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Abstract: The theory of two-temperature generalized thermoelasticity, based on the theory of Youssef is used to solve boundary value 
problems of one dimensional piezoelectric half-space with heating its boundary with different types of heating. The governing equations 
are solved in the Laplace transform domain by using state-space approach of the modern control theory. The general solution obtained is 
applied to a specific problems of a half-space subjected to three types of heating; the thermal shock type, the ramp type and the harmonic 
type. The inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. The conductive 
temperature, the dynamical temperature, the stress and the strain distributions are shown graphically with some comparisons. 
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Nomenclature:  
 
Aij – the components of relaxation time α – 0 ( 2 )Tγ λ μ+  – dimensionless thermoelastic coupling constant 

a – the two-temperature parameter αT – coefficient of linear thermal expansion 
CE – specific heat at constant strain βik – the components of dielectric tensor 
cijkl – the elastic coefficients γ – (3λ + 2μ)αT 
c0 – ( 2 )λ μ ρ+  – longitudinal wave speed Ω – the angular frequency of thermal vibration 
Di – the components of electric displacement δij – Kronecker delta function 
di – the pyroelectric coefficient ε – ECγ ρ – dimensionless mechanical coupling constant 

Ei – the components of electric field vector ζ – the entropy 
eij – the components of strain tensor η – EC kρ  – the thermal viscosity 

hijk – the piezoelectric coefficients θ  0( )T T− – the dynamical temperature increment such that 0 0 1T T T− <<  

kij – the components of thermal conductivity λ, μ – Lamé’s constants 
qi – the components of the heat flux vector ρ – density 
T – absolute temperature σij – components of stress tensor 
T0 – reference temperature σ – the principal Stress component 
t – time τ0 – one relaxation time parameter 
t0 – ramping time parameter ϕ – the conductive temperature 
ui – components of displacement vector ω – dimensionless two-temperature parameter 
vi – the electric potential function    
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I.  INTRODUCTION 
 

 For classical uncoupled and coupled theories of thermo-
elasticity, the heat conduction equations are of the diffusion 
types which lead to infinite speeds of propagation for heat 
waves contrary to physical observations. Widespread at-
tention to eliminate this paradox has been given to thermo-
elasticity theories which admit a finite speed for the pro-
pagation of thermal waves. Many authors have formulated 
generalized theories involve a hyperbolic-type heat equa-
tion and are referred to as generalized thermoelasticity. 
Three generalizations to the coupled theory were intro-
duced. The first theory was developed by Lord and 
Shulman [1]. In this theory they obtained a wave-type heat 
equation by modifying Fourier's law to contain the heat 
flux vector as well as its derivative and include one 
relaxation time. Since the heat equation of this theory is of 
the wave-type, it ensures finite speed of propagation for 
heat and elastic waves [2]. This eliminates the paradox 
accompanying the infinite speed of heat propagation in the 
classical theory and allows for the so called second sound 
effects in solids. Ignaczak contributes to the thermo-
elasticity with one relaxation by the proofs of uniqueness 
theorems under different conditions [3].   
 The second generalization to the coupled theory of 
elasticity is what is known as the theory of thermoelasticity 
with two relaxation times or the theory of temperature-rate 
dependent thermoelasticity. In this theory an entropy pro-
duction inequality was proposed by Müller [4]. It repre-
sents restrictions on a class of constitutive equations. The 
Green and Lindsay (G-L) theory modifies both the energy 
equation and the Duhamel-Neuman relation and admits two 
relaxation times and modify all equations of the coupled 
theory, not only the heat equation. The classical Fourier’s 
law of heat conduction is not violated if the medium under 
consideration has a center of symmetry [5, 6]. They also 
obtained another version of this constitutive equations.  
 In the third theory [C-T] theory, Tzou [7] replace the 
Fourier law by an approximation to a modification of the 
Fourier law with two different translations for the heat flux 
and the temperature gradient. This theory is known as the 
dual-phase-lag thermoelasticity. 
 Piezoelectricity is the phenomenon whereby electric 
polarization is devoted in deformed materials. The effect of 
electro-mechanical coupling in such materials has immense 
potential in engineering applications. A good example is 
the use of this class of materials as sensors and actuators in 
micro- electro-mechanical system (MEMS), for instance, 
the piezoelectric accelerometer which triggers an airbag in 
ten of second during accident. 

