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I.  INTRODUCTION 
 

The notions of ubiquitous computing and networking, 
and the increasing availability of compact, low power 
sensing technologies naturally lead to the idea that we can 
expect to see large numbers of sensors embedded in the 
fabric of our everyday lives. These sensors can potentially 
monitor our health, keep tabs on our children and aging 
parents, track the quality of our environment and warn us 
of unsafe conditions, assess the impact of earthquakes and 
storms on our houses, provide detailed diagnostic informa-
tion about our cars and appliances and help us find 
qualified technicians at the lowest possible cost. These are 
just a few possibilities for a Real World Web that narrows 
the gap between the Web and the real world, but there are 
many issues to be considered to achieve this vision. The 
World Wide Web was made possible through a combina-
tion of the increasing availability of the Internet, simple 
network protocols, and open content and delivery 
standards.  The Real World Web can only grow and 
become self-sustaining if we pay attention to some core 
design values of simplicity, openness, and ethics. Recent 
developments in cloud computing and Web 2.0 technolo-
gies and design stances provide enablers from which to 

build the Real World Web (hereafter abbreviated RWW) 
but they also require a shift in thinking away from a classi-
cal Web services and layered standards model.  

Standards for sensor and actuator networks such as 
Controller Area Network (CAN-bus), Modbus, and 
EtherNet/IP are protocols for interacting with automotive, 
industrial and manufacturing equipment over secure private 
or in-house networks. Protocol implementations and end-
equipment (sequencers, sensors and actuators) are available 
but these fall into narrow, specialized markets such as 
automobile engine control systems, manufacturing equip-
ment and industrial process control. Other market spaces 
such as home automation and security, automotive 
entertainment electronics and laboratory automation have 
developed parallel but largely non-overlapping design 
spaces, protocols and capabilities. On the industrial auto-
mation side these standards are generally aimed at 
supporting low-level register and bit operations, and 
programming state machines (programmable logic control-
lers). For consumer electronics the emphasis has been on 
short-range wireless networks (e.g. IEEE 802.15.1/Blue-
tooth, IEEE 802.15.4, Zigbee and One-Net) and automatic 
configuration of a small number of specific device types 
relevant to each market. 
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In parallel but largely in isolation from industrial and 
consumer real-time sensing and control applications, 
a number of projects have worked to develop open 
standards for sharing instruments and sensors in e-Science 
and e-Research.  Solutions are now available to develop 
portable hardware descriptions such as sensorML [1], and 
for open instrument services and access protocols such as 
the Common Instrument Middleware Architecture (CIMA) 
[2], and IEEE 1451 [3]. These systems cover a variety of 
design stances, from a focus on embedded devices and 
minimalist protocols to a full service oriented architecture, 
open protocols and self-describing hardware, all important 
in an open environment that values collaboration and 
sharing of hardware and information resources. 

One approach to including a broad range sensing and 
control systems from industrial, consumer and scientific 
applications in the RWW is to view these as “service 
clouds” accessed through a gateway that incorporates more 
broadly used Web protocols and Web 2.0 methodologies 
on the “Web” side of the Real World Web. This notion of 
hiding the complexity inside service clouds is central to our 
architecture for an emergent RWW and will be discussed in 
more detail below. As appealing as this approach is for 
managing complexity it presents some challenges in sup-
porting both polled and event driven access to real-time 
data sources. On the positive side, the ubiquity of stream-
ing media services for on-demand video and audio provides 
an excellent model for real-time real-world sensor data.  

 
 

II.  THE  REAL  WORLD  WEB  
AND  UBIQUITOUS  COMPUTING 

 
Sensors together with their associated transducers and 

control systems are broadly embedded in our environment 
and increasingly becoming an indispensable part of our 
everyday lives. They make our cars run efficiently, keep 
our indoor climate in perfect balance, monitor our vial signs 
when we are ill or injured, and continuously monitor the 
weather. The continuous increase in computing power 
combined with ever-greater levels of on-chip integration and 
resulting size reductions inspired work in the 1990s by Mark 
Weiser [4] at Xerox PARC on Ubiquitous Computing 
(Ubicomp). The core of ubicomp is the idea that computers 
are so small, cheap and powerful that every artefact in our 
environment, from toasters to light switches should not be 
without one. Yet ubiquitous computing promises to bring 
many orders of magnitude more sensors and other measuring 
devices into our “data view” of the world.  There are a 
number of technical hurdles to overcome for the vision of 

ubiquitous computing and sensors can be realized.  Issues 
such as fabrication, programming and networking notwith-
standing, there is another, larger problem of giving meaning 
to the gigabytes of data all of these sensors produce.  

