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I.  INTRODUCTION 
 

 The generalized theories of thermoelasticity have been 
developed to overcome the infinite propagation speed of 
thermal signals predicted by classical coupled dynamical 
theory of thermoelasticity (Biot [1]), the so-called “paradox 
of heat conduction”. The subject of generalized thermo-
elasticity covers a wide range of extensions of classical 
theory of thermoelasticity. We recall the first two earliest 
and well-known generalized theories proposed by Lord and 
Shulman [2] and Green and Lindsay [3]. In the model [2], 
the Fourier law of heat conduction is replaced by Maxwell-
Cattaneo law that introduces one thermal relaxation time 
parameter in the Fourier law whereas in the model of Green 
and Lindsay, two relaxation parameters are introduced in 
the constitutive relations for the stress tensor and the 
entropy. Later on, Green and Naghdi [4-6] proposed 
another three models, which are subsequently referred to as 
GN-I, II and III models. The linearized version of model-I 
corresponds to the classical thermoelastic model. In model-II 
the internal rate of production of entropy is taken to be 
identically zero implying no dissipation of thermal energy. 
This model admits undamped thermoelastic waves in 

a thermoelastic material and is best known as the theory of 
thermoelasticity without energy dissipation. Model-III 
includes the previous two models as special cases, and 
admits dissipation of energy in general. In this model, the 
proposed heat conduction law is of the form:  

  ( ) ( ) ( )*q P, t K P, t K v p, t ,θ⎡ ⎤= − ∇ + ∇⎣ ⎦  

where v ,θ=  and q, , vθ  being the heat flux vector, the 
temperature and the thermal displacement. Here both K and 
K* are positive constants. K is the thermal conductivity and 
K* is the conductivity rate. The K* (of physical dimension 
conductivity/time) is a material constant, characteristic of 
the theory. Subsequently, Tzou [7] proposed a dual phase-
lag heat conduction model to incorporate the effects of 
microscopic interactions in the fast-transient process of 
heat transport mechanism in a macroscopic formulation. 
Two different phase-lags (one for the heat flux vector and 
the other for the temperature gradient) have been 
introduced in the constitutive relation between heat flux 
vector and the temperature gradient. The law of heat 
conduction is thus generalized to the form 

( ) ( )q Tq P, t k P, t .τ θ τ⎡ ⎤+ = − ∇ +⎣ ⎦  
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The qτ  is interpreted as the relaxation time due to fast 
transient effects of thermal inertia, and Tτ  is the phase-lag 
of temperature gradient, interpreted as the delay time 
caused by the microstructural interactions (small scale 
effects of heat transport in space such as phonon electron 
interaction or phonon scattering). Stability of dual-phase 
lag heat conduction was discussed by Quintanilla [8]. 
Thermoelastic model corresponding to dual-phase-lag heat 
conduction is proposed by Chandrasekharaiah [9]. Later 
on, Hetnarski and Ignaczak [10] introduced another model 
referred to as the low temperature thermoelastic model. In 
this model, unlike in the classical thermoelasticity theory, 
the heat flux and the free energy depend on the tempera-
ture, the strain tensor and the elastic heat flow. An exten-
sive review on the development of the above-mentioned 
models is reported by Chandrasekharaiah [9]. Hetnarski 
and Ignaczak [11] also examined thoroughly the above-
mentioned models by focusing the theoretical significance 
of the models.  
 Very recently, Roychoudhuri [12] has introduced a new 
model of thermoelasticity theory, called the three-phase-lag 
thermoelastic model, in which the Fourier law is replaced 
by an approximation of the equation  

