
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 15(1), 83-93 (2009)

I. INTRODUCTION

The notions of ubiquitous computing and networking,
and the increasing availability of compact, low power
sensing technologies naturally lead to the idea that we can
expect to see large numbers of sensors embedded in the
fabric of our everyday lives. These sensors can potentially
monitor our health, keep tabs on our children and aging
parents, track the quality of our environment and warn us
of unsafe conditions, assess the impact of earthquakes and
storms on our houses, provide detailed diagnostic informa-
tion about our cars and appliances and help us find
qualified technicians at the lowest possible cost. These are
just a few possibilities for a Real World Web that narrows
the gap between the Web and the real world, but there are
many issues to be considered to achieve this vision. The
World Wide Web was made possible through a combina-
tion of the increasing availability of the Internet, simple
network protocols, and open content and delivery
standards. The Real World Web can only grow and
become self-sustaining if we pay attention to some core
design values of simplicity, openness, and ethics. Recent
developments in cloud computing and Web 2.0 technolo-
gies and design stances provide enablers from which to

build the Real World Web (hereafter abbreviated RWW)
but they also require a shift in thinking away from a classi-
cal Web services and layered standards model.

Standards for sensor and actuator networks such as
Controller Area Network (CAN-bus), Modbus, and
EtherNet/IP are protocols for interacting with automotive,
industrial and manufacturing equipment over secure private
or in-house networks. Protocol implementations and end-
equipment (sequencers, sensors and actuators) are available
but these fall into narrow, specialized markets such as
automobile engine control systems, manufacturing equip-
ment and industrial process control. Other market spaces
such as home automation and security, automotive
entertainment electronics and laboratory automation have
developed parallel but largely non-overlapping design
spaces, protocols and capabilities. On the industrial auto-
mation side these standards are generally aimed at
supporting low-level register and bit operations, and
programming state machines (programmable logic control-
lers). For consumer electronics the emphasis has been on
short-range wireless networks (e.g. IEEE 802.15.1/Blue-
tooth, IEEE 802.15.4, Zigbee and One-Net) and automatic
configuration of a small number of specific device types
relevant to each market.

Enabling Technologies and Design Values for Building
the Real World Web

Donald F. McMullen

University of Kansas

MRB 160, 2030 Becker Drive, Lawrence KS, 66047 USA
 e-mail: mcmullend@ku.edu

(Received: 9 December 2008; published online: 25 March 2009)

Abstract: The notions of ubiquitous computing and networking, and the increasing availability of compact, low power sensing technolo-
gies naturally lead to the idea that we can expect to see large numbers of sensors embedded in the fabric of our everyday lives and that
these could form a “Real World Web” of real-time data sources about our world. Implications for e-Research include sharing of real-time
data from scientific instruments and aggregation of many types of information to answer complex questions as they arise. The World Wide
Web was made possible through a combination of the increasing availability of the Internet, simple network protocols, and open content
and delivery standards. The Real World Web can only grow and become self-sustaining if we pay attention to these same core design
values of simplicity and openness. Recent developments in cloud computing and in Web 2.0 technologies and design stances provide
enablers from which to build the Real World Web, but in addition, require a shift in thinking away from a classical Web services and
layered standards model. This paper explores these issues and the role of the Real World Web as a paradigm for sharing instruments, sen-
sors and other real-time data sources in e-Research collaborations.
Key words: Web 2.0, Real World Web, remote instrumentation, sensor networks, CIMA, e-Science, Web services

user
Tekst maszynowy
CMST 15(1) 83-93 (2009)

user
Tekst maszynowy
DOI:10.12921/cmst.2009.15.01.83-93

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

D. McMullen 84

In parallel but largely in isolation from industrial and
consumer real-time sensing and control applications,
a number of projects have worked to develop open
standards for sharing instruments and sensors in e-Science
and e-Research. Solutions are now available to develop
portable hardware descriptions such as sensorML [1], and
for open instrument services and access protocols such as
the Common Instrument Middleware Architecture (CIMA)
[2], and IEEE 1451 [3]. These systems cover a variety of
design stances, from a focus on embedded devices and
minimalist protocols to a full service oriented architecture,
open protocols and self-describing hardware, all important
in an open environment that values collaboration and
sharing of hardware and information resources.

One approach to including a broad range sensing and
control systems from industrial, consumer and scientific
applications in the RWW is to view these as “service
clouds” accessed through a gateway that incorporates more
broadly used Web protocols and Web 2.0 methodologies
on the “Web” side of the Real World Web. This notion of
hiding the complexity inside service clouds is central to our
architecture for an emergent RWW and will be discussed in
more detail below. As appealing as this approach is for
managing complexity it presents some challenges in sup-
porting both polled and event driven access to real-time
data sources. On the positive side, the ubiquity of stream-
ing media services for on-demand video and audio provides
an excellent model for real-time real-world sensor data.

II. THE REAL WORLD WEB
AND UBIQUITOUS COMPUTING

Sensors together with their associated transducers and

control systems are broadly embedded in our environment
and increasingly becoming an indispensable part of our
everyday lives. They make our cars run efficiently, keep
our indoor climate in perfect balance, monitor our vial signs
when we are ill or injured, and continuously monitor the
weather. The continuous increase in computing power
combined with ever-greater levels of on-chip integration and
resulting size reductions inspired work in the 1990s by Mark
Weiser [4] at Xerox PARC on Ubiquitous Computing
(Ubicomp). The core of ubicomp is the idea that computers
are so small, cheap and powerful that every artefact in our
environment, from toasters to light switches should not be
without one. Yet ubiquitous computing promises to bring
many orders of magnitude more sensors and other measuring
devices into our “data view” of the world. There are a
number of technical hurdles to overcome for the vision of

ubiquitous computing and sensors can be realized. Issues
such as fabrication, programming and networking notwith-
standing, there is another, larger problem of giving meaning
to the gigabytes of data all of these sensors produce.