Neil Gershenfeld, in his book When Things Start to 
Think [5], articulates a vision of sensing, computing and 
networking embedded in everyday objects. These objects 
will exchange information among themselves and with 
humans, leading to a blurring of the line between bits and 
atoms, and between human intentionality and machine 
behaviours. Long before we achieve this state of bliss we 
can see material returns on embedded intelligence. Sensor 
networks can provide large amounts of useful information 
with the potential to improve the quality of our lives if 
these information services are universally accessible and 
easy to use. Moving materially toward an open and 
dynamic Real World Web and an economy of real-time 
real-world information will require advances on several 
fronts: core technologies for constructing small, power 
efficient sensing devices that form the basic building 
blocks of the Real World Web; standards for locating and 
describing the functions of sensing devices, and 
communications technologies that allow the placement of 
sensor packages in any environment. 

Emerging enablers of this future are low power, low 
bitrate wireless and wired networking technologies, 
increasing density of flash memory, location awareness 
services like the Global Positioning Satellite system and 
advances in low cost sensing and transducing technologies. 
Wireless technologies such as ZigBee combined with ad 
hoc mesh routing provide a highly resilient local com-
munications environment. Getting beyond local com-
munications is a key issue. In one approach data from 
many small sensors with wireless interfaces can be 
aggregated and sent out to the Internet through special 
gateways. Although this is a functional way to bridge 
sensing and communication technologies across domains 
defined by physical access media, the use of gateways 
limits possibilities for direct access to and fine-grained use 
of individual sensors and actuators.  

IPv6 is an extremely promising high level protocol for 
sensor networks because of its huge (2128) address space 
and broad availability. With increasing on-chip memory 
and processing power IPv6 may also be a candidate for 
tiny, embedded processors. 6LoWPAN is a specification 
for IPv6 over ZigBee (802.15.4) at low bit rates (RFC 
4919, RFC 4944). A number of routing protocols are under 
development for 6LoWPAN to implement ad hoc and 
hierarchical routing through an 802.15.4 PHY and between 
ZigBee and other link layers for IPv6. 
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Alternatively there are proposals such as Gershenfeld’s 
“Internet 0” or I0 [6] proposal for encoding IP packets in 
a wide range of link layers such as low power RF, power 
lines, and even printed bar codes. With I0 devices can send 
and receive IP packets using whatever link layer is 
appropriate, so protocol translations are unnecessary at 
boundaries between media types. I0 is made possible by 
embedded system processors on which an IP stack can be 
efficiently implemented. Unless IPv6 is used, with its very 
large address space and self-addressing capability, the I0 
approach has significant scaling problems. 

Location awareness through GPS and cell phone related 
technologies such as Assisted GPS (using cell towers to 
triangulate the position of a phone when GPS signal 
strength is inadequate or unavailable) and Enhanced 
Observed Time Difference is another key source of “sensor 
data.” This information tells the owner of the device and 
potential service providers where the device is located, and 
hence what services might be relevant and available for 
use. Human movement is a deep indicator of intention and 
detailed knowledge of location and its derivatives can be 
used in many ways to improve the quality of our lives. The 
availability of “location aware” services and the precursor 
location information services they are built on will radi-
cally change the way we live. 

The third class of enabling technology, low cost sensors 
and actuators, forms the all-important interface between the 
real world and the world of bits. Low cost is critical to 
ubiquity, but equally important are notions of identity (the 
location and nature of the measurement are known to 
a high degree of certainty) and quality (the digital repre-
sentation form the sensor is a faithful mirror of the world.) 
Without standards for characterizing the real world-digital 
world interface by describing identity and quality metrics 
for a measuring device and means to verify these to build 
trust, sensors embedded in the environment cannot effec-
tively form the basis for a real-time economy of infor-
mation about the world. Until such standards exist the 
scope of sensors and the semantics of the data they produce 
will necessarily be limited to the individual products they 
are embedded in. Conversely, having and using standards 
such as sensorML [7] and the CIMA instrument ontology 
[8] to describe the location and functionality of sensors will 
make any sensing device much easier to integrate into 
a Real World Web of global scope.  