( ) ( ) ( )*
q T vq P, t K P, t K v p, tτ θ τ τ⎡ ⎤+ = − ∇ + + ∇ +⎣ ⎦  

that includes three different phase-lags for the heat flux 
vector, the temperature gradient and the thermal displace-
ment gradient. Here v ,τ  the delay time in thermal displace-
ment gradient is also introduced in addition to qτ  and T .τ  
This model is more generalized and contains the previous 
models as special cases. The stability in the three phase-lag 
heat conduction equation and the relations among the three 
material parameters are discussed by Quintanilla and Racke 
[13]. Recently, Kar and Kanoria [14] employed this theory 
of thermoelasticity with three phase-lags to discuss 
a problem of thermoelastic interactions on functionally 
graded orthotropic hollow sphere under thermal shock. 
A problem of a spherical shell of viscoelastic medium of 
Kelvin-Voigt type is also studied by Kar and Kanoria [15] 
in the context of the thermoelasticity theory with three 
phase-lags.  
 Several researchers have attempted to investigate the 
propagation of harmonic plane waves in elastic medium. 
The propagation of plane waves in classical thermo-
elasticity is discussed by Lessen [16 ], Deresiewicz [17], 
Chadwick and Sneddon [18] and Chadwick [19]. Nayfeh 
and Nemat-Nasser [20] and Puri [21] studied the propaga-
tion of plane waves in generalized thermoelasticity with 
one relaxation time. The propagation and stability of har-
monically time-dependent thermoelastic plane waves in 

TRDTE is reported by Agarwal [22]. Wave propagation 
under Green-Lindsay model and Lord-Shulman model are 
re-examined by Haddow and Wegner [23]. Later on, Suh 
and Burger [24] found the order of magnitude of thermal 
relaxation time in TRDTE. Chandrasekharaiah [25] discus-
sed the plane waves in the context of thermoelasticity of 
GN-II model. Puri and Jordan [26] investigated the 
propagation of plane waves under GN-III thermoelasticity 
theory.  
 The purpose of the present investigation is to study the 
propagation of plane harmonic waves in a homogeneous 
and isotropic unbounded medium in the context of the three 
phase-lag thermoelastic model. Firstly, we obtain the 
dispersion relation solutions of longitudinal plane waves 
and then we find the asymptotic expansions of several 
qualitative characterizations of the wave fields, such as 
phase velocity, specific loss and penetration depth for the 
high and low frequency values. Numerical computation of 
the above-mentioned quantities for intermediate values of 
frequency are carried out by using the software package 
Mathematica. In order to analyze the effects of phase-lags 
on the propagation of waves, a comparative analysis of the 
analytical and numerical results obtained in the present 
problem with those of GN-III model as reported in [26] is 
presented in a detailed way.  
 
 

II.  GOVERNING  EQUATIONS 
 
 The field equations governing the displacement and the 
thermal fields in isotropic media in the absence of body 
forces are  

  ij , j iu ,=σ ρ  (1) 

  ( )02ij ij ij ije e ,= + − −σ λ δ μ β θ θ δ  (2) 

  ( )1
2ij i , j j , ie u u .= +  (3) 

 The heat conduction equation in the context of hyper-
bolic thermoelasticity with three phase-lags [12] is  

  
( )

2 2 2

2
2

02
11
2

* *
v T

q q v i ,i

K K

pc T u ,
t t

∇ + ∇ + ∇ =

⎛ ⎞∂ ∂
= + + +⎜ ⎟

∂ ∂⎝ ⎠

θ τ θ τ θ

τ τ θ β
 (4) 

where * *
v vK K .= +τ τ  

 In the above equations, ui is the component of dis-
placement, eij is the strain tensor, ijσ  is the stress tensor, λ  
and μ are Lame’s elastic constants, 3 2( ) t ,β λ μ α= +  tα  – 
coefficient of linear thermal expansion. θ is the absolute 
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temperature, T0 is the reference temperature, ρ  is the mass 
density, vc  is the specific heat at constant strain. The 

T q,τ τ  and vτ  are the phase-lags of the temperature gradi-
ent, the heat flux and of thermal displacement gradient 
respectively, such that v T q .τ τ τ< <  K is the thermal con-
ductivity. K* is the rate of thermal conductivity and 
characteristic of the theory of thermoelasticity of GN-III 
and the thermoelasticity with three phase-lags. The ∇2 is 
the Laplacian operator. A dot denotes the differentiation 
with respect to time t.  
 e is the dilatation and given by  

  e = eii.  