 With the advent of new generation of electronic de-
vices, their reliability and integrity are essential for safe 
operation. In addition, because these devices are to operate 
under various electro-thermo-mechanical conditions over 
a broad spectrum, their design and manufacturing represent 
a great challenge in engineering. In view of its versatility 
and important to engineering applications, we devoted our 
attention to piezoelectric ceramic which have been exten-
sively used in many engineering applications. So, the 
theory of generalized thermo-piezoelectricity has been the 
object of numerous investigations in the last decades or so, 
concerning both its theoretical foundations and the ap-
plications. 
 The theory of generalized thermoelasticity was ex-
tended so as to involve electromagnetic media, piezo-
electric in particular. The theory of thermo-piezoelectricity 
was first proposed by Mindlin [8]. He also derived go-
verning equations of a thermo-piezoelectric plate [9]. 
Nowacki [10, 11] has studied the physical laws for the 
thermo-piezoelectric materials. Chandrasekharaiah [12] has 
generalized Mindlin's theory of thermo-piezoelectricity to 
account for the finite speed of propagation of thermal 
disturbances. Majhi [13] studied the transient thermal re-
sponse of a semi-infinite piezoelectric rod subjected to 
a local heat source along the length direction, by intro-
ducing a potential function and applying the L-S theory. 
Sharma and Kumar [14] studied plane harmonic waves in 
piezo-thermoelastic materials. Bassiouny and Ghaleb have 
solved a one dimensional problem in the generalized theory 
of thermopiezoelasticity [15]. Tianhu et al. [16, 17] dis-
cussed various thermal shock problems of piezoelectric 
plate by applying the L-S and G-L theories. Baljeet [18] 
used Green-Lindsay and Lord-Shulman theories for gener-
alized thermo-piezoelectric solid to study the plane waves 
in a two-dimensional model. 
 Recently, Youssef [19] has improved the previous theo-
ries of the generalized thermoelasticity (G-L) and (L-S) 
with a new theory which depends on two distinct tempera-
tures, that is, the conductive temperature and the thermo-
dynamic temperature, this theory is called; Theory of two-
temperature generalized thermoelasticity (Y-TTGTE). The 
uniqueness solution of the last theory has been derived also 
by Youssef.  
 The present work, use the state space approach  and the 
two-temperature theory (Y-TTGTE) to study the effect of 
the presence of the heat conduction ϕ  in Fourier's law 
instead of the usual thermodynamic temperature on the 
behavior of the solutions in generalized thermo-piezo-
electricity. Considering the (Y-TTGTE) model, the govern-
ing differential equations for two-temperature generalized 
thermo-piezoelectric solid are formulated. Laplace trans-
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form technique is applied to thermal shock of semi infinite 
piezoelectric rod to obtain the solution in the transformed 
domain, in combination with a numerical inversion for-
mula.  
  
 

II.  FORMULATION  OF  THE  PROBLEM 
 

 Consider a semi-infinite piezoelectric rod occupying the 
interval 0x ≥ . At the near end of the rod, a thermal effect 
is given which raises the temperature of this end to a pre-
scribed temperature with known function and free of stress. 
Piezoelectric rod direction be parallel with the axial direc-
tion. The corresponding boundary conditions may be writ-
ten as follows [20]: 

  ( ) ( ) ( )
0 0

0
x x

x,t F t , x,t
= =

θ = σ =   (1) 

