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I.  INTRODUCTION 
 

 In statistical literature four different definitions of the 
skewness exist. Beside the classic definition presented in 
section III, also two Pearson’s skewnesses defined in sec-
tions IV and V, as well as Bowley’s skewness described in 
section VI occur. To compare these skewnesses certain 
probability distribution will be useful, in which through the 
change of parameter values in a wide range their asym-
metry change is possible. Distributions derived from the 
Gaussian distribution fit superbly for numerical experi-
ments of this type. Johnson’s distribution of type SR and SU, 
in which changing the parameter values makes it possible 
to get the transition from the negative skewness to the po-
sitive one, deserves special attention in this aspect. In the 
present work Johnson’s distribution of type SU was used for 
numerical experiments, whose domain – in contrast to 
Johnson’s distribution of type SR – is a set of real numbers. 
In section VII ability of these skewnesses to express 
asymmetry was compared as well as the accuracy of their 
estimation from normal distribution was assessed. 
 
 

II.  DISTRIBUTIONS  DERIVED 
FROM  THE  GAUSSIAN  DISTRIBUTION 

 
 A cumulative distribution function of distributions deri-
ved from the normal distribution is given by [4] 

  ( ) ( ),F x xϑ θ⎡ ⎤= Φ ⎣ ⎦ , (1) 

where ( ).Φ  is a normal cumulative distribution function, 
( )xϑ  is an increasing function of argument x, whereas θ  

is a vector of parameters of the discussed distribution.  
 Examples of distributions derived from the normal 
distribution are: 

• Lognormal distribution, 
• Chhikary’s distribution, 
• Birnbaum–Saunders’s distribution, 
• Johnson’ distribution of type , , .L B US S S  

 The family of Johnson’s distribution describes the for-
mula [5] 

  xz εγ η ψ
λ
−⎛ ⎞= + ⋅ ⎜ ⎟

⎝ ⎠
 (2) 

transforming random variable x into random variable z de-
pendent on normal distribution ( )0, 1 .N  A detailed discus-
sion of Johnson’s distributions of type , ,L B US S S  together 
with numerous numerical examples is possible to find in 
a book by Drapella [4]. 
 As it is difficult to investigate properties of distributions 
with four parameters, in further considerations we will ac-
cept 0, 1ε λ= =  and /a bγ = − , 1/ bη = . With these as-
sumptions (2) takes the form 

  
( )x a

z
b

ψ −
= . (3)  

The cumulative distribution function for Johnson’s distri-
bution of type SU random variable x is given by 

On Differently Defined Skewness 
 

P. Sulewski 
 

Pomeranian Academy, Arciszewskiego 22, 76-200 Slupsk, Poland 
e-mail: sulewski@zis.pap.edu.pl 

 
(Received: 8 November 2007;  accepted: 20 January 2008,  published online: 1 April 2008) 

 
Abstract: Four definitions of skewness are discussed: classic skewness, two Pearson’s skewnesses and Bowley’s skewness. The ability of 
these skewnesses to express asymmetry is compared as well as the accuracy of their estimation from normal distribution is assessed. 
Key words: skewness, Johnson’s distribution, method of Parzen, estimator density function. 
 
 

user
Tekst maszynowy
CMST 14(1) 39-46 (2008)

user
Tekst maszynowy
DOI:10.12921/cmst.2008.14.01.39-46

user
Tekst maszynowy

user
Tekst maszynowy



P. Sulewski 

 

40

  ( )
( )2ln 1x x a

F x
b

⎡ ⎤+ + −⎢ ⎥= Φ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (4) 

whereas the density function is given by 

  

( )

( )

2

2
2

1

2 1

ln 11exp .
2

f x
b x

x x a

b

π
= ×

⋅ ⋅ +

⎡ ⎤⎛ ⎞+ + −⎢ ⎥⎜ ⎟× − ×⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (5) 

 The density function of Johnson’s distribution of type 
SU for combinations of parameter values presented in 
Table 1 was exemplified in Figs. 1 and 2. 