Neil Gershenfeld, in his book When Things Start to
Think [5], articulates a vision of sensing, computing and
networking embedded in everyday objects. These objects
will exchange information among themselves and with
humans, leading to a blurring of the line between bits and
atoms, and between human intentionality and machine
behaviours. Long before we achieve this state of bliss we
can see material returns on embedded intelligence. Sensor
networks can provide large amounts of useful information
with the potential to improve the quality of our lives if
these information services are universally accessible and
easy to use. Moving materially toward an open and
dynamic Real World Web and an economy of real-time
real-world information will require advances on several
fronts: core technologies for constructing small, power
efficient sensing devices that form the basic building
blocks of the Real World Web; standards for locating and
describing the functions of sensing devices, and
communications technologies that allow the placement of
sensor packages in any environment.

Emerging enablers of this future are low power, low
bitrate wireless and wired networking technologies,
increasing density of flash memory, location awareness
services like the Global Positioning Satellite system and
advances in low cost sensing and transducing technologies.
Wireless technologies such as ZigBee combined with ad
hoc mesh routing provide a highly resilient local com-
munications environment. Getting beyond local com-
munications is a key issue. In one approach data from
many small sensors with wireless interfaces can be
aggregated and sent out to the Internet through special
gateways. Although this is a functional way to bridge
sensing and communication technologies across domains
defined by physical access media, the use of gateways
limits possibilities for direct access to and fine-grained use
of individual sensors and actuators.

IPv6 is an extremely promising high level protocol for
sensor networks because of its huge (2128) address space
and broad availability. With increasing on-chip memory
and processing power IPv6 may also be a candidate for
tiny, embedded processors. 6LoWPAN is a specification
for IPv6 over ZigBee (802.15.4) at low bit rates (RFC
4919, RFC 4944). A number of routing protocols are under
development for 6LoWPAN to implement ad hoc and
hierarchical routing through an 802.15.4 PHY and between
ZigBee and other link layers for IPv6.

Enabling Technologies and Design Values for Building the Real World Web 85

Alternatively there are proposals such as Gershenfeld’s
“Internet 0” or I0 [6] proposal for encoding IP packets in
a wide range of link layers such as low power RF, power
lines, and even printed bar codes. With I0 devices can send
and receive IP packets using whatever link layer is
appropriate, so protocol translations are unnecessary at
boundaries between media types. I0 is made possible by
embedded system processors on which an IP stack can be
efficiently implemented. Unless IPv6 is used, with its very
large address space and self-addressing capability, the I0
approach has significant scaling problems.

Location awareness through GPS and cell phone related
technologies such as Assisted GPS (using cell towers to
triangulate the position of a phone when GPS signal
strength is inadequate or unavailable) and Enhanced
Observed Time Difference is another key source of “sensor
data.” This information tells the owner of the device and
potential service providers where the device is located, and
hence what services might be relevant and available for
use. Human movement is a deep indicator of intention and
detailed knowledge of location and its derivatives can be
used in many ways to improve the quality of our lives. The
availability of “location aware” services and the precursor
location information services they are built on will radi-
cally change the way we live.

The third class of enabling technology, low cost sensors
and actuators, forms the all-important interface between the
real world and the world of bits. Low cost is critical to
ubiquity, but equally important are notions of identity (the
location and nature of the measurement are known to
a high degree of certainty) and quality (the digital repre-
sentation form the sensor is a faithful mirror of the world.)
Without standards for characterizing the real world-digital
world interface by describing identity and quality metrics
for a measuring device and means to verify these to build
trust, sensors embedded in the environment cannot effec-
tively form the basis for a real-time economy of infor-
mation about the world. Until such standards exist the
scope of sensors and the semantics of the data they produce
will necessarily be limited to the individual products they
are embedded in. Conversely, having and using standards
such as sensorML [7] and the CIMA instrument ontology
[8] to describe the location and functionality of sensors will
make any sensing device much easier to integrate into
a Real World Web of global scope.

Power is a critical design dimension that we will not
discuss in detail except to note the apparent tradeoffs
between processing power, memory capacity, wireless
communications range and total system power consump-
tion in wireless devices. Wired devices perhaps do not have
the same set of issues, but require simplified connection

schemes where power and communications can be pro-
vided through the same physical wire as a simplifying
principle. When considering architectures for embedding
devices in structures and vehicles (houses, buildings, cars,
etc.) using standard affordances such as power plugs (e.g.
X10 home automation) or built in rails that provide power
and network connectivity to snap-in sensor and actuator
modules. The Media House, a joint project of the Metapolis
Group from Barcelona, the MIT Media Lab, and the
Fundacio Politecnica de Catalunya [9, 10] is a recent
example of using this approach to create a dynamic, highly
functional interior space where the structure of the building
itself provides the network physical layer through which
sensors and actuators in the interior space communicate.

III. BUILDING THE REAL WORLD WEB:

SERVICES FOR INSTRUMENTS AND SENSORS

More than sensing hardware and network interfaces are
needed to enable the Real World Web. The success of the
World Wide Web was due in part to the simple protocols
and standards and open architecture used to define access
to content. In the same way, the success of the Real World
Web will depend on availability of simple but powerful
approaches to present real time data sources as services and
a service oriented architecture for deploying and accessing
nodes.