 In the absence of body force, free charge and inner heat 
sources, the generalized thermo-piezoelectric governing 
differential equations as follow: 
 Equations of motion: 

         ij , j iu ,σ ρ= &&   (2) 

 Equation of entropy production (in the absence of inner 
heat source): 

  0i ,iq T ,ζ= − &  (3) 

 Stress-strain-temperature: 

  ij ijkl kl ijk k ijc e h D ,σ β θ= − −  (4) 

 Gauss equation and electric field relation: 

  0i ,iD = ,    (5) 

  i ,iE v= − , (6) 

  i ikl kl ik k iE h e D d Tτ= + − . (7) 

Equation of entropy:  

  ij ij i ie d D c Tζ β= + + . (8) 

Strain-displacement relations: 

  1
2ij i , j j ,ie ( u u )= +  . (9) 

 We will assume the following new form of the heat 
conduction equation [19]: 

  i ij , j ij , jq A q K ϕ+ = −& , (10) 

where ϕ  is the conductive temperature and satisfies the 
relation 

  ,iiT aϕ ϕ− =  (11) 

in which 0a >  is the two-temperature parameter and ijk is 
the components of  thermal conductivity tensor. 
 Once more, we indicate to the fact that the new modi-
fication to the usual theory of generalized thermo piezo-
electric is the presence of the conductive temperature into 
Fourier's law of heat conduction. 
 In the above equations, a comma followed by a suffix 
denotes material derivatives and a superposed dot denotes 
the derivatives with respect to time. 
 
 

III.  ONE  DIMENSION  FORMULATION 
 
 For one-dimensional problem we assume displacement 
component of the form 

  ( )xu x,t= ,   0y zu u= = .  (12) 

 The following are the linearized basic equations in one- 
dimensional formulation: 

  
2 2

2 2( 2 ) u u
xx t
θλ μ γ ρ∂ ∂ ∂+ − =

∂∂ ∂
,   (13) 

  ( 2 ) u h D
x

σ λ μ γ θ∂= + − −
∂

, (14) 

  

[ ]

2

2

2

0 02 E

k
x

C T e
t t

ϕ

τ ρ θ γ

∂ =
∂

⎛ ⎞∂ ∂= + +⎜ ⎟∂ ∂⎝ ⎠

,  (15) 

  
2

2T a
x
ϕϕ ∂− =

∂
,  (16) 

  ue
x

∂=
∂

,    (17) 

  0D
x

∂ =
∂

, (18) 

  1
vE
x

∂= −
∂

, (19) 

where, ( )3 2 ,t tγ α λ μ α= +  is the coefficient of the linear 
thermal expansion and x is the coordinate taken along the 
rod, measured from the finite end. 
 It is convenient now to introduce the following dimen-
sionless variables: 

     0u c uη′ =  ,  2
0t c tη′= =  ,    

( 2 )
σσ

λ μ
′ =

+
 ,  
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   0

0

T T
T

θ −′= ,    2
0cτ η τ′= ,    0

0

T
T

ϕϕ −′ =  

 
2

hD D
λ μ

′ =
+

,    EC
k

ρη = ,    2
0

2c λ μ
ρ

+= ,  

  2
0 0 0t c tη′ = = ,    2

0c η
Ω′Ω = = . (20)  

From Gauss’s law, since there is no free charge inside the 
rod, we have 0D x∂ ∂ =  then it follows that: 

  ( ) const.D t =  (21) 

 Substituting Eq. (16) into Eqs. (12)-(19) and dropping 
the primes for convenience, we obtain the following set of 
non-dimensional equations: 

  
2 2 2

2 2 2

e e
x x t

θα∂ ∂ ∂− =
∂ ∂ ∂

,  (22) 

  e Dσ α θ= − − ,  (23) 

  ( )
2 2

02 2 e
tx t

ϕ τ θ ε⎛ ⎞∂ ∂ ∂= + +⎜ ⎟∂∂ ∂⎝ ⎠
, (24) 

and the following relation between the conductive tempera-
ture and the thermo dynamical one: 

  
2

2x
ϕθ ϕ ω ∂= −

∂
   (25) 

where, 

        0

( 2 )
Tγα

λ μ
=

+
,         

EC
γε

ρ
= ,          2 2

0a cω η=  . 