 

 
Fig. 1. Density function of Johnson’s distribution of type SU 

for combinations I-V of parameter values presented in Table 1 
 

 
Fig. 2. Density function of Johnson’s distribution of type SU 

for combinations VI-X of parameter values presented in Table 1 
 

Table 1. Combinations of parameter values 

Combination     a b Combination a b 
I -2 1 VI 1 0.3 
II -1 1 VII 1 0.6 
III 0 1 VIII 1 0.9 
IV 1 1 IX 1 1.2 
V 2 1 X 1 1.5 

 It follows from Figure 1 that in Johnson’s distribution 
of type SU it is possible to change the value of parameters 
to get the transition from negative skewness to a positive 
one.  
 
 

III.  THE  CLASSIC  SKEWNESS 
 
 Let us note that the classic skewness is calculated as [2, 6] 

  3
1 3/ 2

2

K μγ
μ

= , (6) 

where kμ  – for continuous distribution – are central mo-
ments of the k-th order in form of [1, 2, 6] 

                           ( ) ( )1
k

k x f x dxμ α
∞

−∞
= −∫ . (7) 

Central moments of Johnson’s distribution of type SU are 
impossible to define analytically, therefore mathematical 
environment Mathcad counting the value of indefinite 
integrals was used. The model computer implementation of 
classic skewness, written in Mathcad, was introduced 
below. 

:1 1a b =  

  

( ) 2
2

2

ln 1
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2( ) :

2 1
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f x
b xπ
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( )

3
1 13

2

: 5.363 .
μγ γ
μ

= =  

 The relation between classic skewness for Johnson’ dis-
tribution of type SU  and values of parameters a and b was 
presented in Fgs. 3 and 4. It is notable that 

  10
lim 0K

b
γ

→
= , 1lim K

b
γ

→∞
= ∞ . (8) 
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Fig. 3. Relation between classic skewness for Johnson’ 

distribution of type SU  and parameter a 
 

 
Fig. 4. Relation between classic skewness for Johnson’ 

distribution of type SU and parameter b 
 
 

IV.  PEARSON’S  SKEWNESS 
 
 Pearson’s skewness (the mode skewness) is calculated 
as [7] 

  1 mod
1

2

P xαγ
μ

−
= , (9) 

where α1 is a mean value, modx  – mode of distribution.  

 

 
Fig. 5. Relation between Pearson’s skewness for Johnson’ 

distribution of type SU  and parameter a 

 

Fig. 6. Relation between Pearson’s skewness for Johnson’ 
distribution of type SU and parameter b  

 
 To calculate the values of this coefficient computational 
environment Mathcad was used. The relation between 
Pearson’s skewness for Johnson’ distribution of type SU 
and values of parameters a and b was presented in Figs. 5 
and 6. One should notice that 

  1lim 0P

b
γ

→∞
= . (10) 

 
 

V.  MEDIAN  SKEWNESS 
 

 The median skewness is given by 

  1 0.5
1

2

M xαγ
μ

−
= , (11) 

where 1α  is a mean value, 5.0x  – a median of distribution. 
This coefficient is well-known in literature as Pearson’s 
second skewness coefficient [7]. 
 Values of this coefficient in Mathcad were counted. The 
relation between median skewness for Johnson’ distribu-
tion of type SU and values of parameters a and b are 
presented in Fgs. 7 and 8. Let us notice that 

 

 
Fig. 7. Relation between median skewness for Johnson’ 

distribution of type US  and parameter a 
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Fig. 8. Relation between median skewness for Johnson’ 

distribution of type US  and parameter b 
 
  1lim 0.3M

a
γ

→−∞
= ,   1lim 0.3M

a
γ

→∞
= , (12) 

  10
lim 0M

b
γ

→
= ,   1lim 0M

b
γ

→∞
= . (13) 

 
 

VI.  BOWLEY’S  SKEWNESS 
 
 Bowley’s skewness is defined as [7] 

  
( ) ( )

( )25,075,0

25,05,05,075,0
1 xx

xxxxB

−
−−−

=γ , (14) 

where kx  are quantiles of the k-th order of distribution 
( )0 1k< < . 
 Values of quantiles of Johnson’ distribution were 
calculated in Solver, which is located in Microsoft Excel. 
The relation between Bowley’s skewness for Johnson’ 
distribution of type SU and values of parameters a and b are 
presented in Fgs. 9 and 10. It is worthwhile marking that 

  1lim 1B

a
γ

→−∞
= − , 1lim 1B

a
γ

→∞
= , (15) 

  10
lim 0B

b
γ

→
= , 1lim 1B

b
γ

→∞
= . (16) 

 
Fig. 9. Relation between Bowley’s skewness for Johnson’ 

distribution of type SU and parameter a 

 
Fig. 10. Relation between Bowley’s skewness for Johnson’ 

distribution of type SU and parameter b 
 

 
VII.  THE  COMPARISON  OF  SKEWNESS 

 
 The ability of discussed skewnesses to express asym-
metry is shown in Figs. 11 and 12. Skewness for Johnson’ 
distribution of type SU and value parameters contained in 
Table 1 were compared on them, thanks to which distribu-
tion about negative, zero and positive asymmetry was 
received. 

