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I.  INTRODUCTION 
 

 Artificial Neural Networks (ANNs) are used to solve 
a wide range of problems. They play more and more 
substantial and responsible roles and solve more and more 
difficult problems. As usual, in order to solve complex 
problems, appropriate sophisticated tools are required, 
hence it is also necessary to apply proper methods to create 
complex ANNs. A technique that is more and more fre-
quently used for this purpose is Evolutionary Algorithms. 
To use the evolutionary approach to produce ANNs, we 
have to represent them in a form of chromosomes. 
However, to obtain effective, complex neural architectures 
by means of evolutionary techniques, we cannot simply 
copy the structure and parameters of ANN into chromoso-
me(s). In such a case we would deal with long chro-
mosomes whereas numerous experiments conducted in the 
field of evolution showed that applying long chromosomes 
may hamper or even prevent generating optimal solutions. 
Thus, we need ANN representation that would be relatively 
simple on the one hand, but on the other hand a re-
presentation that would permit creating complex neural 
architectures is needed. However, the desirable feature of 
ANNs is not the same complexity but, first of all, 
effectiveness. In order to make ANNs not only complex but 
also effective, it seems that we should try to copy the 
nature which superbly copes with constructing both comp-

lex and effective organisms. Note that most, if not all, 
living formations of the nature, which are more advanced 
in terms of construction, have a modular structure. Let us 
look at a human being. We have two very similar hands, 
legs, eyes, etc. Therefore, the next desirable property of the 
ANN encoding scheme, apart from the ability to generate 
complex neural architectures by means of relatively short 
chromosomes, is also a potential to produce modular 
architectures. In the present paper, a modular ANN means 
ANN made of several sub-ANNs [1, 15]. To obtain such 
ANN, it is enough to repeatedly use the information 
included in a genotype. If, for example, a single chromo-
some was a definition of ANN, then multiple use of the 
information contained in this chromosome would create 
a number of the same ANNs. To obtain one large ANN, it 
is sufficient to put all small ANNs together. This way, we 
obtain large ANN composed of many instances of some 
sub-ANN, i.e. modular ANN. 
 One of ANN encoding methods that enable creating 
modular ANNs is Assembler Encoding (AE). AE originates 
from the cellular and edge encoding although it also has 
features common with Linear Genetic Programming 
presented, among other things, in [5, 8]. AE assumes that 
ANN is represented in a form of a program (Assembler 
Encoding Program – AEP) whose structure is similar to 
that of a simple assembler program. The task of AEP is to 
create a Network Definition Matrix (NDM) containing all 
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the information necessary to produce ANN. The process of 
ANN construction consists of two stages. First, AEP 
creates and fills up NDM. Then, the created matrix is 
transformed into ANN. 
 AE offers several methods that can be used to create 
modular ANNs. The mentioned methods repeatedly use the 
same operations or/and the same data from AEP in many 
areas of NDM. Thus arise NDMs including many elements 
of the same value. Such NDMs, in turn, represent modular 
ANNs. To test the potential of AE to create modular 
ANNs, experiments in the capture-prey problem [2-4, 6, 
16] were carried out. During the experiments the task of 
each ANN was to control a team of agents-predators. The 
common goal of the predators was to capture an escaping 
agent-prey behaving according to a simple deterministic 
strategy. Since the speed of each predator was lower than 
or equal to the speed of the prey, the predators had to 
cooperate to accomplish the goal. 
 The main motivation to use the capture-prey problem as 
a test bed for AE is its similarity to the real problem in 
which we deal with control of a group of autonomous 
underwater vehicles (AUV). The task of AUVs is to guard 
an entrance to a harbour and to capture all dangerous 
underwater objects that can appear near the guarded area. 
The problem described above is the target problem that we 
want to solve within the framework of the future research. 

 The paper is organized as follows: section II is a short 
presentation of AE; section III is a detailed description of 
techniques that can serve to create modular ANNs; section IV 
illustrates the results of the experiments; and section 5 
contains a summary. 
                        

II.  ASSEMBLER  ENCODING  –  FUNDAMENTALS 
 

 In AE ANN is represented in a form of a program cal-
led AEP, which is composed of two parts, i.e. a part 
including operations (the code part of AEP) and a part 
including data (the memory part of AEP). The task of AEP 
is to create NDM and to fill it in with values. To this end, 
AEP uses the operations which are run one after another. 
When working, the operations use data located at the end 
of the program (Fig. 1). Once the last operation finishes its 
work, the process of creating NDM is completed. The 
matrix created is then transformed into ANN.  

 
II.1. Operations 

 AEPs can use various operations. The main task of 
most operations is to modify NDM. The modification can 
involve a single element of the matrix or a group of 
elements. Figures 2 and 3 present the implementation of 
two example operations. 