 We assume that, the half space 0x ≥  is set to be ini-
tially at rest and has reference temperature 0T  such that the 
initial conditions are assume to be: 

  ( ,0) ( ,0) 0e x e x= =& , (26) 

  ( ,0) ( ,0) 0x xθ θ= =& , (27) 

  ( ,0) ( ,0) 0x xϕ ϕ= =& . (28) 

 We consider the half-space 0x ≥  at a uniform tempera-
ture 0T  with its boundary 0x =  subjected to heating with 
general function ( )F t and traction free, so that the bound-
ary conditions take the following forms: 

  ( )0 (0, )t F tϕ = ,            (29) 

  (0, ) 0tσ = ,            (30) 

and that  

  ( , ) 0e x t → , 

  ( , ) 0 and ( , ) 0 as , 0x t x t x tθ ϕ→ → →∞ > , 

 Applying Laplace transform defined by: 

  { }
0

( ) ( ) ( )s tL f t f s e f t dt
∞

−= = ∫ ,         (31) 

to the both sides of Eqs. (22)-(25), we obtain: 

  
2 2

2
2 2

d e d s e
d x d x

θα− = , (32)  

  
De
s

σ α θ= − − , (33) 

  
2

2 2
0 02 ( ) ( )d s s s s e

d x
ϕ τ θ ε τ= + + + ,  (34) 

  
2

2

d
d x

ϕθ ϕ ω= −  , (35) 

  ( )(0, )s F sϕ = ,     (36) 

  (0, ) 0sσ = ,     (37)  

where s denotes the complex argument related to the 
Laplace transform. 
 Eliminating θ  between Eqs. (34) and (35), we left 
with: 

  
2

2

d L L e
d x

ϕ ϕ ε= + ,  (38) 

where  

  ( ) ( )
2

0
2

01
s s

L L s
s s
τ

ω τ
+

= =
+ +

.  

 Substituting from Eq. (38) into Eq. (35), we obtain   

  ( )1 L L eθ ω ϕ ω ε= − − . (39) 

 Eliminating θ  between Eq. (32) and Eq. (33) we obtain  

  
2

2

d e M N e
d x

ϕ= + ,  (40) 

where 

  ( ) (1 )
1
L LM M s

L
α ω

ωα ε
−= =

+
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and        ( )
2 (1 )

1
s L LN N s

L
αε ω

ωα ε
+ −= =

+
. 

 
 

IV.  STATE  SPACE  APPROACH 
 

 Equations (38) and (40) can be written matrix dif-
ferential equations as follows [21]: 

  
2

2

( , ) ( ) ( , )d V x s A s V x s
d x

= ,     (41) 

where 

   ( , )V x s
e
ϕ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

is the state vector in the transform domain, and, ( )A s  is 
a 2 2×  matrix assume the form  

  ( ) L L
A s

M N
ε⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.            (42) 

 The general solution of Eq. (42) can be obtained in the 
form: 

  ( , ) exp ( ) (0, )V x s A s x V s⎡ ⎤= −⎣ ⎦ ,      (43) 

where for bounded solution with large x, we have canceled 
the exponential part that has a positive power, the matrix 
exponential exp( ( ) )A s x−  is the transfer matrix and  

  0

0

(0, )V s
e
ϕ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. (44) 

where  

  ( )0 F sϕ = , (45) 

and from Eqs. (33), (37), (39) and (45), we have  

  ( ) ( )0

1 1
1

De L F s
L s

α ω
ω ε α

⎡ ⎤= − +⎢ ⎥+ ⎣ ⎦
,  

where  

  ( )0 0,e e s=  

 The characteristic equation corresponding to the matrix 
A assumes the form: 