Power is a critical design dimension that we will not 
discuss in detail except to note the apparent tradeoffs 
between processing power, memory capacity, wireless 
communications range and total system power consump-
tion in wireless devices. Wired devices perhaps do not have 
the same set of issues, but require simplified connection 

schemes where power and communications can be pro-
vided through the same physical wire as a simplifying 
principle. When considering architectures for embedding 
devices in structures and vehicles (houses, buildings, cars, 
etc.) using standard affordances such as power plugs (e.g. 
X10 home automation) or built in rails that provide power 
and network connectivity to snap-in sensor and actuator 
modules. The Media House, a joint project of the Metapolis 
Group from Barcelona, the MIT Media Lab, and the 
Fundacio Politecnica de Catalunya [9, 10] is a recent 
example of using this approach to create a dynamic, highly 
functional interior space where the structure of the building 
itself provides the network physical layer through which 
sensors and actuators in the interior space communicate. 
 

 
III.  BUILDING  THE  REAL  WORLD  WEB: 

SERVICES  FOR  INSTRUMENTS  AND  SENSORS 
 

More than sensing hardware and network interfaces are 
needed to enable the Real World Web. The success of the 
World Wide Web was due in part to the simple protocols 
and standards and open architecture used to define access 
to content. In the same way, the success of the Real World 
Web will depend on availability of simple but powerful 
approaches to present real time data sources as services and 
a service oriented architecture for deploying and accessing 
nodes.  

One approach to a standard service model for sensors is 
the Common Instrument Middleware Architecture (CIMA) 
[11-13] aimed at developing a Service Oriented Archi-
tecture (SOA) using SOAP-based Web services to make 
instruments and sensors network accessible. CIMA 
provides a standards-based, uniform way to interact re-
motely with instruments and the data they produce. CIMA 
addresses the following issues in remote access: 

• standardization of the network protocol for inter-
acting with instruments, sensors and actuators;  

• flexibility in the underlying network transport;  
• efficient and high throughput data transport;  
• availability of computational, storage and network-

ing resources in the instrument or sensor controller;  
• co-evolution of instrument and network interface 

design; and  
• reuse of data acquisition and processing codes.  
Some requirements for an instrument middleware are 

explored by Devadithya [11] and McMullen [12]. These 
include self-describing hardware and control software; 
functional transparency; resource oriented stateful services; 
interoperability with other data acquisition and transport 
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systems; efficient data transfer; lightweight with respect to 
CPU, memory and network resources; support for inter-
mediaries for signal processing and data aggregation; and 
support for authorization; multiple modes of interaction 
(e.g. streaming/event based, polled, callback, etc.) 

Web Services with SOAP are not the only way to 
implement an SOA. Web 2.0 provides alternatives to 
SOAP and WSDL, using instead parameters encoded in 
HTTP URLs and HTTP verbs PUT, GET, POST, and 
DELETE to interact with a service service and return data 
or status as HTML or more generally as plain old XML. 
The Representational State Transfer (REST) architecture 
[14, 15] is often used in Web 2.0 as a simple interface to 
network services. We believe that REST/HTTP is a com-
pact and efficient alternative to RPC style XML-RPC or 
SOAP and Web services, and fits well with the design ideal 
of simple, user-oriented service interfaces exemplified in 
Web 2.0. Services such as Amazon Elastic Cloud and 
Simple Storage Service, Yahoo Pipes and many other 
services use REST and HTTP to provide lightweight easy 
to use interfaces. As we discuss below, Web 2.0, although 
an uncoordinated activity, does in fact provide a compre-
hensive distributed computing architecture that challenges 
both Grids and Web Service architectures. In our usage, 
Web 2.0 and Cloud Computing are complementary 
concepts. The computing, data, or instrument “cloud” is 
internally composed using many tried and true distributed 
computing techniques. These are hidden from the majority 
of users. Instead, the user’s view of the cloud is through 
Web 2.0 services, capabilities, and messages. 

With the emergence of Cloud Computing [16, 17] and 
the development of systems with potential e-Science 
applications that leverage cloud services such as Google 
MapReduce [18] and Hadoop (lucene.apache.org/hadoop/) 
for data intensive computing, Amazon EC2, S3 and 
SimpleDB services (aws.amazon.com) and Microsoft’s 
mash-up creation tool Popfly [19] (www.popfly.ms) there 
are new possibilities for integrating instruments, sensors, 
and other measuring devices embedded in the real world 
with services in this new paradigm. Instruments and 
sensors can and must be available in such a way that they 
can be composed with other “cloud” services. 

There are also significant opportunities for defining 
protocols and service interfaces that will promote the 
construction of the Real World Web in a broader sense, 
making it possible for individuals and groups to add real-
world sensing hardware to the web incrementally in a way 
that promotes universal access to web-based sensor data as 
well as aggregation across different sensor types and 
locations, cross validation of readings, multiple re-use of 

the data and creation of value added services that ag-
gregate, filter, or monitor primary sensor data.  
 