 

 
 

Fig. 1. Diagram of AE (AEP presented on the right includes four operations and four memory cells. Operation 0 changes a single 
element of NDM. To this end it uses three consecutive memory cells. The first two cells store an address to the element of NDM 
being updated. To determine the final address of the element mentioned values of registers are also used. The third memory cell 
used by Operation 0 stores a new value of the element. The value is scaled before NDM is updated. A pointer to the memory part
                     of AEP where three cells used by Operation 0 are located, is included in the Operation itself.) 
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 The task of CHG operation, presented in Fig. 2, is to 
change a value of a single element of NDM. The new value 
of the element, stored in parameter p0, is scaled to <-1, 1>. 
The address of the element being changed depends on both 
parameters p1, p2 and registers R1, R2. The role of the 
registers is detailed in the further part of the paper.   
 

 

Fig. 4. Using ADDN and DELN by AEP 
 
 The CHGC0 operation presented in Fig. 3 modifies 
values of NDM elements located in the column indicated 
by parameter p0 and register R2. The number of elements 

being updated is stored in parameter p2. The index of the 
first element being updated is located in register R1. To 
update elements of NDM, CHGC0 uses data from AEP. The 
index to a memory cell including the first data used by 
CHGC0 is stored in p1. 
 In addition to the operations whose task is to modify 
elements of NDM, AE also uses operations changing the 
size of NDM. AE assumes that the initial size of NDM is 
encoded in the chromosome with data (Fig. 4). Then, each 
AEP has some potential to modify the size of NDM by 
means of operations ADDN and DELN. ADDN adds new 
rows and columns to NDM. This procedure corresponds to 
adding new neurons to ANN – neurons unconnected with 
the rest of ANN. The number of added neurons is a para-
meter of ADDN. Adding new neurons does not destroy 
connections already established in ANN. The task of DELN 
is to remove a single neuron from ANN. The number of the 
neuron is a parameter of the operation. The elimination of 
the neuron practically takes place through removing the 
corresponding row and column from NDM.  
 
II.2. Network Definition Matrix 
 Once AEP finishes its work, the process of transform-
ing NDM into ANN is started. To construct ANN based on 
NDM, the latter has to include all the information 
necessary to create the network. When we wish to create 
the same skeleton of the network, i.e. the network without 
determined weights of interneuron connections, NDM can 
take a form of a classical connectivity matrix (CM) [7], i.e. 
a square, binary matrix of a number of rows and columns 
equal to the number of neurons. The value “1” in i-th column  

   CHG(p0,p1,p2,*) 
   { 
   row=(abs(p1)+R1)mod NDM.width; 
   column=(abs(p2)+R2)mod NDM.height; 
   NDM[row,column]=p0/Max_value; 
   } 
 
Fig. 2. CHG operation changing a single element of NDM (in AE two classes of operations are used, i.e. four-parameter operations 
and three-parameter operations [15]. The paper includes examples of only four-parameter operations. Parameters that are
                                      unimportant for implementation of the operation are marked by “*”) 
 
 
   CHGC0(p0,p1,p2,*) 
   { 
   column=(abs(p0)+R2)mod NDM.height; 
   numberOfIterations=abs(p2)mod NDM.width; 
   for(i=0;i<=numberOfIterations;i++) 
    { 
    row=(i+R1)mod NDM.width; 
    NDM[row,column]=D[(abs(p1)+i)mod D.length]/Max_value; 
    } 
   } 
 

Fig. 3. CHGC0 operation changing a part of NDM column (D[i] denotes ith data in AEP) 
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and j-th row of such a matrix means the connection 
between i-th neuron and j-th neuron. In turn, value “0” 
means a lack of the connection between these neurons. 
When the purpose is to create a complete ANN with 
determined values of weights, types and parameters of 
neurons, then NDM should take a form of a real valued 
variety of CM with extra columns or rows containing de-
finitions of individual neurons. The example of such a mat-
rix is presented in Fig. 5. 
 

 
Fig. 5. NDM as Connectivity Matrix 

 
 Generally, NDM can have any structure. It is necessary 
only to adjust the size of the matrix to the number of 
parameters we want to store in it. 
 
II.3. Evolution of AEPs 

 In AE the evolution of AEPs proceeds according to 
a scheme proposed by Potter and De Jong [9-12]. The 
scheme assumes division of an evolutionarily created 
solution into parts. Each part evolves in a separate popula-
tion. The complete solution is formed from selected repre-

sentatives of each population. Willing to use the above 
scheme in relation to AEPs, it is necessary to divide them 
into parts. In the case of AEPs the division is natural. The 
operations and data make up natural parts of AEPs. Since 
the chosen evolutionary scheme assumes evolution of each 
part in a separate population, AEP consisting of n ope-
rations and a sequence of data evolves in n populations 
with operations and one population with data. During the 
evolution AEPs expand gradually. Initially, all AEPs 
include one operation and a sequence of data. The opera-
tions and the data come from two different populations. 
When the evolution stagnates, i.e. the lack of progress in 
the fitness of generated solutions is observed over some 
period, a set of the populations containing the operations is 
enlarged by one population. This procedure extends all 
AEPs created by one operation. During the evolution each 
population can also be replaced with the newly created 
population. Such situation takes place when the influence 
of all individuals from a given population to the fitness of 
generated solutions is definitely lower than the influence of 
individuals from the remaining populations (a population 
can be replaced when, for instance, the fitness of a popu-
lation measured as an average fitness of all individuals 
from the population is definitely lower than that of the 
remaining populations).         
   