  2 ( ) ( ) 0L N L N LMλ λ ε− + + − = ,       (46) 

 The roots of this equation, namely, 1 2andλ λ , satisfy 
the following relations 

  1 2 L Nλ λ+ = + , (47) 

  1 2 LN LMλ λ ε= − . (48) 

The Taylor series expansion for the matrix exponential 
exp( ( ) )A s x−  is given by 

  
( )

exp[ ( ) ]
!

n

n o

A s x
A s x

n

∞

=

⎡ ⎤−⎣ ⎦− =∑ . (49) 

 Using Cayley-Hamilton theorem, we can express A2 and 
higher orders of the matrix A in terms of I, A, where I is the 
unit matrix of second order. 
 Thus, the infinite series in Eq. (49) can be reduced to 
the following form 

  0 1exp ( ) ( , ) ( , ) ( )A s x a x s I a x s A s⎡ ⎤− = +⎣ ⎦ .  (50) 

where a0 and a1 are some coefficients depending on s and x.  
 By Cayley-Hamilton theorem, the characteristic roots 

1 2andλ λ  of the matrix A must satisfy Eq. (50), thus we have 

  ( )1 0 1 1exp x a aλ λ− = + , (51) 

and 

  ( )2 0 1 2exp x a aλ λ− = + . (52) 

 Solving the above linear system of equations, we get 

  
2 1

1 2
0

1 2

x xe ea
λ λλ λ
λ λ

− −−
=

−
, (53) 

and  
1 2

1
1 2

.
x xe ea

λ λ

λ λ

− −−=
−

 (54) 

 Hence, we have 

  ( )exp ( ) ,ijA s x L x s⎡ ⎤− =⎣ ⎦ ,  i, j =1, 2, (55) 

where 

  
2 1

1 2
11

1 2

( ) ( )x xL e L eL
λ λλ λ
λ λ

− −− − −
=

−
,   

  
( )1 2

12
1 2

x xgL e e
L

λ λ

λ λ

− −−
=

−
, 

  
1 2

2 1
22

2 1

( ) ( )x xN e N eL
λ λλ λ
λ λ

− −− − −
=

−
,   

  
( )1 2

21
1 2

x xM e e
L

λ λ

λ λ

− −−
=

−
. 

 We can write the solution in (43) in the following form 

  ( , ) (0, )ijV x s L V s= . (56) 
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Hence, we obtain   

  2 1

1 2
x xe eλ λϕ ϕ ϕ− −= − , (57) 

where 

  

1 0 0 0
1

1 2

2 0 0 0
2

1 2

( )
,

( )

L gLe

L gLe

λ ϕ ϕϕ
λ λ

λ ϕ ϕϕ
λ λ

− −
=

−

− −
=

−

, 

and 

  2 1

1 2
x xe e e e eλ λ− −= − , (58) 

where 

  

1 0 0 0
1

1 2

2 0 0 0
2

1 2

( )
,

( )

e M Ne
e

e M Ne
e

λ ϕ
λ λ

λ ϕ
λ λ

− −
=

−

− −
=

−

. 

 Using Eqs. (57) and (58) into Eq. (39), we obtain 

  2 1

1 2
x xe eλ λθ θ θ− −= − , (59) 

where 

  
( )

( )
1 1 1

2 2 2

1 ,

1 .

L Le

L Le

θ ω ϕ ω

θ ω ϕ ω

= − −

= − −
 

 Now, we can get the stress equation by using Eqs. (58) 
and (59) into Eq. (33), thus we have 

  2 1

1 2
x x De e

s
λ λσ σ σ− −= − − , (60) 

where 
  ( ) ( )1 1 1 2 2 2,e eσ αθ σ αθ= − = − . 

 Which complete the solution on the Laplace transform 
domain. 