 

IV.  WEB  2.0  AND  WEB  SERVICES 
 

Grids and Web Services provide one model for a ser-
vice oriented architecture for sensors. As a starting point 
we believe the development of the Real World Web, since 
it has both physical and computational components, will 
depend on the actions of a large number of individuals, 
who are perhaps more interested in the data their 
contributions to the RWW produce than in the details of the 
services needed to provide that data. Sensors actually have 
to be placed somewhere and maintained in order to produce 
interesting and useful data.  

An examination of the engineering principles for 
building Grids is useful for understanding why the Grid 
model is perhaps not the best approach for a decentralized 
and emergent activity like the development of the Real 
World Web. [20] One critical success factor for the growth 
of the Web was the low barrier for entry for new content 
developers due to the simplicity of HTML and its inherent 
support for incremental development.  

The Web Service software engineering model has 
dominated Grid computing since the Open Grid Service 
Architecture model appeared in 2001 [21, 22]. In the 
intervening years the OGSA approach has been modified 
removing distributed object architectural styles [23] and 
promoting instead the “WS-I+” approach [24]. Although 
conceptually valid, it has turned out to be based on 
a questionable principle: that Web services specifications 
themselves would be well-designed and well-supported 
by the software community. The record is mixed. WSDL 
and SOAP have been relatively stable and well supported, 
although support for newer versions (WSDL 2.0 and 
SOAP 1.2) has been limited. On the other hand, a work-
able, generally acceptable information services model has 
never emerged: UDDI has had little success and yet no 
alternative has appeared. Development of Web services 
security has been slowed by poor performance and the 
search for solutions to difficult problems such as canoni-
calization. There are also the issues of too many 
competing standards (e.g. WS-Reliability and WS-Reli-
ableMessaging) and complex dependencies among 
existing and proposed specifications that can create 
difficult global problems when these specifications 
change [25, 26]. There are more than 60 Web Service 
(WS-*) specifications and proposals, and although WS-I 
(www.ws-i.org) is intended to establish interoperability 
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profiles to remediate the explosion of standards and 
reduce the confusion progress has been slow. 

Grids and Web Services are aimed at supporting many 
aspects of resource sharing and supporting individual and 
group work across different organizations. Although a 
laudable goal, the results have been extremely complex and 
difficult to implement architectures that are arguably not 
appropriate to solving the problems of helping users to 
work with computing resources or with each other through 
the infrastructure. There is a need for a more user-centric 
model for distributed services, and, in terms of Cloud 
Computing, how users interact with cloud services.  

Another problem is that Web services follows rigid 
software engineering models typified by the OASIS process 
(www.oasis-open.org). The specification process is slow, 
and the results are sometimes irrelevant when the process 
finally emits a standard. The process is further complicated 
by the proliferation of overlapping, competing standards 
passing through development and review in parallel. The 
overall result is a software engineering model that is slow 
and cumbersome, and which requires the use of complex, 
sophisticated tools to implement end-user services and 
applications. The implications for using this approach to 
develop open, flexible and easy to implement service 
standards for the Real World Web are not encouraging.  

As shown in Table 1 and argued elsewhere [27], Web 
services architectures possess the general characteristics 
needed for network programming of distributed services. 
However, as discussed above, some core processes for 
producing Web services layered specifications have turned 
out to have shortcomings suggesting that an alternative 
methodology is needed. One alternative is the “Web 2.0” 
approach. Before considering the software development 
principles of Web 2.0, we first define it and compare it to 
Enterprise-style Web services in Table 1 to establish that, 
even though it is an emergent activity, it fulfils the core 
requirements of a distributed computing model. 

The contents of Table 1 are based on an analysis by 
Pierce, Fox et al. [27] comparing characteristics of network 
services based on Web Services and Grid techniques to 
a Web 2.0 approach to SOAs. Web 2.0 presents an 
attractive model for the emergent construction of the Real 
World Web largely because it focuses on simple, clear user 
APIs and widely used applications rather than complex, 
difficult to use standards with marginal or missing imple-
mentations [28]. 

