs, each 6 ML 
thick, alternating with GaAs layers of the same thickness. 
Composite 2 consists of 15 layers, each 9 ML thick, alternating 
with GaAs layers of the same thickness. Solid and dotted lines 
represent data from [30] and the results of our numerical 
                            simulations, respectively 

 
 

III.  PLANE  WAVE  METHOD 
 

 In this Section we present the technique of calculating 
the phononic band structure based on solving the elastic 
medium wave Equation (1) by the well-known plane wave 
method (PWM) [5, 31, 32]. In this technique, the differential 
wave Equation (1), in which the coefficients are periodic 
functions of two-dimensional position vector ( , ),r x y=  is 
transformed into the reciprocal space.  
 As the structure considered in this paper is homogene-
ous along the z axis, the problem reduces to two dimen-
sions. Moreover, if the wave propagation is confined to the 
plane of periodicity of the phononic crystal, Eq. (1) splits 
into two independent equations [32]:  
i)  an equation describing XY modes, or oscillations polar-

ized in plane (x, y): 

m l m l

m l l l m

U U U Uλ μ
ρ x x x x xt
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2
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(16) 

 where m, l = 1, 2 (Cartesian x or y components, respec-
tively), and 

ii) an equation describing Z modes, or oscillations polar-
ized along the rod axis, i.e. along the z axis: 

[ ].z
z

U μ U
ρt

∂ = ∇ ⋅ ∇
∂

2

2

1  
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 As the coefficients in the equations of motion (16) and 
(17) are periodic functions, by virtue of Bloch's theorem 
the deformation vector ( , )U r t  can be expressed as [31]: 

( ) ( )( , )
i k r ωt iG r

k
G

U r t e U G e
⋅ − ⋅= ∑ , 

(18) 

k being a two-dimensional Bloch vector, and G  denoting 
a two-dimensional reciprocal lattice vector. 
 Those of the material parameters which are periodic 
functions can be Fourier-expanded. For Z modes, described 
by (17), Fourier expansion can be applied to the inverse of 
mass density, ,ρ−1  and to the coefficient ;μ  in the case of 
XY modes also the coefficient λ can be Fourier-expanded: 

( ) ( )
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 All the coefficients, ( ) ( ) ( ), ,ρ G μ G λ G−1 , in the above 
expansions are calculated from the inverse Fourier 
transform and will have the same form; for example, the 
inverse of mass density will read: 

( ) ( ) ,iG rρ G ρ r e dr
S

− − − ⋅= ∫∫1 11  
 

(20) 

where the integration is performed over the surface S of the 
2D unit cell. These integrations can be done analytically 
only for regular shapes, and numerically otherwise. For 
superlattices of the type considered in this paper, with 
periodically corrugated interfaces, the integration can be 
performed analytically; the respective formulas are pre-
sented in Appendix B. 
 The substitution of (18) and (19) into (16) leads to an 
infinite system of algebraic equations for XY mode 
eigenvalues ( )ω k2 : 
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where m, n, l = 1, 2 (x or y respectively). Analogically, 
the following Z mode eigenvalue problem is deduced 
from (17):  

( ) ( ) ( ) ( )
,

,
', "

( )

" " ' ' " ( ')

z k

z k
G G

ω U G

ρ G G μ G G k G k G U G−

=

= − − + ⋅ +∑

2

1
  (22)

 
 

 In the numerical solution of (21) and (22) we used 
standard functions from the GSL library [33] for solving the 
eigenvalue problem, i.e. gsl_eigen_nonsymm. The number 
of reciprocal lattice vectors involved in Fourier expansions 
(18)-(19) is limited by the condition , ,x yN n n N− ≤ ≤  
confining the magnitudes nx and ny of the reciprocal lattice 
vector components to the interval , .N N−  From the 
resulting finite system of algebraic equations 6N + 3 
allowed frequencies ( )ω k  are deduced for each wave 
vector from the first Brillouin zone. All the results pre-
sented in this paper were obtained for N = 7.  
 