Application I (Thermal shock problem) 
 We consider the half-space 0x ≥  at a uniform 
temperature 0T  with its boundary 0x =  subjected to ther-
mal shock as follows [17]: 

  ( ) ( )0F t F H t= ,  (61) 

where 0F  is constant represent the strength of the shock on 
the boundary, and H(t) is the Heavyside unit step function. 
 After using the Laplace transform, we have 

  ( ) 0
0

F
F s

s
ϕ = = , (62) 

and 

  
( ) 0

0

11
1

L F De
L s s

α ω
ω ε α

−⎡ ⎤
= +⎢ ⎥+ ⎣ ⎦

. (63) 

 Thus, we get the complete solution for this application 
on the Laplace transform domain by using Eqs. (62) and 
(63) into Eqs. (57)-(60). 

Application II (Ramp-type heating) 
 We consider the half-space 0x ≥  at a uniform tem-
perature 0T  with its boundary 0x =  subjected to thermal 
shock as follows [20]: 

  ( ) 0
0

0

0 0

0 0

0, 0

t
F

F t t t t
t

F t t

⎧ ≤
⎪
⎪= < ≤⎨
⎪
⎪ >⎩

,            (64) 

where 0F  is constant and 0t  is the ramp type parameter. 
 After using the dimensionless and the Laplace trans-
form defined previously, we have 

  ( )
( )0

0

0 2
0

1 s tF e
F s

t s
ϕ

−−
= = , (65) 

and 

 
( ) ( )0

0

0 2
0

1 11
1

s tF L e De
L st s

α ω

ω ε α

−⎡ ⎤− −
⎢ ⎥= +
⎢ ⎥+
⎣ ⎦

. (66) 

 Thus, we get the complete solution for this application 
on the Laplace transform domain by using Eqs. (65) and 
(66) into Eqs. (57)-(60). 

Application III (Harmonically varying temperature) 
 We consider the half-space 0x ≥  at a uniform tempera-
ture 0T  with its boundary 0x =  subjected to thermal shock 
as follows [22]: 

  ( )0, i t
oF t F e Ω= , (67) 

where 0F  is constant, Ω  is the angular frequency of ther-
mal vibration and 1i = − .  
 After using the dimensionless and the Laplace trans-
form defined previously, we have 

  ( ) 0
0

F
F s

s i
ϕ = =

− Ω
, (68) 

  
( )0

0

11
1

F L De
L s i s

α ω
ω ε α

−⎡ ⎤
= +⎢ ⎥+ − Ω⎣ ⎦

. (69) 
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 Thus, we get the complete solution for this application 
on the Laplace transform domain by using Eqs. (68) and 
(69) into Eqs. (57)-(60). 
 
 

V.  NUMERICAL  INVERSION  
OF  THE  LAPLACE  TRANSFORM 

 
 In order to invert the Laplace transform, we adopt a nu-
merical inversion method based on a Fourier series ex-
pansion [23, 24]. 
 By this method the inverse ( )f t of the Laplace trans-
form ( )f s  is approximated by  

( ) ( )
11 1 1

1

1 1 exp ,
2

0 2 ,

ct N

k

e i k i k tf t f c R f c
t t t

t t

π π
=

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

< <

∑
 

where N is a sufficiently large integer representing the 
number of terms in the truncated Fourier series, chosen 
such that 

 ( ) 1
1 1

exp 1 expi N i N tc t R f c
t t

π π ε
⎡ ⎤⎛ ⎞ ⎛ ⎞

+ ≤⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, 

where ε1 is a prescribed small positive number that cor-
responds to the degree of accuracy required. The parameter 
c is a positive free parameter that must be greater than the 
real part of all the singularities of ( )f s . The optimal choice 
of c was obtained according to the criteria described in [24]. 
 