Web 2.0 follows a development model that accounts for 
different requirements between internal and user-facing 
services within a service cloud. Within a given service 
cloud (the Amazon Elastic Cloud for instance) there is 
a need for a rich set of capabilities supporting identity 

management, messaging, resource allocation, etc. The user, 
in contrast, is presented only a straightforward and clear 
task-oriented interface that defines only what is needed to 
use the service. Furthermore, the details of intra-cloud 
services and capabilities do not need to be consistent or 
interoperable with the inner details of any other service 
cloud. This separation of cloud service functionality into 
 

Table 1. Network programming concepts and their realizations in 
Web Services and Web 2.0. (After Pierce, Fox et al., 2006 [27]) 

Concept Web Services  
and Grids Web 2.0 

Service 
interface  

Interfaces 
expressed as 
WSDL. WS-* 
layered 
specifications for 
security, reliability, 
addressing, etc.  

API is HTTP GET, PUT, 
POST and DELETE operations 
on URL resources. Services are 
based on REST model. Line 
security through SSL. 

Service state WSRF used for 
stateful services. Services are stateless 

Network 
messaging 

SOAP carries XML 
message payloads. 
SOAP header 
extensions 
implement layered 
specification 
capabilities such as 
security and 
reliability. 

XML content such as RSS and 
Atom, or more compact 
formats like JSON are 
exchanged as HTTP payloads. 
Notifications and events 
through client polling of 
external services, e.g. 
Amazon’s Simple Queue 
Service. 

Service 
consumers 

Consumers use 
SOAP Web 
services calls to 
retrieve data. This 
is usually done on a 
server and data 
aggregated for 
presentation 
through a portal. 

Consumers use URLs and 
HTTP verbs to retrieve data. 
This can be done by 
browser/client-side 
applications and mash-ups. 
Content is aggregated by the 
client. 

Service 
composition  

Composition 
through workflow 
systems executing 
workflow speci-
fications with steps 
based on individual 
services.  

Mash-ups combine URL-based 
RESTful services into 
applications. Mash-ups are 
implemented as JavaScript 
interacting with remote 
services using AJAX. 

Identity 
management 

Identity is provided 
and managed by an 
organization that 
owns the services. 
Individuals must 
join the 
organization and be 
credentialed by it to 
use a service or 
resource. 

Identity via participation in an 
emergent social network of 
individuals with shared 
interests. Credentials may 
originate outside the group e.g. 
Google ID or YahooID. Access 
to multiple services in a 
mashup may require multiple 
credentials. 
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internal, hidden complexity and external user-facing 
simplicity is a core design value of Web 2.0. Web 2.0 
services clearly distinguish between the potentially 
complex interiors of service and resource clouds and their 
simplified boundary interfaces that are used by the larger 
community of developers. In contrast, software engineering 
for Web Services treats all services with the same degree of 
maximal complexity. 

From the software design and engineering perspective, 
we may make the following general observations. First, 
Web 2.0 development is geared toward the end user, 
illustrated by the common Web 2.0 concept of the “mash-
up”. Mash-ups are composite applications made from 
several online services, typically consisting of both com-
munity and user-provided data (for example, personal 
photos placed on an online map). 

Second, Web 2.0 substitutes asserted programming 
interfaces in existing scripting languages for e.g. WSDL in 
Web services. There are no universal API or interface 
definition languages in Web 2.0, only ad hoc implementa-
tions in existing programming languages. Using simple 
network message formats makes this feasible, eliminating 
the need for complex message handling.  

Third, Web 2.0 introduces the concept of the perpetual 
beta [29]. That is, online services and capabilities may be 
continuously upgraded while maintaining backward 
compatibility with older clients. 

Although it is possible to use the term “perpetual beta” 
pejoratively, we note that this applies to the boundary inter-
faces (at the user level) rather than the internal component 
implementations and orchestrations inside the cloud.  

Fourth and finally, Web 2.0 services and capabilities 
are competition-driven. Mash-up competitions thrive as 
developers try to outdo one another. Feedback helps refine 
service interfaces and capabilities in a spiral development 
model. Contrast this to the slow, tedious and failure-prone 
approach to the development of Web services layered 
specifications before any services based on them can be 
imagined and implemented. 

Web 2.0/Cloud approaches suggest an asymmetric 
software design model. The interiors of computing resource 
clouds can be complex and sophisticated, and traditional 
design methodologies are appropriate. On the other hand, 
the user interactions with the cloud must be agile and 
iterative, demanding different design methodologies.  