One approach to a standard service model for sensors is
the Common Instrument Middleware Architecture (CIMA)
[11-13] aimed at developing a Service Oriented Archi-
tecture (SOA) using SOAP-based Web services to make
instruments and sensors network accessible. CIMA
provides a standards-based, uniform way to interact re-
motely with instruments and the data they produce. CIMA
addresses the following issues in remote access:

• standardization of the network protocol for inter-
acting with instruments, sensors and actuators;

• flexibility in the underlying network transport;
• efficient and high throughput data transport;
• availability of computational, storage and network-

ing resources in the instrument or sensor controller;
• co-evolution of instrument and network interface

design; and
• reuse of data acquisition and processing codes.
Some requirements for an instrument middleware are

explored by Devadithya [11] and McMullen [12]. These
include self-describing hardware and control software;
functional transparency; resource oriented stateful services;
interoperability with other data acquisition and transport

D. McMullen 86

systems; efficient data transfer; lightweight with respect to
CPU, memory and network resources; support for inter-
mediaries for signal processing and data aggregation; and
support for authorization; multiple modes of interaction
(e.g. streaming/event based, polled, callback, etc.)

Web Services with SOAP are not the only way to
implement an SOA. Web 2.0 provides alternatives to
SOAP and WSDL, using instead parameters encoded in
HTTP URLs and HTTP verbs PUT, GET, POST, and
DELETE to interact with a service service and return data
or status as HTML or more generally as plain old XML.
The Representational State Transfer (REST) architecture
[14, 15] is often used in Web 2.0 as a simple interface to
network services. We believe that REST/HTTP is a com-
pact and efficient alternative to RPC style XML-RPC or
SOAP and Web services, and fits well with the design ideal
of simple, user-oriented service interfaces exemplified in
Web 2.0. Services such as Amazon Elastic Cloud and
Simple Storage Service, Yahoo Pipes and many other
services use REST and HTTP to provide lightweight easy
to use interfaces. As we discuss below, Web 2.0, although
an uncoordinated activity, does in fact provide a compre-
hensive distributed computing architecture that challenges
both Grids and Web Service architectures. In our usage,
Web 2.0 and Cloud Computing are complementary
concepts. The computing, data, or instrument “cloud” is
internally composed using many tried and true distributed
computing techniques. These are hidden from the majority
of users. Instead, the user’s view of the cloud is through
Web 2.0 services, capabilities, and messages.

With the emergence of Cloud Computing [16, 17] and
the development of systems with potential e-Science
applications that leverage cloud services such as Google
MapReduce [18] and Hadoop (lucene.apache.org/hadoop/)
for data intensive computing, Amazon EC2, S3 and
SimpleDB services (aws.amazon.com) and Microsoft’s
mash-up creation tool Popfly [19] (www.popfly.ms) there
are new possibilities for integrating instruments, sensors,
and other measuring devices embedded in the real world
with services in this new paradigm. Instruments and
sensors can and must be available in such a way that they
can be composed with other “cloud” services.

There are also significant opportunities for defining
protocols and service interfaces that will promote the
construction of the Real World Web in a broader sense,
making it possible for individuals and groups to add real-
world sensing hardware to the web incrementally in a way
that promotes universal access to web-based sensor data as
well as aggregation across different sensor types and
locations, cross validation of readings, multiple re-use of

the data and creation of value added services that ag-
gregate, filter, or monitor primary sensor data.

IV. WEB 2.0 AND WEB SERVICES

Grids and Web Services provide one model for a ser-
vice oriented architecture for sensors. As a starting point
we believe the development of the Real World Web, since
it has both physical and computational components, will
depend on the actions of a large number of individuals,
who are perhaps more interested in the data their
contributions to the RWW produce than in the details of the
services needed to provide that data. Sensors actually have
to be placed somewhere and maintained in order to produce
interesting and useful data.

An examination of the engineering principles for
building Grids is useful for understanding why the Grid
model is perhaps not the best approach for a decentralized
and emergent activity like the development of the Real
World Web. [20] One critical success factor for the growth
of the Web was the low barrier for entry for new content
developers due to the simplicity of HTML and its inherent
support for incremental development.

The Web Service software engineering model has
dominated Grid computing since the Open Grid Service
Architecture model appeared in 2001 [21, 22]. In the
intervening years the OGSA approach has been modified
removing distributed object architectural styles [23] and
promoting instead the “WS-I+” approach [24]. Although
conceptually valid, it has turned out to be based on
a questionable principle: that Web services specifications
themselves would be well-designed and well-supported
by the software community. The record is mixed. WSDL
and SOAP have been relatively stable and well supported,
although support for newer versions (WSDL 2.0 and
SOAP 1.2) has been limited. On the other hand, a work-
able, generally acceptable information services model has
never emerged: UDDI has had little success and yet no
alternative has appeared. Development of Web services
security has been slowed by poor performance and the
search for solutions to difficult problems such as canoni-
calization. There are also the issues of too many
competing standards (e.g. WS-Reliability and WS-Reli-
ableMessaging) and complex dependencies among
existing and proposed specifications that can create
difficult global problems when these specifications
change [25, 26]. There are more than 60 Web Service
(WS-*) specifications and proposals, and although WS-I
(www.ws-i.org) is intended to establish interoperability

Enabling Technologies and Design Values for Building the Real World Web 87

profiles to remediate the explosion of standards and
reduce the confusion progress has been slow.

Grids and Web Services are aimed at supporting many
aspects of resource sharing and supporting individual and
group work across different organizations. Although a
laudable goal, the results have been extremely complex and
difficult to implement architectures that are arguably not
appropriate to solving the problems of helping users to
work with computing resources or with each other through
the infrastructure. There is a need for a more user-centric
model for distributed services, and, in terms of Cloud
Computing, how users interact with cloud services.