 From Equations (1), (2), and (3) we obtain a displace-
ment equation of motion as  

  ( )i , jj j , ji i iu u , u .+ + − −μ λ μ βθ ρ  (5) 

 Using the relation * *
v vK K ,τ τ= +  the Equation (4) is 

reduced to the form  

  

( )

( )
2

2
02

11
2

* *
ii v ii T ii

q q v i,i

K , K K , K ,

t c T u .
t t

+ + + =

⎛ ⎞∂ ∂
= + + +⎜ ⎟

∂ ∂⎝ ⎠

θ τ θ τ θ

τ ρ θ β
 (6) 

 For the sake of simplicity, we introduce the non-dimen-
sional variables and quantities 

  

0

0 0 0

1 2 22 2
0 0

' ' 'i i
i i

r r

q' ' ' 'v T
v T q

r r r r

*

vv v r

u T xu , , x ,
c t T c t

tt , , , ,
t t t t

K KK , K , a ,
cc c c c t

−
= = =

= = = =

= = =

θθ

ττ ττ τ τ

β
ρρ ρ

 

where rt  (>0) is a characteristic response time for 
a medium and 0 2( )c λ μ ρ= +  is the velocity of longi-
tudinal elastic wave. For the clarity in the equations of our 
analysis, we drop the primes from now onwards.  
 The Equations (5) and (6) therefore reduce to the forms 

  ( )2
0 0i i , jj j , ji ic u u u T ,= + + −ρ μ λ μ β θ  (7) 

  

( )

( )

1 2 1 2

2
2

2 ,2

, , ,

11 .
2

ii v ii T ii

q q i i

K K K K

a u
t t

+ + + =

⎛ ⎞∂ ∂
= + + +⎜ ⎟

∂ ∂⎝ ⎠

θ τ θ τ θ

τ τ θ
 (8) 

 The transverse waves can be shown to be not modified 
by, nor contributed to, the temperature field of the medium 

[20]. Therefore, we will be seeking only the longitudinal 
plane wave solution in the form  

  ( )i ii t n x
j ju Ad e −= ω γ  (9) 

  ( ) ,i ii t n xBe −= ω γθ  (10) 

where ω 0> is the dimensionless frequency of wave, jd  is 
the unit vector in the direction of displacement, jn  is the 
unit vector normal to the wave front and xj is the position 
vector. γ  is a complex constant and A and B are complex 
amplitudes. ( )Reω γ  is phase velocity of waves. Equations 
(9) and (10) then correspond to the dilatational waves for 
which 2ω π is the frequency and ( )2 Reπ γ is the 
wavelength. Obviously, for the waves to be physically 
realistic Re( ) 0γ >  and Im( ) 0γ ≤  must hold.  
 
 

III.  DERIVATION  OF  DISPERSION RELATION 
 

 Substituting Equations (9) and (10) into Equations (7) 
and (8) and using the property 1,j j j jd n n n= =  we obtain 
after some manipulations 

  ( )2 2
1 0A i a Bγ ω γ− − =   (11) 

  ( ){

}

3 2 2 4
2 2

2 2
1 2 2 1

2 2 4 3

1
2

1 0,
2

q q

T v

q q

a i a A

B K K i K K

i

⎛ ⎞⎡ ⎤− − − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

⎡ ⎤+ − + + +⎣ ⎦

− + − =

τ ω γ ω τ ω γ

γ τ ω ω ω τ

ω τ ω τ ω

  (12)  

where   

  0
1 .