 
 

IV.  SERVICES  FOR  THE  REAL  WORLD  WEB 
 

We are at a crossroads where the fundamental princi-
ples for distributed system design exemplified by Grid 

middleware and the larger Web services suite of standards, 
as well as the process for developing interoperable standards 
embodied by the OASIS consortium (www.oasis-open.org), 
need to be re-examined. In the light of the tremendous 
growth of “cloud” services that value rapid delivery of 
simple, transparent, composable functionality, and the 
wholesale adoption of this approach as indicated by the daily 
appearance of hundreds of value-added mash-ups of these 
services, it is important to assess the relevance of this 
paradigm shift to the development of sensor networks in 
general and the Real World Web in particular. Applying 
Web 2.0 design values of simplicity and transparency to 
promote an emergent development of the Real World Web 
leads to the following design guidelines: 

• Sensing and measuring hardware nodes in the Real 
World Web (RWW) are represented by network-
accessible services. 

• RWW device services for sensors and instruments 
are based on simple, widely used protocols such as 
HTTP. 

• RWW sensor and instrument service APIs fully 
leverage stable features of the protocols that carry 
them. 

• RWW Service APIs simple and clearly documented. 
• Service APIs should provide a minimal but expand-

able set of core functionality. 
• APIs should be able to evolve over time to reflect 

new core capabilities. 
 

 
V.  THE  COMMON  INSTRUMENT  

MIDDLEWARE  ARCHITECTURE  (CIMA) 
 

As an example of the application of these design values 
we are currently engaged in re-implementing the Common 
instrument Middleware Architecture (CIMA) [2] to better 
support our Web 2.0 approach to e-Science. CIMA is 
a service oriented architecture that provides instruments 
and sensors with network interfaces based on Web ser-
vices. CIMA consists of three main parts: a Service 
Implementation (SI) that acts as the instrument’s network 
interface, an XML-based protocol for accessing and 
controlling instruments, and an extensible vocabulary in 
OWL-DL for describing instruments and sensors. The 
Service Implementation is a protocol engine and life cycle 
management system that is common to all CIMA instru-
ments. It supports plug-ins, which are code templates 
customized to access specific sensors or actuators associ-
ated with an instrument and which are loaded at the time 
the Service Implementation starts. The Channel Protocol is 
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used to access plug-ins and control the SI and to transport 
data from sensors to a consumer and consists of exchang-
ing XML “Parcel” messages that are interpreted by the SI. 
The Channel Protocol defines a few basic message types 
defining operations on the “Channel” or connection to 
a plug-in such as “Register”, “Get” and “Set”. These opera-
tions are implemented as tag values in the Parcel tied to 
functionality in the SI and usage models, and new 
operations can be added as needed [30, 31]. The SI in the 
Web services version of CIMA provides a Web services 
document literal endpoint that accepts a control message as 
single well-formed XML fragment. If it is essential for an 
SI to validate messages sent to the SI XML document 
validation can be used, but this limits interoperability of 
messages when the protocol is modified to add new tags, 
and reduces performance. Sensor or status data and 
associated metadata are sent from the SI as a “data” type 
Parcel as the body of a SOAP message.  

As both the producer (instrument) and consumer of 
CIMA messages are Web services endpoints the architec-
ture is inherently event driven and once a relationship 
between a consumer and a CIMA data source is established 
data can be streamed continuously from producer to 
consumer or sent at whatever frequency is desirable. This 
built-in “data flow” capability makes it possible to set up 
intermediaries that can aggregate, filter and scan data from 
one or multiple streams from CIMA instruments. 

In summary the Web services version of the CIMA 
architecture provides instrument, sensor and actuator 
proxies that: 

• support fully asynchronous event driven interactions 
between user applications and instruments; 

• leverage available layered (e.g. WS-*) 
specifications for security, addressing, reliability, 
etc.; and  

• produce and consume XML message payloads that 
are transparent, easily parsed and can be validated 
for additional fault tolerance. 

Although the CIMA Channel protocol has primarily 
been implemented using SOAP over HTTP, other protocols 
can be used for sending and receiving SOAP messages, and 
CIMA services that use Java Message Service (JMS), 
BRTT Antelope, and the Kepler workflow system have 
been implemented. 

 
 

VI.  CIMA,  WEB 2.0  AND  THE  REAL  WORLD  WEB 
 
As the discussion has developed to this point, we 

postulate that Web 2.0 approaches will improve collabora-

tion and reduce the effort of developing network services 
for e-Research by reducing reliance on complex tools and 
protocols (e.g. Web services and WS-* layered specifica-
tions) and instead build services from simple, well 
characterized components such as HTTP, SSL, and REST 
models for services. The value of building e-Science 
services using Web 2.0 techniques has been demonstrated 
in a number of recent projects [20, 27, 28].  