Another problem is that Web services follows rigid
software engineering models typified by the OASIS process
(www.oasis-open.org). The specification process is slow,
and the results are sometimes irrelevant when the process
finally emits a standard. The process is further complicated
by the proliferation of overlapping, competing standards
passing through development and review in parallel. The
overall result is a software engineering model that is slow
and cumbersome, and which requires the use of complex,
sophisticated tools to implement end-user services and
applications. The implications for using this approach to
develop open, flexible and easy to implement service
standards for the Real World Web are not encouraging.

As shown in Table 1 and argued elsewhere [27], Web
services architectures possess the general characteristics
needed for network programming of distributed services.
However, as discussed above, some core processes for
producing Web services layered specifications have turned
out to have shortcomings suggesting that an alternative
methodology is needed. One alternative is the “Web 2.0”
approach. Before considering the software development
principles of Web 2.0, we first define it and compare it to
Enterprise-style Web services in Table 1 to establish that,
even though it is an emergent activity, it fulfils the core
requirements of a distributed computing model.

The contents of Table 1 are based on an analysis by
Pierce, Fox et al. [27] comparing characteristics of network
services based on Web Services and Grid techniques to
a Web 2.0 approach to SOAs. Web 2.0 presents an
attractive model for the emergent construction of the Real
World Web largely because it focuses on simple, clear user
APIs and widely used applications rather than complex,
difficult to use standards with marginal or missing imple-
mentations [28].

Web 2.0 follows a development model that accounts for
different requirements between internal and user-facing
services within a service cloud. Within a given service
cloud (the Amazon Elastic Cloud for instance) there is
a need for a rich set of capabilities supporting identity

management, messaging, resource allocation, etc. The user,
in contrast, is presented only a straightforward and clear
task-oriented interface that defines only what is needed to
use the service. Furthermore, the details of intra-cloud
services and capabilities do not need to be consistent or
interoperable with the inner details of any other service
cloud. This separation of cloud service functionality into

Table 1. Network programming concepts and their realizations in
Web Services and Web 2.0. (After Pierce, Fox et al., 2006 [27])

Concept Web Services
and Grids Web 2.0

Service
interface

Interfaces
expressed as
WSDL. WS-*
layered
specifications for
security, reliability,
addressing, etc.

API is HTTP GET, PUT,
POST and DELETE operations
on URL resources. Services are
based on REST model. Line
security through SSL.

Service state WSRF used for
stateful services. Services are stateless

Network
messaging

SOAP carries XML
message payloads.
SOAP header
extensions
implement layered
specification
capabilities such as
security and
reliability.

XML content such as RSS and
Atom, or more compact
formats like JSON are
exchanged as HTTP payloads.
Notifications and events
through client polling of
external services, e.g.
Amazon’s Simple Queue
Service.

Service
consumers

Consumers use
SOAP Web
services calls to
retrieve data. This
is usually done on a
server and data
aggregated for
presentation
through a portal.

Consumers use URLs and
HTTP verbs to retrieve data.
This can be done by
browser/client-side
applications and mash-ups.
Content is aggregated by the
client.

Service
composition

Composition
through workflow
systems executing
workflow speci-
fications with steps
based on individual
services.

Mash-ups combine URL-based
RESTful services into
applications. Mash-ups are
implemented as JavaScript
interacting with remote
services using AJAX.

Identity
management

Identity is provided
and managed by an
organization that
owns the services.
Individuals must
join the
organization and be
credentialed by it to
use a service or
resource.

Identity via participation in an
emergent social network of
individuals with shared
interests. Credentials may
originate outside the group e.g.
Google ID or YahooID. Access
to multiple services in a
mashup may require multiple
credentials.

D. McMullen 88

internal, hidden complexity and external user-facing
simplicity is a core design value of Web 2.0. Web 2.0
services clearly distinguish between the potentially
complex interiors of service and resource clouds and their
simplified boundary interfaces that are used by the larger
community of developers. In contrast, software engineering
for Web Services treats all services with the same degree of
maximal complexity.

From the software design and engineering perspective,
we may make the following general observations. First,
Web 2.0 development is geared toward the end user,
illustrated by the common Web 2.0 concept of the “mash-
up”. Mash-ups are composite applications made from
several online services, typically consisting of both com-
munity and user-provided data (for example, personal
photos placed on an online map).

Second, Web 2.0 substitutes asserted programming
interfaces in existing scripting languages for e.g. WSDL in
Web services. There are no universal API or interface
definition languages in Web 2.0, only ad hoc implementa-
tions in existing programming languages. Using simple
network message formats makes this feasible, eliminating
the need for complex message handling.

Third, Web 2.0 introduces the concept of the perpetual
beta [29]. That is, online services and capabilities may be
continuously upgraded while maintaining backward
compatibility with older clients.

Although it is possible to use the term “perpetual beta”
pejoratively, we note that this applies to the boundary inter-
faces (at the user level) rather than the internal component
implementations and orchestrations inside the cloud.

Fourth and finally, Web 2.0 services and capabilities
are competition-driven. Mash-up competitions thrive as
developers try to outdo one another. Feedback helps refine
service interfaces and capabilities in a spiral development
model. Contrast this to the slow, tedious and failure-prone
approach to the development of Web services layered
specifications before any services based on them can be
imagined and implemented.

Web 2.0/Cloud approaches suggest an asymmetric
software design model. The interiors of computing resource
clouds can be complex and sophisticated, and traditional
design methodologies are appropriate. On the other hand,
the user interactions with the cloud must be agile and
iterative, demanding different design methodologies.