2
Ta =

+
β

λ μ
   

 For non-trivial solutions, the determinant of the coeffi-
cient matrix in the above system of Equations (11) and (12) 
must be zero. Then we have a quadratic dispersion relation 

  

( )
( )

( )

4 2
1 2 2 1

2
2 2 4

1 2

3
2 1

2 6
4 5

( )

2

0,
2

T v

q
T

q v

q
q

K K i K K

h
K h K

i K h K

h
i

− + + +
⎡ ⎛ ⎞
⎢− + − + +⎜ ⎟

⎜ ⎟⎢ ⎝ ⎠⎣
⎤
⎥+ + + +
⎥⎦

⎛ ⎞
+ − + =⎜ ⎟

⎜ ⎟
⎝ ⎠

γ τ ω τ ω

τ
γ ω τ ω

τ τ ω

τ ω
ω τ ω

  (13) 

where 1 2, 1 .a a hε ε= = +   
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 By setting Z γ ω=  and multiplying throughout by 
2

1 2 2 1( )T vK K i K Kτ ω τ ω− − +  we arrive at 

( ) ( )( )

( )

2 22 2 4 4
1 1 2

2 2 2 4
1 2 2

3
3 4

1[ ]
2

0.

T

q T

K A K Z

P iQ Z K A K

i A A

+ + +

⎛ ⎞− − + + + +⎜ ⎟
⎝ ⎠

+ − + =

ω τ ω

ω τ τ ω

ω ω

 (14) 

 Here we have used the notations 

  2 4 3
1 2 5 3 4, ,P N N A Q hA hAω ω ω ω= + + = −   

  ( )2
1 1 1 2 1 2, ,N hK K N A A h= + = +  

  
( ) ( )2 2 2

1 2 1 2 1 2 1

2
2 2 2 1 1

2 2 ,

1 ,
2

T v v

q T q v q

A K K K K K K

A K K K K

= − + +

= − + −

τ τ τ

τ τ τ τ τ
 

2 2
3 2 1 1 4 2 1 2

2
5 2 2

1 1, ,
2 2

1 .
2

q v q q v q T

T q T

A K K K A K K K

A K h K

= − + = + −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

τ τ τ τ τ τ τ

τ τ τ

 
 The dispersion relation (14) clearly reflects the influence 
of the phase-lag parameters on the harmonic wave. It is noted 
here that for the special case when 0,T q vτ τ τ= = =  i.e. the 
case when all three phase-lags are zero, the Equation (14) 
reduces to the corresponding equation of GN-type III as 
reported by Puri and Jordan [26]. The dispersion relation 
(14) is therefore the more generalized one. 

 
 

IV.  EXPRESSIONS  FOR  ATTENUATION 
COEFFICIENTS  AND  WAVE  NUMBER 

 
 The roots of Equation (14) are 1Z±  and 2Z±  where  

  ( ) ( )
( ) ( )( )

2

1,2 2 22 2 4
1 1 22 T

P iQ D
Z

K A K

ω

ω τ ω

− ±
=

+ +
   (15) 

with 

 [ ] 2 4 6 8
1 2 3 4 5Re ( ) ,D L L L L L= + + + +ω ω ω ω ω   

  ( ) 3 5 7
1 2 3 4Im .D M M M M= + + +⎡ ⎤⎣ ⎦ω ω ω ω ω  

where we denote 

( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

2 3 3 42
1 1 1 1 1 3

2 22
2 1 1 1 1 1 1 1 2 1 2

22 2
1 2 3

2 22 2
3 1 1 2 1 2 2 3 4 1 5

2 2 2
1 5 1 2

2 2
1 2

2 22 2 2
4 4 5 1 5 1 2 1 2 2

5 5

4 2 ,

4 2 2 2 4

2 ,

4 2 2 2

2 2

4 ,

2 2 2 4

q T

T

q T T

L h K K h K K L

L K A hK A K A h K A K A

h K A h A

L A A A hA A h A h A A hK A

K A K K

K K

L h A A A hA A K A K A

L A

τ τ

τ

τ τ τ

= − + +

= − + + + − +

+ −

= − + + + + +

+ − +

−

= − + + − −

= ( )

( ) ( )

( )

( )

( )

( )

2 3 2 3
2

2 22
1 1 3 1 3 1 3

22 2
2 1 3 1 3 2 3 1 4 1 4

2
1 4

22 2
3 1 4 1 4 2 4 3 5 2 3

2 2
4 4 5 2 4

2 ,

2 4 2 ,

4 2 2 2 4

2 ,

4 2 2 2 4

2 4 .