 

Fig. 3. Phononic band structure calculated by the plane wave 
method for superlattice consisting of 25.47 Ǻ (9 ML) thick GaAs 
layers alternating with AlAs layers of the same thickness. Stars 
and dark dots represent branches of Z modes obtained from (22) 
and branches resulting from the solution of (21), respectively. 
Longitudinal modes correspond to the elastic waves studied in 
[30], the phononic band gap for longitudinal modes is marked in 
gray. For verification purposes the material parameter values used 
                 in the calculations are as specified in [30] 
 
 
 First let us apply the PWM to a simple system 
represented by a superlattice consisting of alternating GaAs 
and AlAs layers, and thus periodic only in one direction, 
namely the y direction, which is also the propagation 
direction of the elastic wave. This will allow us to test our 

method by comparing the results obtained to those reported 
in the literature [30] and also to those obtained by the 
FTDT method in the previous Section, and, at the same 
time, to explain the basic properties of the spectrum of 
elastic waves propagating in phononic crystals. Figure 3 
presents the elastic wave frequencies versus the first 
Brillouin zone wave vector component ky . Three types of 
branches are seen in the plot: two resulting from the 
numerical solution of (21) (dark dots), and one, corre-
sponding to Z modes, obtained from (22) (stars). 
 As the system is undistinguishable along the directions 
perpendicular to the direction of periodicity, modes pola-
rized along the z axis (Z modes) and those polarized along 
the x axis must have the same frequencies. This is confirmed 
by the results depicted in Fig. 3, showing double-degener-
ate branches corresponding to transversal vibrations and 
branches of longitudinal modes vibrating along the propa-
gation direction. The propagation of longitudinal modes in 
such systems has already been studied in the preceding 
Section and by Mizuno et al. [30], by the FDTD method 
and the transfer matrix method, respectively. In the PWM 
technique the superlattice is regarded as an equivalent of 
subsystem 2 of the composite discussed in Section II. The 
comparison of results indicates a very good agreement in 
terms of the position and width of the first band gap in the 
spectrum of longitudinal modes. This allows us to proceed 
to further investigations. 
 
 

IV.  PHONONIC  SUPERLATTICES  
WITH  PERIODICALLY  CORRUGATED 

INTERFACES 
 
 Let us investigate the effect of a periodic modulation of 
interfaces on the spectrum of vibrations of semiconductor 
superlattices. We shall start from PWM calculations. The 
unit cell of the superstructure considered is as defined in 
Fig. 4. By a periodic repetition of the unit cell we get 
a superstructure based on a rectangular lattice with lattice 
vectors (ax, 0) and (0, ay); the interface perturbations are 
modeled by cylinders of radius r disposed periodically 
along the x axis and parallel to the z axis. The assumed 
layer thickness values are 9 ML and 18 ML for GaAs 
(material A) and for material B (AlAs), respectively. In the 
case of unperturbed interfaces (cylinder radius r = 0.0) we 
get a simple superlattice with the dispersion relation as 
shown in Fig. 5, by empty circles (all the material 
parameters used in the calculations are specified in 
Table 1). We can see two phononic band gaps between: 
0.33-0.36 THz and 0.68-0.71 THz. The introduction of 
cylinders with radius r = 5.094 Å, spacing ax = 22.923 Å 
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made from the same material as A (i.e. GaAs), results in a 
slightly modified dispersion relation (Fig. 5(a), crosses). 
The frequencies of almost all the modes are shifted down; 
the shift clearly increases with frequency and is greatest at 
the limits and in the center of the Brillouin zone but only 
for the bands just under the gaps (as seen in the enlarged 
segments of the plot, Fig. 5(b) and (c)). This behavior can 
be explained by the localization of modes connected with 
upper branches in perturbed regions. Also depicted in 
Fig. 5 is the dispersion relation for longitudinal phonons 
  
 