IV. SERVICES FOR THE REAL WORLD WEB

We are at a crossroads where the fundamental princi-
ples for distributed system design exemplified by Grid

middleware and the larger Web services suite of standards,
as well as the process for developing interoperable standards
embodied by the OASIS consortium (www.oasis-open.org),
need to be re-examined. In the light of the tremendous
growth of “cloud” services that value rapid delivery of
simple, transparent, composable functionality, and the
wholesale adoption of this approach as indicated by the daily
appearance of hundreds of value-added mash-ups of these
services, it is important to assess the relevance of this
paradigm shift to the development of sensor networks in
general and the Real World Web in particular. Applying
Web 2.0 design values of simplicity and transparency to
promote an emergent development of the Real World Web
leads to the following design guidelines:

• Sensing and measuring hardware nodes in the Real
World Web (RWW) are represented by network-
accessible services.

• RWW device services for sensors and instruments
are based on simple, widely used protocols such as
HTTP.

• RWW sensor and instrument service APIs fully
leverage stable features of the protocols that carry
them.

• RWW Service APIs simple and clearly documented.
• Service APIs should provide a minimal but expand-

able set of core functionality.
• APIs should be able to evolve over time to reflect

new core capabilities.

V. THE COMMON INSTRUMENT

MIDDLEWARE ARCHITECTURE (CIMA)

As an example of the application of these design values
we are currently engaged in re-implementing the Common
instrument Middleware Architecture (CIMA) [2] to better
support our Web 2.0 approach to e-Science. CIMA is
a service oriented architecture that provides instruments
and sensors with network interfaces based on Web ser-
vices. CIMA consists of three main parts: a Service
Implementation (SI) that acts as the instrument’s network
interface, an XML-based protocol for accessing and
controlling instruments, and an extensible vocabulary in
OWL-DL for describing instruments and sensors. The
Service Implementation is a protocol engine and life cycle
management system that is common to all CIMA instru-
ments. It supports plug-ins, which are code templates
customized to access specific sensors or actuators associ-
ated with an instrument and which are loaded at the time
the Service Implementation starts. The Channel Protocol is

Enabling Technologies and Design Values for Building the Real World Web 89

used to access plug-ins and control the SI and to transport
data from sensors to a consumer and consists of exchang-
ing XML “Parcel” messages that are interpreted by the SI.
The Channel Protocol defines a few basic message types
defining operations on the “Channel” or connection to
a plug-in such as “Register”, “Get” and “Set”. These opera-
tions are implemented as tag values in the Parcel tied to
functionality in the SI and usage models, and new
operations can be added as needed [30, 31]. The SI in the
Web services version of CIMA provides a Web services
document literal endpoint that accepts a control message as
single well-formed XML fragment. If it is essential for an
SI to validate messages sent to the SI XML document
validation can be used, but this limits interoperability of
messages when the protocol is modified to add new tags,
and reduces performance. Sensor or status data and
associated metadata are sent from the SI as a “data” type
Parcel as the body of a SOAP message.

As both the producer (instrument) and consumer of
CIMA messages are Web services endpoints the architec-
ture is inherently event driven and once a relationship
between a consumer and a CIMA data source is established
data can be streamed continuously from producer to
consumer or sent at whatever frequency is desirable. This
built-in “data flow” capability makes it possible to set up
intermediaries that can aggregate, filter and scan data from
one or multiple streams from CIMA instruments.

In summary the Web services version of the CIMA
architecture provides instrument, sensor and actuator
proxies that:

• support fully asynchronous event driven interactions
between user applications and instruments;

• leverage available layered (e.g. WS-*)
specifications for security, addressing, reliability,
etc.; and

• produce and consume XML message payloads that
are transparent, easily parsed and can be validated
for additional fault tolerance.

Although the CIMA Channel protocol has primarily
been implemented using SOAP over HTTP, other protocols
can be used for sending and receiving SOAP messages, and
CIMA services that use Java Message Service (JMS),
BRTT Antelope, and the Kepler workflow system have
been implemented.

VI. CIMA, WEB 2.0 AND THE REAL WORLD WEB

As the discussion has developed to this point, we

postulate that Web 2.0 approaches will improve collabora-

tion and reduce the effort of developing network services
for e-Research by reducing reliance on complex tools and
protocols (e.g. Web services and WS-* layered specifica-
tions) and instead build services from simple, well
characterized components such as HTTP, SSL, and REST
models for services. The value of building e-Science
services using Web 2.0 techniques has been demonstrated
in a number of recent projects [20, 27, 28].

To tie together the strands of Web 2.0, the Real World
Web, and instruments and sensors that form the basis for
many e-Science collaborations we now consider how to
include instruments and sensors in Web 2.0-based systems
for e-Research. As a starting point we will discuss how to
update the CIMA approach to function appropriately as
a Web 2.0 service.