To tie together the strands of Web 2.0, the Real World 
Web, and instruments and sensors that form the basis for 
many e-Science collaborations we now consider how to 
include instruments and sensors in Web 2.0-based systems 
for e-Research. As a starting point we will discuss how to 
update the CIMA approach to function appropriately as 
a Web 2.0 service. 

 
Table 2. Issues in the design of a Web 2.0 CIMA service 

CIMA 
Characteristic Web services Web 2.0 

1. Interface Web services/ 
SOAP/WSDL REST/URL 

2. Communication 
between 
instrument proxy 
and consumer 

Asynchronous, 
event driven, 
streaming data 

Synchronous via 
server push or 
asynchronous 
with polling; 
event driven if 
consumer has 
embedded HTTP 
server 

3. Transport SOAP/HTTP, 
document-literal HTTP 

4. Security SSL and WS-* 
layered specs 

SSL or payload 
encryption by 
CIMA service 

5. Identity 
management, 
authentication and 
authorization 

Internal to the 
CIMA service, 
WS-* layered 
specs, Shibboleth 

Internal to the 
CIMA service, 
External through 
SSO service like 
Shibboleth 

6. “Parcel” 
payload XML document 

XML fragment or 
MicroFormat in 
HTML body 

7. Instrument 
description 

OWL-DL/RDF 
embedded in XML 
document 

OWL-DL/RDF in 
HTML header 

 

Table 2 lists implications of some key differences between 
a Web services and Web 2.0 with regard to the design 
space for the RWW/Web 2.0 version of a CIMA-based 
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instrument service. The immediate challenge is mapping 
CIMA as a pair of Web services on the instrument and the 
consumer application to a RESTful service only on the 
instrument proxy. In REST terms, the Web 2.0 version of 
the CIMA service is a resource identified by a URL. 
Synchronous CIMA Web services calls translate as HTTP 
GET/PUT operations on a URL that contains the identity of 
the plug-in and other salient information that would have 
been contained in the Parcel XML document used in the 
Web services version of CIMA, or by POSTing a Parcel in 
the body of the request. In general the REST operations are 
synchronous and need to return something before the 
underlying HTTP protocol at the requester times out the 
request. Asynchronous completion of long operations with 
notification that are supported easily in the Web services 
version of CIMA such as commanding a positioning 
system to move to a specific location can be simulated 
through client polling. The Web 2.0 CIMA Service 
Implementation needs to support these kinds of “stateful” 
operations in a possible violation of the notion that 
RESTful services are idempotent. The concession is that 
instruments, sensors and actuators are for the most part 
stateful. 

Table 3 illustrates two possible mappings from CIMA 
Web services and REST, one based on HTTP GET and 
PUT where data that were in the XML Parcel in the Web 
services version are now encoded into a URL, and another 
which uses HTTP POST to a simple URL where the pay-
load of the request is a CIMA Parcel. The service URL in 
the GET/PUT implementation consists of the fully quali-
fied domain name or IP address of the service, the CIMA 
function name, the plug-in and target variable in that plug-
in, an identifier for the client’s session with the instrument 
service, and other data needed specifically for the Register 
(requests the CIMA service to return data periodically to 
a URL), Set (set a variable associated with a plug-in), and 
Session (authenticate a client to the instrument service) 
commands. The instrument service then either returns data 
periodically through HTTP PUT calls to the client-
provided URL or keeps the request socket open and peri-
odically writes new data Parcels to it.  

Figure 1 illustrates example REST URLs for a hypo-
thetical CIMA service with a plug-in named “sensor1”. In 
this example we are supposing a service that is capable of 
pushing data to the client on an open connection or return-
ing data to a client asynchronously via calls to an HTTP 
server provided by the client, analogous to the way the 
Web services version of CIMA operates. As general prob-
lems to be investigated it is noted that the HTTP “call-
back” method of returning data does not fit the general 
Web 2.0 model, and the server push solution may not be 

stable if there are long delays between data sent from the 
instrument to the client, or if the connection must be kept 
open for a long period of time. It is possible that systems 
and technologies for streaming video and audio content are 
an appropriate solution to these general problems of 
streaming data over HTTP. 