 
Fig. 4. Unit cell of phononic superlattice with periodically 
modulated interfaces. The interface modulation is modeled by 
cylinders of material C and radius r attached to material A (with 
thickness ad); thus, the y distance between the origin of the co-    
ordinate system and the center of each cylinder is dy a r= +0 1 2  

 

 
Fig. 5. (a) Dispersion of longitudinal vibrations propagating along 
the y axis in superlattice consisting of 9 ML thick GaAs layers 
alternating with 18 ML thick AlAs layers: empty circles, crosses 
and full circles correspond to the cases with unperturbed 
interfaces, with cylinders distributed sparsely along the interfaces 
(ax = 22.923 Ǻ), and with touching cylinders (ax = 10.188 Ǻ), 
respectively; (b) and (c) present enlarged segments of the 
dispersion plot (a) around the first and the second band gap, 
                                             respectively 

Table 1. Material parameters of GaAs and AlAs used for the 
determination of the transmission coefficient and in the PWM 
calculations for 1D phononic crystal with periodically perturbed 
                                    interfaces 

 cl  
[m/s] 

ct  
[m/s] 

ρ   
[kg/m3] 

λ  
 [103] 

μ   
[103] 

AlAs 5 980 3 600
 

3 760
 

36 999 904 48 729 600 

GaAs 5 030
 

3 030 5 320
 

36 916 012 48 842 388 

 
with perturbation spacing ax = 10.188 Å, which corre-
sponds to adjacent cylinders touching one another; the 
corresponding dispersion is indicated by full circles. The 
previously observed changes are seen to continue. 
 Let us now apply the FDTD method presented and 
tested in Section II to the determination of the transmission 
coefficient for elastic waves passing through a multilayer 
system with interface perturbations as described above. 
Table 1 presents the material parameters used in a number 
 

 
Fig. 6. One-dimensional phononic crystal with periodically 
perturbed interfaces. The system depicted corresponds to the 
composite assumed in the FDTD simulations. Layers of AlAs, each 
composed of 9 AlAs monolayers (white areas), alternate with 
18 ML thick layers of GaAs (shadow areas). Interface perturbations 
are modeled by the addition of cylinders (parallel to the z axis) with 
radius r and spacing ax, made of GaAs. The unit cell of the system 
with discrete translational symmetry used in PWM calculations, 
                corresponding to this composite, is shown in Fig. 4 

 

 
Fig. 7. Transmission coefficient versus frequency in the 1D pho-
nonic crystal schematically depicted in Fig. 6, with periodically 
perturbed interfaces. As the gray area we have marked the 
           phononic band gap received from Plane Wave Method 
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of simulations performed for wave packets generated on 
the left side of the composite at different frequencies in the 
range from 0.2 THz to 0.5 THz  and from 0.55 THz to 
0.8 THz, i.e. around both band gaps found with the PWM. 
The phononic crystal studied in the FDTD simulations is 
schematically depicted in Fig. 6. 
 Figure 7 shows the frequency dependence of the trans-
mission coefficient in the structure defined above, calcu-
lated by the FDTD method. The following parameter 
values were assumed in the calculations: radius r = 5.094 Å 
of the cylindrical perturbation, perturbation spacing 
ax = 31.32 Å along the x axis, height x = 93.96 Å of 
the omposite (along the x direction), total width y = 
3.0564 μm of the composite (along the propagation 
direction). The discretization step is Δx = 1.3423 Å and Δy 
= 1.698 Å in the x and y direction, respectively. A first 
phononic gap is seen to occur around the frequency of 
0.35 THz. Also deep around the frequency of 0.69 THz in 
transmission spectra, despite its very blurred edges, 
represents an actual phononic gap, as confirmed by the 
images of a propagating wave packet at time step 30 000 
from the beginning of the simulation presented in Fig. 8. 
Figure 8(a) shows such a wave packet (Uy component of 
the deformation vector) of frequency 0.690 THz, the cen-
tral frequency of the gap; a majority of the wave packet is 
reflected by the composite and only a minor part reaches 
the detector at the opposite side. The situation is reversed 
in the case of the 0.770 THz wave depicted in Fig. 8(b). 
Almost the entire packet passes through the composite, and 
only a small part is reflected, which is a clear evidence that 
this wave frequency is already beyond the gap.  
 