Table 2. Issues in the design of a Web 2.0 CIMA service

CIMA
Characteristic Web services Web 2.0

1. Interface Web services/
SOAP/WSDL REST/URL

2. Communication
between
instrument proxy
and consumer

Asynchronous,
event driven,
streaming data

Synchronous via
server push or
asynchronous
with polling;
event driven if
consumer has
embedded HTTP
server

3. Transport SOAP/HTTP,
document-literal HTTP

4. Security SSL and WS-*
layered specs

SSL or payload
encryption by
CIMA service

5. Identity
management,
authentication and
authorization

Internal to the
CIMA service,
WS-* layered
specs, Shibboleth

Internal to the
CIMA service,
External through
SSO service like
Shibboleth

6. “Parcel”
payload XML document

XML fragment or
MicroFormat in
HTML body

7. Instrument
description

OWL-DL/RDF
embedded in XML
document

OWL-DL/RDF in
HTML header

Table 2 lists implications of some key differences between
a Web services and Web 2.0 with regard to the design
space for the RWW/Web 2.0 version of a CIMA-based

D. McMullen 90

instrument service. The immediate challenge is mapping
CIMA as a pair of Web services on the instrument and the
consumer application to a RESTful service only on the
instrument proxy. In REST terms, the Web 2.0 version of
the CIMA service is a resource identified by a URL.
Synchronous CIMA Web services calls translate as HTTP
GET/PUT operations on a URL that contains the identity of
the plug-in and other salient information that would have
been contained in the Parcel XML document used in the
Web services version of CIMA, or by POSTing a Parcel in
the body of the request. In general the REST operations are
synchronous and need to return something before the
underlying HTTP protocol at the requester times out the
request. Asynchronous completion of long operations with
notification that are supported easily in the Web services
version of CIMA such as commanding a positioning
system to move to a specific location can be simulated
through client polling. The Web 2.0 CIMA Service
Implementation needs to support these kinds of “stateful”
operations in a possible violation of the notion that
RESTful services are idempotent. The concession is that
instruments, sensors and actuators are for the most part
stateful.

Table 3 illustrates two possible mappings from CIMA
Web services and REST, one based on HTTP GET and
PUT where data that were in the XML Parcel in the Web
services version are now encoded into a URL, and another
which uses HTTP POST to a simple URL where the pay-
load of the request is a CIMA Parcel. The service URL in
the GET/PUT implementation consists of the fully quali-
fied domain name or IP address of the service, the CIMA
function name, the plug-in and target variable in that plug-
in, an identifier for the client’s session with the instrument
service, and other data needed specifically for the Register
(requests the CIMA service to return data periodically to
a URL), Set (set a variable associated with a plug-in), and
Session (authenticate a client to the instrument service)
commands. The instrument service then either returns data
periodically through HTTP PUT calls to the client-
provided URL or keeps the request socket open and peri-
odically writes new data Parcels to it.

Figure 1 illustrates example REST URLs for a hypo-
thetical CIMA service with a plug-in named “sensor1”. In
this example we are supposing a service that is capable of
pushing data to the client on an open connection or return-
ing data to a client asynchronously via calls to an HTTP
server provided by the client, analogous to the way the
Web services version of CIMA operates. As general prob-
lems to be investigated it is noted that the HTTP “call-
back” method of returning data does not fit the general
Web 2.0 model, and the server push solution may not be

stable if there are long delays between data sent from the
instrument to the client, or if the connection must be kept
open for a long period of time. It is possible that systems
and technologies for streaming video and audio content are
an appropriate solution to these general problems of
streaming data over HTTP.

Table 3. Mapping CIMA Parcel functions into a REST service

 HTTP
 verb

CIMA
Function

GET PUT POST

Register
(client
request for
streaming
data from a
plug-in)

Returns:
Multiple
Parcels or
HTTP error
code
OR
Returns data
via HTTP
calls to client

X

Input: Parcel
XML
Returns:
Multiple
Parcels or
HTTP error
code

Get
(return a
plug-in’s
variable)

Returns:
XML Parcel
containing
value

X

Input: Parcel
XML
Returns:
Parcel +
HTTP status
code

Set
(set a plug-
in’s
variable)

X

Returns:
HTTP
status
code

Input: Parcel
XML
Returns:
Parcel or
HTTP error
code

Describe
(the
instrument)

Returns
XML Parcel
w/description

X

Input: Parcel
XML
Returns:
Parcel or
HTTP error
code

Session
(authenticate
client)

Returns
XML Parcel
w/session
key

X

Input: Parcel
XML
Returns:
Parcel or
HTTP error
code

A design feature that CIMA Web services offers is

streaming data. This can be mapped into a RESTful Web
2.0 approach as client polling or through server push. Effi-
cient polling requires the client to have a good idea of when
new data will be available, so may require some specialized
tuning on the client to “sync up” with a data source which

Enabling Technologies and Design Values for Building the Real World Web 91

produces data at irregular intervals. Server push and pushlets
offers a potential solution but can be subject to instability
and protocol timeouts if the instrument service does not
send data often enough. Data received by the client must be
parsed as it is received to extract individual events (Parcel
data from an instrument) which may not be efficient or even
possible on some clients.

http://{service-url}/ (base URL for the instrument service)
 [{CIMA-Function}/ (e.g. Register, Get, Set, Session, etc.)
 {plugin-name}/ (for Describe, Register, Get, Set)
 {variable-name}/ (for Describe, Get, Set commands)
 {session_key}/]
 ?val=[HTML-escaped-value] (for Set command)
 ?url=[callback_spec_URI] (for Register with
callbacks)

 (Credentials in HTTP hdr. for Session initiation)

Examples

1. Request CIMA REST service to send data from sensor1 to
http://my.client.org:9080

GET http://instrument.your.org/Register/sensor1/b7bf6538-873c-
4f9a-84d6-163d40a60632?url=http://my.client.org:9080/

2. Set variable “filter1” on “CCD” to “Oxygen3”

PUT http://instrument.your.org/Set/CCD/filter1/b7bf6538-873c-
4f9a-84d6-163d40a60632?val=”Oxygen3”