q T

T

T

K

M h K A K A h K A

M A A hA A h A A h K A K A

h K A

M A A hA A h A A hA A K A

M hA A K A

τ τ

τ

τ

−

= − + −

= − − + − +

+

= − + + − +

= −

 Now, only two of the four roots of Z given by Equation 
(15) have the imaginary parts as negative. We are interested 
only in these two roots as only these roots yield the negative 
values of the decay coefficient, Im( )γ . To obtain these roots, 
we use the following theorem of complex analysis [27]: 

Theorem 

 If L x iy= +  and 2 ,p L=  where p is a complex num-
ber, the values of p are given by  

  ( )sign ,
2 2

L x L x
p i y

⎡ ⎤+ −
= ± +⎢ ⎥

⎢ ⎥⎣ ⎦
 

where      

  ( )
1 0

sign
1 0

y
y

y
+ ≥⎧

= ⎨− <⎩
 

 The two values of γ  can therefore be obtained from 
Equation (15) by using the above theorem and the relation 
γ = Z .ω  These two values of γ  correspond to two modes 
of the dilatational wave. One of these waves is predomi-
nately elastic and the other is predominately thermal in 
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nature. Let the value of γ  associated with the former one 
be denoted by 1γ  and the other one by 2.γ   
 The general analysis of waves based on the roots given 
by (15) is highly complicated. We therefore consider our-
selves to the analysis of wave and the effects of the thermal 
relaxation parameter on both the waves in the special cases 
which correspond to the waves of small frequency and 
waves of high frequency. 

 
High-frequency asymptotic expansions 

 We consider 1.ω >>  Expanding the expressions for 1Z  
from Equation (15) in powers of 1ω−  and using the relation 

,Zγ ω=  we obtain after detailed and long calculations the high 
frequency asymptotic expansions for 1γ  and 2γ  as follows: 

  

( )

( )

( )

5 5
1

2 5 5

2 1 5 54 4
2 2

5 5 5 2

2

4
4 2

5 5 5

4
4

5 5 5

11
2 2

2 8 ( )

1 1 1
4 2

1 1
2 2

T

T

A L
K A L

A A LL M
N

L L L K

M
hA

L A L

M
i hA

L A L

ωγ
τ

τ

ω

ω

+ ⎧⎪= + ×⎨ +⎪⎩

+⎡× + + − +⎢
⎣

⎛ ⎞ ⎤⎜ ⎟− + +⎥⎜ ⎟ +⎝ ⎠ ⎦

⎫⎛ ⎞ ⎪⎜ ⎟− − − ⎬⎜ ⎟ + ⎪⎝ ⎠ ⎭

  (16) 

                           ( ) ,→ ∞ω                 

 

( )
( )

( )

5 5
2

2 5 5

2 1 5 54 4
2 2

5 5 5 2

2

4
4 2

5 5 5

4
4

5 5 5

11
2 2

2 8 ( )

1 1 1
4 2

1 1 ,
2 2

T

T

A L
K A L

A A LL MN
L L L K

MhA
L A L

Mi hA
L A L

− ⎧⎪= + ×⎨ −⎪⎩

−⎡× − − − +⎢
⎣

⎛ ⎞ ⎤− − + +⎜ ⎟ ⎥⎜ ⎟ −⎝ ⎠ ⎦

⎛ ⎞ ⎫⎪− − +⎜ ⎟ ⎬⎜ ⎟ −⎝ ⎠ ⎪⎭

ωγ
τ

τ

ω

ω

  (17) 

 ( ).→ ∞ω  

                                                                                                                                          

Low-frequency asymptotic expansions 

 We consider 1.ω <<  Then we find for this case that 

( )

( ) ( )