 

 
Fig. 8. Uy component of the deformation vector of elastic wave 
propagating through phononic crystal with perturbed interfaces, as 
obtained in FDTD simulations at time step k = 30 000: a) a wave 
packet of frequency 0.690 THz, within the energy gap (Fig. 7); 
b) a wave packet of frequency 0.770 THz, beyond the energy gap. 
The composite is situated in the middle and marked by the gray 
                                                   area 

 
 The obtained band gaps agree very well with those from 
PWM, as one can see in Fig. 7, where by gray areas the 

phononic band gaps calculated with PWM are marked, too. 
They  have sharp borders, as usually is for infinite crystals 
and opposite to finite ones. But further investigations are 
necessary to explain in details quite big broadening of the 
second phononic gap obtained in FTDT simulations. This 
effect could also be attributed to conjugation of longitudi-
nal and transversal modes.    
 
 

V.  SUMMARY 
 
 We have used two techniques, the plane wave method 
and the finite difference time domain method, for calculat-
ing the dispersion relation and the transmission coefficient 
for elastic waves propagating in phononic crystals. Of these 
two complementary numerical techniques, the PWM 
method has a number of limitations, including the require-
ment of an infinite size of the studied composite, the 
components of which, moreover, must be in the same 
phase. These limitations do not apply in the FDTD method; 
therefore, this technique can be used for simulating the 
propagation of waves through finite composites, which are 
better models of the experimental systems. However, also 
the FDTD method has major disadvantages, such as the 
necessity of using a dense discretization grid, which results 
in very long calculations compared to those based on the 
PWM technique. Moreover, a single FDTD simulation 
provides information on the system response to the incident 
wave of only one frequency, while in the PWM technique 
the full dispersion relation is obtained.  
 We have verified and then used both methods for 
studying vibrational modes and the transmission of elastic 
waves through GaAs/AlAs semiconductor superlattices. 
We focused on the effect of a periodic modulation 
introduced at the interfaces between GaAs and AlAs on the 
position and width of the phononic band gaps. The 
interface modulation was modeled by cylindrical rods of 
GaAs disposed along the interfaces. This extra perturbation 
introduced to the phononic crystal is found to cause only 
minor modifications of the band gaps of longitudinal 
modes: the shift down of the phononic bands. The most 
significant shift is observed for modes laying just under the 
gaps, this can be attributed to localization of those 
vibrations in perturbed regions. Therefore, the periodic 
interface corrugations can be expected to have a minor 
effect on the phononic gaps also in real systems, but can 
allow for independent modeling of phononic band gap 
edges in some range of frequency. Further detailed calcula-
tions are necessary to precisely describe the role of 
different kind periodic interface perturbations on phononic 
band gaps and these studies are under investigation. 
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Appendix A 

 In this Appendix we present the formulas for coeffi-
cients xxT , yyT , xyT  in Equations (14) and (15) used in 
numerical simulations based on the FDTD method: 
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Appendix B 

 Below we present the Fourier coefficients of periodic 
material parameters used in (21) and (22) for a phononic 
SL with periodic interface modulations as described above 
in this paper, and with unit cell as depicted in Fig. 4. Thus, 
the SL consists of two materials, A and B, of respective 
thickness ad and ay, and the periodic modulations of their 
interfaces are modeled by small cylinders of material C 
with radius r. The y and x dimensions of the unit cell are ay 
and ax, respectively. The Fourier coefficients of the 
periodic material parameters can be calculated from the 
following equations: 
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where ( )F G  stands for ( ) ( ),ρ G μ G−1  or ( )λ G , and FA, FC, 
FB  for the respective material parameters in material A, B 
or C; J1 is a Bessel function of the first kind, G is the length 
of the reciprocal lattice vector, and Gx, Gy are its Cartesian 
components.  
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