Fig. 1. RESTful URL schema for a CIMA service

A straightforward solution to the problem of asynchro-

nous delivery of data from instrument to client is to
duplicate the CIMA Web services model with Web
services endpoints on the instrument proxy and in the client
software that is using the instrument, but instead of a WS
endpoint on the client, provide only the embedded web
server. This approach is appealing but it fundamentally
breaks with the REST/Web 2.0 approach of URL-based
resources and synchronous (idempotent) operations on
them, making it difficult or impossible to use these
services in mashups. A better solution may be to appeal to
external messaging systems such as Amazon’s Simple
Queue Service or implement data flow using RSS [32]. In
this case the instrument service will be expected to
provide data through the third-party message service. We
have evaluated RSS as a way to deliver streaming data

from instruments and found that it not only works well
but has some interesting benefits, such as providing
retrospective data to new subscribers, at least to the extent
that old data are kept in the RSS feed. Other services such
as Yahoo Pipes can be used to filter and aggregate instru-
ment data in much the same way that CIMA Web services
intermediaries work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we describe the Real World Web based on

Web 2.0 techniques and design values, and present an
argument for developing standards to encourage its
development in order to make real-world sensors and
instruments more accessible. We then briefly discuss the
role of Web 2.0 techniques in building systems for col-
laborative e-Science. We discuss some particular diffi-
culties of representing instruments and sensors as RESTful
services and present a conceptual mapping of the Web
services approach used in Common Instrument Middleware
Architecture (CIMA) to a REST-based service oriented
architecture.

Future work includes an evaluation of GET/PUT vs.
POST approaches in terms of performance and integration
with other services via mashups, use of MicroFormats
instead of XML for CIMA Parcel data structures, how
complex preexisting sensor networks can be brought into
the Real World Web as service clouds, and models for how
authentication and authorization for Real World Web
resources should be approached.

Acknowledgements

The author would like to thank his fellow co-investigators,
collaborators and students on the CIMA project and to
acknowledge their manifold contributions: John C. Huf-
fman, Randall Bramley (Indiana University) and Ken Chiu
(SUNY Binghamton); Kia Huffman (Brown University);
Marlon Pierce, Geoffrey Fox, Yu Ma, and Gilead Kutnick
(Indiana University); Tharaka Devadithya (IBM); Thomas
Reichherzer (Enkia Corporation); Peter Turner, Romain
Quilici, Doug du Boulay, and Clinton Chee (University of
Sydney); Ian Atkinson, Tristan King, Nigel Sim, and Matt
Wyatt (James Cook University); Sofia Brenes-Barahona,
Nisha Gupta, Carol Deng, and Hunter Davis (Indiana
University).

Support for this work from the National Science
Foundation is gratefully acknowledged (SCI 0330568, DBI
0446802, IIS 0513768, and IIS 0513687).

D. McMullen 92

References

[1] G. Aloisio, D. Conte, C. Elefante, I. Epicoco, G. P. Marra,

G. Mastrantonio and G. Quarta, SensorML for Grid Sensor
Networks. Proceedings of the 2006 International Conference
on Grid Computing and Applications, GCA 2006, Las
Vegas, Nevada, USA, June 26-29, 2006. pp. 147-152.
CSREA Press.

[2] D. F. McMullen, R. Bramley, K. Chiu, H. Davis, T. Deva-
dithya, J. C. Huffman, K. Huffman and T. Reichherzer, The
Common Instrument Middleware Architecture: Experiences
and Future Directions in: Grid Enabled Remote Instru-
mentation. F. Davoli, N. Meyer, R. Pugliese and S. Zap-
patore, (Eds.) Springer, 2009.

[3] K. B. Lee and R. D. Schneeman, Distributed measurement
and control based on the IEEE 1451 smart transducer
interface standards. IEEE Transactions on Instrumentation
and Measurement 49 (3), 621-627 (2000).

[4] M. Weiser, The Computer for the 21st Century. Scientific
American 265 (3), 94-104 (1991).

[5] N. Gershenfeld, When Things Start to Think, Henry Holt and
Co., First edition: January 12, 1999.

[6] N. Gershenfeld, R. Krikorian, D. Cohen, The Internet of
Things. Scientific American Magazine 291 (4) 76 (2004).

[7] M. Botts, Sensor Modeling Language (SensorML) Status.
2006. Retrieved from
http://stromboli.nsstc.uah.edu/SesorML/status.html

[8] D. F. McMullen and T. Reichherzer, The Common Instru-
ment Middleware Architecture (CIMA) Instrument Ontology
& Applications. Proceedings, Second Workshop on Formal
Ontologies Meet Industry. Trento, Italy, December 15, 2006.

[9] L. Bullivant, Media House Project: the House is the
Computer, the Structure is the Network. Special Issue:
4dspace: Interactive Architecture, Architectural Design 75 (1),
51-53.

[10] L. Cantarella and V. Guallart (Eds.), Media House Project:
The House is the Computer, the Structure the Network.
Actar (March 1, 2005).

[11] T. Devadithya, K. Chiu, K. Huffman and D. F. McMullen,
The Common Instrument Middleware Architecture: Overview
of Goals and Implementation. Proceedings of the First IEEE
International Conference on e-Science and Grid Computing
(e-Science 2005), Melbourne, Australia, Dec. 5-8, 2005.

[12] D. F. McMullen, I. M. Atkinson, K. Chiu, P. Turner,
K. Huffman, R. Quilici and M. Wyatt, Toward Standards for
Integration of Instruments into Grid Computing Environ-
ments. Proceedings of IEEE International Conference on e-
Science and Grid Computing (e-Science 2006). December
2006. Amsterdam, The Netherlands.