 

 
Fig. 11. The ability of skewness to express asymmetry 

for combinations I-V 
 

 

 
Fig. 12. The ability of skewness to express asymmetry 

for combinations VI-X 
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 Assessments of estimation accuracy of these skewnes-
ses were executed too, when a sample * * *

1 2, , ... , nx x x  was 
drawn from Gaussian distribution.  Values ( )* 1,...,ix i n=  
were generated by means of a function NormLos, which 
was created in Visual Basic for Applications (VBA). 
 
Function NormLos(m As Single, s As Single) 

Dim i As Integer 

Dim sum As Single 

sum = 0 

For i = 1 To 12 

    Let sum = sum + Rnd 

Next i 

Let NormLos = s * (sum - 6) + m 

End Function 

 
 The estimate of the sample moment of k-th order is 
given by 

  ( )*

1

1ˆ
n k

k i
i

x
n

α
=

= ∑ ; (17) 

however, the unbiased estimator of the central moment of 
2-nd and 3-th order are calculated as [2] 

  ( )2*
2 1

1

1 ˆˆ
1

n

i
i

x
n

μ α
=

= −∑
−

, (18) 

  ( )( ) ( )3*
3 1

1
ˆˆ

1 2
n

i
i

n x
n n

μ α
=

= −∑
− −

. (19) 

Unknown values of quantiles were replaced by appropriate 
order statistics [3] 

  [ ]number int * 1n α= + . (20) 

The sample mode is, according to the definition, a position 
of maximum of the empirical density function. 
 Figures 13 and 14 present the relation between variance 
calculated on the basis of 10 240 estimations each from 
skewness and a sample size n. 

 

 

Fig. 13. The relation between variance and sample size 
 

 

 

Fig. 14. The relation between variance and sample size 
 

 For 7n ≤  the smallest variance has the mode skewness. 
The classic skewness for 48n ≤  has the biggest variance, 
because – as it is widely known – the accuracy of esti-
mation worsens significantly alongside with the increase of 
the order of central moments. Among the analysed skew-
nesses, median skewness should be taken into account, 
which for 8n ≥  has the smallest variance. To confirm the 
above-quoted facts as well as in order to smooth-out em-
pirical density functions, the author employed the Parzen 
Method also known as the kernel method [8, 9]. The em-
pirical density function is composed of “kernels”. In this 
paper each kernel is of Gaussian form 

( ) ( )
*

21 1exp
22

ix x
K z z z

hhπ

−⎛ ⎞= − =⎜ ⎟
⎝ ⎠

, (21) 

therefore the empirical density function is given by 

  
2

( )

1

1 1 1ˆ ( ) exp
22

n i

i

x x
f x

nh hπ

∗

=

⎡ ⎤⎛ ⎞−⎢ ⎥= − ⎜ ⎟∑ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (22) 

The parameter h is a function of sample size 

  ( )
* *2
2 13 3

S Sh n
nn

σ −
= = , (23) 

where 

  ( )
* *
1

1

1 n

i
i

S x
n =

= ∑ ,     ( )
* *2
2

1

1 n

i
i

S x
n =

= ∑  (24) 

 The computer implementation of estimation of four 
skewnesses, written in VBA, was introduced below. Com-
ments were placed after apostrophes. 
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Sub Estimate() 
'declaration of tables 
Dim edf(50, 2) As Double 
Dim x() As Double 
Dim skewness() As Double 
'declaration of variables 
Dim m As Single, s As Single, mode As Double 
Dim xd As Double, xg As Double, krok As Double 
Dim q1 As Double, q2 As Double, q3 As Double 
Dim xc As Double, b1 As Double, index As Long 
Dim i As Long, n As Long, k As Long 
Dim sr As Double, m2 As Double, m3 As Double 
Dim c1 As Double, hor As Byte, cc As Double 
Dim s1 As Double, s2 As Double, ds As Double 
Dim h As Double, j As Long, xx As Double 
Dim t As Double, max As Double 
 