1 1
1

1

2
1 1 1 2 1 1 1 2 1 1

11 1 1 1

2

3 1 1 1 3 1 12

1 1 1 1 1 1

2

8 8 411
2 8

2 21 ,
4 2 4

N L
K

A L L hA L L L L M A
KL L N L

hA L M hA A L M
i

L N L L N L

+
= ×

⎧ ⎡
+ + +⎪ ⎢× + − +⎨ ⎢ +⎪ ⎢⎣⎩

⎫⎤⎛ ⎞ ⎛ ⎞− − ⎪⎥⎜ ⎟ ⎜ ⎟− − ⎬⎥⎜ ⎟ ⎜ ⎟+ + ⎪⎥⎝ ⎠ ⎝ ⎠⎦ ⎭

γ ω

ω ω

  
  ( )0 ,→ω   (18) 

( )

( ) ( )

1 1
2

1

2
1 1 1 2 1 1 1 2 1 1

11 1 1 1

2

1 3 1 1 3 1 12

1 1 1 1 1 1

2

8 8 411
2 8

2 21
4 2 4

N L
K

A L L hA L L L L M A
KL L N L

hA A L M hA L M
i

L N L L N L

γ ω

ω ω

−
= ×

⎧ ⎡
⎪ + − −⎢⎪× + − +⎢⎨

−⎢⎪
⎢⎪ ⎣⎩

⎫⎤⎛ ⎞ ⎛ ⎞ ⎪+ +⎥⎜ ⎟ ⎜ ⎟− − ⎬⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⎪⎥⎝ ⎠ ⎝ ⎠⎦ ⎭
 

  ( )0 ,→ω  (19) 

 It can be easily shown that all of the expressions: 5 ,L  
1 ,L 5 5A L±  and 1 1N L±  are always positive. 

 
 

V.  ANALYTICAL  RESULTS 
 
 To study the plane waves in details, we derive the 
asymptotic expressions of the important characterizations 
of wave field such as phase velocity, specific loss, penetra-
tion depth of both the modified elastic and modified 
thermal waves and examine these quantities under the cases 
of high frequency values as well as low-frequency values.  
 
(1)  Phase velocity:  

 The phase velocity is given by 

  , 1,2
1,2Re[ ]E TV V ω

γ
= =   (20) 

where EV is the velocity of elastic wave and TV is the 
velocity of the thermal wave. 
 From Equation (16-19) and using (20) the high fre-
quency and low frequency asymptotes are given by 
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High-frequency asymptotics 
 

  ( )2
1 2

5 5

2 1 ,TKV O
L A

⎛ ⎞= + → ∞⎜ ⎟
⎝ ⎠+

τ ω
ω

 (21)  

  ( )
2 12 .2 2

5 5

K TV O
L A

⎛ ⎞
= + → ∞⎜ ⎟⎜ ⎟− + ⎝ ⎠

τ
ω

ω
  (22) 

 
Low-frequency asymptotics            

                                      

( ) ( )21
1

1 1

2 0KV O
L N

= + →
+

ω ω   (23) 

  ( ) ( )21
2

1 1

2 0KV O
L N

= + →
− +

ω ω   (24) 

 
(II) Specific loss:  

 The specific loss, which is defended as the ratio of 
energy dissipated per stress cycle to the total vibrational 
energy is given by 

1,2

1,2, 1,2

Im[ ]
4 .

Re[ ]E T

W W
W W

Δ Δ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

γ
π

γ
  (25) 

 From Equation (16-19) and (25) the high frequency and 
low frequency asymptotics are obtained as  

    
High-frequency asymptotics 

( )
( ) ( )4 5 4

3
1 5 5 5

2W 1A h L M
O

W L L A

− −Δ⎛ ⎞ ⎛ ⎞≈ + → ∞⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

π
ω

ωω
  (26) 

( )
( ) ( )4 5 4

3
2 5 5 5

2W 1 .
A h L M

O
W L L A

−Δ⎛ ⎞ ⎛ ⎞≈ + → ∞⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠−

π
ω

ωω
  (27) 

 
Low-frequency asymptotics       

( )
( ) ( ) ( )3 1 1 3

1 1 1 1

2W + 0 ,   
A h L M

O
W L L N
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(III) Penetration depth:  

 The Penetration depth is defined by 

  , 1,2
1,2

1 .
Im[ ]E T = =δ δ

γ
 (30) 

 From Equation (16-19) and (30) we find the high 
frequency and low frequency asymptotics for penetration 
depth as 
 
High-frequency asymptotics 
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Low-frequency asymptotics 
 

 
( ) ( ) ( )1 1 1 1 3

1 2
3 1 1

4 2
0 ,

2

K L L N
O

A h L M

+
≈ + →

−
δ ω ω

ω
  (33) 

  
( ) ( ) ( )1 1 1 1 3

2 2
3 1 1

4 2
0 .