[13] I. M. Atkinson, D. du Boulay, C. Chee, K. Chiu, T. King,
D. F. McMullen, R. Quilici, N. G. D. Sim, P. Turner and
M. Wyatt. CIMA Based Remote Instrument and Data
Access: An Extension into the Australian e-Science Environ-
ment. Proceedings of IEEE International Conference on e-
Science and Grid Computing (e-Science 2006). December
2006. Amsterdam, The Netherlands.

[14] R. Fielding, Architectural Styles and the Design of Network-
based Software Architectures. Ph.D. Dissertation, University
of California, Irvine. 2000.

[15] R. T. Fielding and R. N. Taylor, Principled Design of the
Modern Web Architecture. ACM Transactions on Internet
Technology (TOIT) (New York: Association for Computing
Machinery) 2 (2), 115-150 (2005),

http://www.ics.uci.edu/~taylor/documents/2002-
RESTTOIT.pdf

[16] L. Siegele, The Beast of Complexity, Special Section: The
Age of The Cloud. The Economist, April 12, 2001.

[17] E. Hand, Head in the clouds. Nature 449, 963.
[18] J. Dean and S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters. Proceedings of OSDI'04:
Sixth Symposium on Operating System Design and Imple-
mentation, San Francisco, CA, December, 2004.

[19] M. Foley, Microsoft Popfly: Yahoo Pipes for the rest of us.
ZDNet, May 18th, 2007.

[20] G. C. Fox, R. Guha, D. F. McMullen, A. F. Mustacoglu,
M. E. Pierce, A. E. Topcu and D. J. Wild, Web 2.0 for Grids
and e-Science. Proceedings of INGRID 2007 – Instrument-
ing the Grid 2nd International Workshop on Distributed
Cooperative Laboratories, S. Margherita Ligure Portofino,
ITALY. April 18 2007.

[21] I. Foster, C. Kesselman, J. Nick and S. Tuecke, The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002.

[22] I. Foster, C. Kesselman, J. M. Nick and S. Tuecke, Grid
Services for Distributed System Integration. IEEE Computer
35 (6), 37-46 (2002).

[23] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,
A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Sub-
ramaniam, J. Treadwell and J. Von Reich, The Open Grid
Services Architecture, Version 1.0. Informational Document,
Global Grid Forum (GGF), January 29, 2005.

[24] M. P. Atkinson, D. De Roure, A. N. Dunlop, G. Fox,
P. Henderson, A. J. G. Hey, N. W. Paton, S. Newhouse,
S. Parastatidis, A. E. Trefethen, P. Watson and J. Webber,
Web Service Grids: an evolutionary approach. Concurrency
– Practice and Experience 17 (2-4), 377-389 (2005).

[25] [25] S. Pallickara, G. Fox and S. Lee Pallickara, An Analysis
of Reliable Delivery Specifications for Web Services. ITCC
(1) 360-365 (2005).

[26] K. Birman, Can Web Services Scale Up? IEEE Computer.
38 (10), 107-110 (2005).

[27] M. E. Pierce, G. Fox, H. Yuan and Y. Deng, Cyberinfrastructure
and Web 2.0. In: High Performance Computing and Grids in
Action (L. Grandinetti Editor) published by IOS Press,
Amsterdam, as the volume no 16 in the series Advances in
Parallel Computing Proceedings of HPC2006 July 4 2006
Cetraro Italy.

[28] M. E. Pierce, G. C. Fox, J. Y. Choi, Z. Guo, X. Gao and
Y. Ma, Using Web 2.0 for Scientific Applications and
Scientific Communities To appear in Concurrency and
Computation: Practice and Experience Special Issue for 3rd
International Conference on Semantics, Knowledge and
Grid SKG2007 Xian China October 28-30 2007.

[29] T. O’Reilly, What is Web 2.0: Design Patterns and Business
Models for the Next Generation of Software. Available from
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/3
0/what-is-web-20.html.

[30] I. Atkinson, D. du Boulay, C. Chee, K. Chiu, P. Coddington,
A. Gerson, T. King, D. McMullen, R. Quilici, P. Turner,
A. Wendelborn, M. Wyatt and D. Zhang, Developing CIMA
based Remote Access for Collaborative e-Research.
Proceedings of the 5th Australasian Symposium on Grid
Computing and e-Research (AusGrid 2007). Ballarat.
January, 2007.

[31] [31] D. F. McMullen and K. Huffman, (2005b) Connecting
Users to Instruments and Sensors: Portals as Multi-user

Enabling Technologies and Design Values for Building the Real World Web 93

GUIs for Instrument and Sensor Facilities. Proceedings of
GCE 2005: Workshop on Grid Computing Portals held with
SC05. Seattle, WA, November 18, 2005.

[32] See RSS Specifications and RSS Feeds. http://www.rss-
specifications.com/.

DR. DONALD F. (RICK) MCMULLEN is the Director of Research Computing and Senior Scientist at the
University of Kansas. Previously he was Director and Principal Scientist of the Knowledge Acquisition and
Projection Lab in the Pervasive Technology Laboratories at Indiana University. He received a Ph.D. in
Chemistry in 1982 and served in a variety of research, engineering and management roles in the chemical
and electronics industries before joining the Supercomputer Computations Research Institute as a Research
Scientist in visualization and high performance computing. Dr. McMullen's primary research interests are
in ubiquitous computing, knowledge-based support systems, international research and education networks,
visualization, and virtual reality. Recent projects include software systems for remote access to instruments
and sensors in support of e-Research collaborations, work with the U.S. Navy to develop knowledge-based
remote maintenance and repair (tele-maintenance) systems, and development of distributed data acquisition
with the Department of Energy Next Generation Internet (NGI) program.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 15(1), 83-93 (2009)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