Randomize Timer 
Worksheets("estimate").Select   'selecting worksheet "estimate" 
'introduction of cells to variables 
Let m = Cells(3, 1).Value   'mean value 
Let s = Cells(3, 2).Value   'standard deviation 
Let n = Cells(3, 3).Value   'sample size 
ReDim x(n) 
ReDim skewness(10240, 4) 
For k = 1 To 10240 
        For i = 1 To n 
            Let x(i) = NormLos(m, s) 'recall to the function 
        Next i 
    'sorting 
powrot: 
    Let hor = 0 
    For i = 1 To n - 1 
        If (x(i) <= x(i + 1)) Then GoTo dalej 
        Let b1 = x(i) 
        Let x(i) = x(i + 1) 
        Let x(i + 1) = b1 
        Let hor = 1 
dalej: 
    Next i 
    If hor = 1 Then GoTo powrot 
    'the empirical density function - method of Parzen 
    Let s1 = 0 
    Let s2 = 0 
    For i = 1 To n 
        Let ds = x(i) 
        Let s1 = s1 + ds 
        Let s2 = s2 + ds * ds 
    Next i 
    Let s1 = s1 / n 
    Let s2 = s2 / n 
    Let s2 = s2 - s1 * s1 
    Let h = 3 * Sqr(s2 / n) 
    Let c2 = 1 / (Sqr(2 * Application.Pi())) 
    Let xd = x(1) - 3 * h 
    Let xg = x(n) + 3 * h 
    Let krok = (xg - xd) / 50 
    For j = 0 To 50 
        Let xx = xd + j * krok 
        Let edf(j, 1) = xx 
        Let edf(j, 2) = 0 
        For i = 1 To n 
            Let t = (xx - x(i)) / h 
            Let edf(j, 2) = edf(j, 2) + Exp(-0.5 * t * t) 
        Next i 
        Let edf(j, 2) = c2 * edf(j, 2) / n / h 
    Next j 
    'the sample mode 
    max = edf(1, 2) 
    For j = 2 To 50 
        If edf(j, 2) > max Then max = edf(j, 2): index = j 
    Next j 
    mode = edf(index, 1) 
    'the sample quantiles 
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    q1 = x(Int(n * 0.25) + 1) 
    q2 = x(Int(n * 0.5) + 1) 
    q3 = x(Int(n * 0.75) + 1) 
    'the sample moments 
    sr = 0 
    For i = 1 To n 
        sr = sr + x(i) 
    Next i 
    sr = sr / n 
    For i = 1 To n 
        xc = x(i) - sr 
        m2 = m2 + xc ^ 2 
        m3 = m3 + xc ^ 3 
    Next i 
    m2 = m2 / n 
    m3 = m3 / n 
    c1 = Sqr(n * (n - 1)) / (n - 2) 
    skewness(k, 1) = (c1 * m3) / m2 ^ (1.5)                  'classic skewness 
    skewness(k, 2) = (sr - mode) / Sqr(m2 * n / (n - 1))     'Pearson's skewness 
    skewness(k, 3) = ((q3 - q2) - (q2 - q1)) / (q3 - q1)     'Bowley's skewness 
    skewness(k, 4) = (sr - q2) / Sqr(m2 * n / (n - 1))       'median skewness 
Next k 
'introduction of results to cells 
For i = 1 To 10240 
        Let Cells(i, 1) = skewness(i, 1) 
        Let Cells(i, 2) = skewness(i, 2) 
        Let Cells(i, 3) = skewness(i, 3) 
        Let Cells(i, 4) = skewness(i, 4) 
Next i 
End Sub 

  
 
 

 
Fig. 15. The estimator density function of skewness obtained with 

the Parzen Method for n = 5 
 

 

 

Fig. 16. The estimator density function of skewness obtained with 
the Parzen Method for n = 9 

 

 

Fig. 17. The estimator density function of skewness obtained with 
the Parzen Method for n = 25 

 
 Figures 15-17 present the estimator density function of 
skewness obtained with the Parzen Method for { }5; 9; 25n ∈ . 
The sampling mode influences – particularly for small n – 
wavy ‘shape of density function of estimate of skewness. 
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