2

K L L N
O

A h L M

− +
= + →

+
δ ω ω

ω
  (34) 

 
 

VI.  NUMERICAL  RESULTS 
 
 In this section, we carry out the computational work in 
order to illustrate the asymptotic results derived in the 
previous section and thoroughly examine the behaviors 
of phase velocity, penetration depth and specific loss of 
waves. For this, we assume the non-dimensional values 
of the parameters as [26]  

 ε = 0.0168, 1 21.0516, 1.K K= =   

 We take 0.01, 0.015, 0.02.v T qτ τ τ= = =  
 By employing software package, Mathematica 6.0 and 
using the formulae given in Equations (20), (25), and (30), 
we obtain the numerical values of the quantities for both 
the elastic and thermal mode waves directly from Equation 
(14) for various values of ω. In order to analyze the effects 
of phase-lags we compare our results with the correspond-
ing results of GN-III as reported by Puri and Jordan [26]. 
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For this, we also compute the numerical values of different 
characterizations by putting 0.T q vτ τ τ= = =  The results 
are displayed graphically. In all the figures, the solid lines 
represent the profiles in case of thermoelasticity with three 
phase-lags (TETPL) model and the dashed lines represent 
the values in GN-III model.  

 
 

VII.  ANALYSIS  OF  ANALYTICAL  
AND  NUMERICAL  RESULTS 

 
Phase velocity profile 

 Figures 1(a) and 1(b) display the variation of phase 
velocity of an elastic mode wave with respect to .ω  Particu-
larly, Figure 1(b) shows the variation of phase velocity for 
higher values of .ω  We observe from Fig. 1(a) that for 
smaller values of frequency the phase velocity of elastic 
mode wave is an increasing function of ω  under both the 
models. The trend of variation is also similar under both 
the cases. However, Figure 1(b) reveals a prominent differ-
ence between the phase velocity profiles under TETPL and 
GN-III for higher values of frequency. In the case of 
TETPL, the phase velocity of elastic mode wave first in-
creases to a maximum value and then decreases rapidly and 
approaches to its limiting value 0.999887, whereas in case of 
GN-III model the phase velocity increases and approaches to 
its limiting value 1. This is in complete agreement with our 
theoretical result (see expression (21)) and the corresponding 
result as reported by Puri and Jordan [26] which show that 
phase velocity of elastic wave approaches to its constant 
limiting value as ω → ∞  like ~ 2.ω−  
 Figures 1 (c, d) represent the variation of phase velocity 
of a thermal mode wave with frequency .ω  We see from 
Fig. 1(c) that for smaller frequencies the phase velocity of 
a thermal wave is also an increasing function of ω  and the 
nature of variation is similar under both the theories. 
However, for higher values of frequency a significant 
difference between two models is observed from Fig. 1(d). 
Under the case of TETPL, the phase velocity of the thermal 
mode wave increases and attains the limiting value 
8.66124. This lends strong support to our theoretical 
predictions obtained from Equation (22) which shows that 
at infinity it approaches to the constant limiting value as 
( ).ω → ∞  On the contrary, the phase velocity of the 
thermal mode wave is noticed to be an increasing function 
of ω  in case of the GN-III model. This is also in 
agreement with the corresponding result as reported in [26] 
that it varies like ~ ω  as ( )ω → ∞  in this case. 
  

a) 

 

b) 

 
Fig. 1(a,b). Phase velocity of elastic mode wave: solid line: 
                       TETPL model, dashed line: GN-III model 
 

a) 

 

b) 

 
Fig. 1(c,d). Phase velocity of thermal mode wave:  solid line:  