 
VI.  NUMERICAL  RESULTS  AND  DISCUSSION 

 
The numerical values of the thermal temperature, the 
dynamical temperature, stress and strain have been 
calculated for small time 0.25t = , for wide range of 
x = 0.0 up to x = 2.0, and for τ = 0.05 for the relaxation 
time. In the calculation process, the following constants are 
necessary to be known including F0 = 1.0, ε = 0.003887, 
α = 0.036991, Ω = 10-5, ω = 0.1, D = 10-7 [16]. The nu-
merical results are displayed graphically. 
 We have three groups of graphs where we have three 
applications:  
 The first group (Figs. 1-4) displays the solution of the 
problem for the thermal shock. It shows the differences 
between the theory of one temperature generalized thermo-
elasticity and the theory of two-temperature generalized 
thermoelasticity. Results of this group are also compared 
with the correspondence case of Tianhu. 

 

Fig. 1. Heat conduction distribution for thermal shock 

 

 

Fig. 2. Dynamical heat conduction distribution for thermal shock 

 

 

Fig. 3. Stress distribution for thermal shock 

 

 

Fig. 4. Strain distribution for thermal shock 
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1. Figure 1 displays the conductive temperature and we can 
deduce that, the wave has a finite speed of propagation. 
This result shows that the two type temperature model 
agree with the generalized thermoelasticity. 

2. From Fig. 2 we deduce that both type of temperature 
vanish smoothly far from the nearest end of the rod 
which is more realistic than the correspondence result of 
Tianhu which shows that the temperature reduced sud-
denly to zero.  

3. Figure 3 displays a comparison of the stress in the 
context of  the two theories. At x = 0 the stress reduces 
to zero which agree with the boundary condition. 
Comparison with Tianhu work we deduce that the stress 
distribution is negative in Tianhu work while in the 
present work we observe that stress in the case of two 
type temperature is also negative. In the case of one 
temperature only one jump occur at x = 0.24 and the 
magnitude of the stress is 0.0043276 while in the Tianhu 
work two jumps occur; one of these occurs at x = 0.24. 
The two temperature parameter remove the discontinui-
ties appear in the correspondence result of Bassiouny 
and Tianhu. 

4. Figure 4 displays a comparison of the strain in the 
context of the two theories. We have found that, in the 
theory of Lord and Shulman the strain distribution has a 
discontinuous as the stress, while in the theory of 
Youssef, the strain distribution is continuous and smooth. 

 

 

Fig. 5. Heat conduction distribution for ramp-type heating 

 

 

Fig. 6. Dynamical heat distribution for ramp-type heating 

 

Fig. 7. Stress distribution for ramp-type heating 

 

 

Fig. 8. Strain distribution for ramp-type heating 

 
 The second group (Figs. 5-8) displays the solution of 
the problem for the ramp type heating in the context of 
Youssef model. This group shows the effect of the ramp 
type parameter on the results and we found that both type 
of temperature changes with the same manner due to the 
changes of the ramp parameter. 
 The third group (Figs. 9-12) displays the solution of the 
problem for harmonic heating in the context of Youssef 
model. This group shows the effect of the relaxation time 
parameter on the results and we noticed that decreasing the 
relaxation time increases the heat conductive, the dynami- 
  

 

Fig. 9. Heat conduction distribution for harmoically heating 
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Fig. 10. Dynamical heat conduction distribution for harmoically 

heating 

 

 

Fig. 11. Stress distribution for harmoically heating 

 

 

Fig. 12. Strain distribution for harmoically heating 

 
cal heat, the strain and the absolute value of the maximum 
stress. 
 

 
VII.  CONCLUSION 

 
 Due to the application of two type temperature method 
to the shock problem of piezoelectric material the discon-
tinuities in the stress and strain function have been re-

moved. The way of vanishing the temperature in the 
present work in comparison with Tianhu work leads us to 
claim that the present model is more realistic than that of 
Tianhu. We have found that, the ramp parameter 0t  as well 
as the relaxation time 0τ  has significant effects on all the 
fields.  
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