 

Table 3. Mapping CIMA Parcel functions into a REST service 

          HTTP  
          verb 
 
CIMA 
Function 

GET PUT POST 

Register 
(client 
request for 
streaming 
data from a 
plug-in) 

Returns: 
Multiple 
Parcels or 
HTTP error 
code 
OR 
Returns data 
via HTTP 
calls to client 

X 

Input: Parcel 
XML 
Returns: 
Multiple 
Parcels or 
HTTP error 
code 

Get 
(return a 
plug-in’s 
variable) 

Returns: 
XML Parcel 
containing 
value 

X 

Input: Parcel 
XML 
Returns: 
Parcel + 
HTTP status 
code 

Set 
(set a plug-
in’s 
variable) 

X 

Returns: 
HTTP 
status 
code 

Input: Parcel 
XML 
Returns: 
Parcel or 
HTTP error 
code 

Describe 
(the 
instrument) 

Returns 
XML Parcel 
w/description 

X 

Input: Parcel 
XML 
Returns: 
Parcel or 
HTTP error 
code 

Session 
(authenticate 
client) 

Returns 
XML Parcel 
w/session 
key 

X 

Input: Parcel 
XML 
Returns: 
Parcel or 
HTTP error 
code 

 
 
A design feature that CIMA Web services offers is 

streaming data. This can be mapped into a RESTful Web 
2.0 approach as client polling or through server push. Effi-
cient polling requires the client to have a good idea of when 
new data will be available, so may require some specialized 
tuning on the client to “sync up” with a data source which 
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produces data at irregular intervals. Server push and pushlets 
offers a potential solution but can be subject to instability 
and protocol timeouts if the instrument service does not 
send data often enough. Data received by the client must be 
parsed as it is received to extract individual events (Parcel 
data from an instrument) which may not be efficient or even 
possible on some clients. 

 
http://{service-url}/            (base URL for the instrument service) 
 [{CIMA-Function}/       (e.g. Register, Get, Set, Session, etc.) 
 {plugin-name}/              (for Describe, Register, Get, Set) 
 {variable-name}/           (for Describe, Get, Set commands) 
 {session_key}/ ] 
 ?val=[HTML-escaped-value]       (for Set command) 
 ?url=[callback_spec_URI]  (for Register with 
callbacks)  
 
 (Credentials in HTTP hdr. for Session initiation) 

Examples 
 
1. Request CIMA REST service to send data from sensor1 to 
http://my.client.org:9080 
 
GET http://instrument.your.org/Register/sensor1/b7bf6538-873c-
4f9a-84d6-163d40a60632?url=http://my.client.org:9080/ 
 
2. Set variable “filter1” on “CCD” to “Oxygen3” 
 
PUT http://instrument.your.org/Set/CCD/filter1/b7bf6538-873c-
4f9a-84d6-163d40a60632?val=”Oxygen3” 

Fig. 1. RESTful URL schema for a CIMA service 

 
A straightforward solution to the problem of asynchro-

nous delivery of data from instrument to client is to 
duplicate the CIMA Web services model with Web 
services endpoints on the instrument proxy and in the client 
software that is using the instrument, but instead of a WS 
endpoint on the client, provide only the embedded web 
server. This approach is appealing but it fundamentally 
breaks with the REST/Web 2.0 approach of URL-based 
resources and synchronous (idempotent) operations on 
them, making it difficult or impossible to use these 
services in mashups. A better solution may be to appeal to 
external messaging systems such as Amazon’s Simple 
Queue Service or implement data flow using RSS [32]. In 
this case the instrument service will be expected to 
provide data through the third-party message service. We 
have evaluated RSS as a way to deliver streaming data 

from instruments and found that it not only works well 
but has some interesting benefits, such as providing 
retrospective data to new subscribers, at least to the extent 
that old data are kept in the RSS feed. Other services such 
as Yahoo Pipes can be used to filter and aggregate instru-
ment data in much the same way that CIMA Web services 
intermediaries work. 

 
 

VII.  CONCLUSIONS  AND  FUTURE  WORK 
 
In this paper we describe the Real World Web based on 

Web 2.0 techniques and design values, and present an 
argument for developing standards to encourage its 
development in order to make real-world sensors and 
instruments more accessible. We then briefly discuss the 
role of Web 2.0 techniques in building systems for col-
laborative e-Science. We discuss some particular diffi-
culties of representing instruments and sensors as RESTful 
services and present a conceptual mapping of the Web 
services approach used in Common Instrument Middleware 
Architecture (CIMA) to a REST-based service oriented 
architecture. 

Future work includes an evaluation of GET/PUT vs. 
POST approaches in terms of performance and integration 
with other services via mashups, use of MicroFormats 
instead of XML for CIMA Parcel data structures, how 
complex preexisting sensor networks can be brought into 
the Real World Web as service clouds, and models for how 
authentication and authorization for Real World Web 
resources should be approached.  
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