TETPL model, dashed line: GN-III model 
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Fig. 2(a,b). Specific loss of elastic mode wave: solid line: TETPL 

model, dashed line: GN-III model 
 

 

 

 

 
Fig. 2(c,d). Specific loss of thermal mode wave: solid line: 

TETPL model, dashed line: GN-III model 

 

 

 

 
Fig. 3(a,b). Penetration depth of elastic mode wave: solid line: 

TETPL model, dashed line: GN-III model 
 

 

 

 

 
Fig. 3(c,d). Penetration depth of thermal mode wave:  solid line: 

TETPL model, dashed line: GN-III model 

a) a) 

b) b) 

a) 

b) 

a) 

b) 
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Specific loss profile 

 From Figures 2 (a, b) it is observed that under both the 
cases (GN-III and TETPL) the specific loss profile for the 
elastic mode wave also has similar behavior for smaller 
values of frequency by showing a stationary maximum and 
finally decreasing to zero. This profile shows a similar trend 
of variation under both the models for higher values of 
frequency, too. It approaches to zero as ( )ω → ∞  under two 
different models. This agrees with the theoretical predictions 
as we observe from Equation (26) and the corresponding 
equation in [26] that under both the cases the specific loss 
approaches to zero value likes ~ 1ω−  as .ω → ∞   
 The behavior of specific loss of the thermal mode wave 
is depicted in Fig. 2(c,d). Under both the models, specific 
loss of the thermal mode wave tends to zero value as 0ω →  
and Fig. 2(c) shows that there exists no significant difference 
between two models for smaller frequencies. However, as 
ω  increases, a disagreement by two models for this field is 
indicated in Fig. 2(d) as well as in the corresponding theore-
tical results (see Eq. (27) and Eq. (3.9) of [26]). We note that 
for higher values of frequency, this field continuously 
increases and approaches to its limiting value 1 in case of GN-
III model, whereas it first increases from zero value, reaches to 
a maximum value and thereafter it starts decreasing and 
approaches to zero value as ω → ∞  in case of TETPL.   

 
Penetration depth profile 

 Figures 3(a) and 3(c) show the variation of the 
penetration depth profile of the elastic wave and thermal 
wave respectively for smaller frequencies, and show that 
under both the models, the curves of this profile also have 
the similar trend. Penetration depth of elastic wave 
approaches to a constant limiting value as ω → ∞  under 
both the cases, although the numerical values under two 
cases are significantly different for higher frequencies (see 
Fig. 3(b)). The variation of the penetration depth profile for 
higher values of ω  due to the thermal wave is depicted in 
Fig. 3(d). From this figure we note that as ,ω → ∞  it 
approaches to a limiting value (0.530961) in TETPL but in 
case of GN-III it decreases and finds its limiting value zero. 
These results are also completely in agreement with our 
theoretical results (Eqs. (31-34) and the results as reported by 
Puri and Jordan [26]). 
 
 

VIII.  SUMMARY  AND  OBSERVATIONS 
 

 Dispersion relation solutions are determined, and high 
and low-frequency asymptotic results are presented for the 

propagation of the harmonic plane wave propagating in 
a thermoelastic media by employing the theory of thermo-
elasticity with three phase-lags. The effects of phase-lags 
on propagation of wave are analyzed by comparing our 
results with those of thermoelasticity of type GN-III. We 
observed the following significant facts which reflect the 
influence of phase-lags on the plane waves: 
(1) Like GN-III case, there are elastic and thermal mode 

dilatational wave corresponding to 1,2 ,γ  for all 0.ω >  
(2) For small frequency, a similar nature of the curves for 

characterizations of the wave fields like phase velocity, 
specific loss and penetration depth are observed for 
both the models. 

(3) The effects of phase-lags on all characterizations are 
significant for higher values of frequency. 

(4) As ,ω → ∞  all characterizations of the wave fields 
approach a limiting value in TETPL. 

(5) For high frequency, the penetration depth profile 
shows higher values for both the elastic and thermal 
mode waves under TETPL. 
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