 
III.  MODULAR  ANNs  IN  AE 

 In principle, AE uses two methods to create modular 
ANNs. In order to accomplish a modular architecture of 
ANN, both methods take advantage of the same fragment 

 

 
 

Fig. 6. AEP encoding scheme 



Modular Neural Networks in Assembler Encoding 31

of AEP many times. Repeated use of the information in-
cluded in operations and data (e.g. repeated use of the same 
data by different operations) is applied by the first method. 
Each use involves a different fragment of NDM. The 
second method, i.e. jumps, is based on executing the same 
piece of code in different places of NDM. In addition to the 
mentioned methods, attempts were also made to use 
procedures in AE as a method to construct modular ANNs 
(Fig. 7). However, experiments reported in [13, 14] showed 
that AEP encoding schemes used to form multi-procedure 
AEPs are considerably less effective than the AEP 
encoding scheme used currently in AE (Fig. 6). That is why 
the procedures are not used in the present version of AE. 
  

 
Fig. 7. Using procedures to create modular NDMs and ANNs. 
Each procedure could be run many times, each time in different 
place of NDM. The main program executed procedures one after 
another, changing values of registers before invoking each of 
  them. New values for registers were stored in the main program 
 
III.1. Repeated use of information included  
          in operations and data  

 The first solution which enables AEPs to form modular 
neural architectures is repeated use of the same data by 

operations. To be performed, the operations very often 
have to refer to information placed in the memory part of 
each AEP. Because the data are common for all operations 
included in the same AEP, different operations can use the 
same data. This means that the information contained in the 
data part of AEP can be used many times to alter various 
fragments of NDM. In consequence, NDM can include the 
same elements in many locations, which is the base for 
modular neural architectures (Fig. 8) to arise.  
 

 
Fig. 8. Repeated use of the same data 

 
 Generally, it is also possible to repeatedly use the same 
data by a single operation. Let us analyze the CHGM0 
operation presented in Fig. 9. Its task is to change values of 
elements located in a fragment of NDM. Elements are 
updated in columns, one after another, starting from the 
element pointed by parameters p0 and p1 of the operation. 
The number of changed elements and the place in the 
memory where new values for the elements are located, are 
determined by parameters p2 and p3. Generally, the 
operation can modify all elements in NDM (see variable 
iterations, Fig. 9). To do so, the operation uses data 
from AEP. However, AEP usually does not include enough 

 
   CHGM0(p0,p1,p2,p3) 
   { 
   rowInit=abs(p0); 
   columnInit=abs(p1)-1; 
   iterations=abs(p2)mod(NDM.width*NDM.height); 
   for(i=0;i<=iterations;i++) 
    { 
    sumRow=i mod NDM.height; 
    if(sumRow == 0) 
        columnInit++; 
    row=(rowInit+R1+sumRow)mod NDM.height; 
    column=(columnInit+R2)mod NDM.width; 
    NDM[row,column]=D[(abs(p3)+i)mod D.length]/Max_value; 
    } 
   } 

  
Fig. 9. Implementation of CHGM0 
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data so as to assign a different value to each element of 
NDM. In consequence, to accomplish a task the operation 
has to use the same data many times. They can be read 
many times thanks to the use of mod operator (see the last 
line in CHGM0).  

Modularity of ANNs can also be accomplished by 
means of a single operation which updates a set of elements 
in NDM and does not use data for that purpose. This is the 
case, for example, with the CHGR1 operation presented in 
Fig. 10. It assigns the same value stored in a parameter p0 
to several elements in a column of NDM. Thus, many con-
nections in ANN have the same strength. The information 
concerning the strength is stored in the operation only once. 
 The modular architecture of ANNs can also be gener-
ated by means of the CHGR3 operation presented in 
Fig. 11. In this case, new values for the elements of NDM 
are stored neither in the data part of AEP, nor in parameters 
of the operation. The operation simply copies values from 
one row of NDM to another. Thus, weights assigned by one 
operation to some interneuron connections are also 
assigned to other connections. Values of the weights are 
stored in either the data part of AEP or in some operation 
as parameters only once.   

III.2. Jumps 

 The next method which can be used to create modular 
ANNs are jumps denoted as JMP. JMP makes it possible to 

repeatedly use the same code of AEP in different places of 
NDM. It is possible thanks to changing values of registers 
once the jump is performed. Figure 12 presents an example 
of performing AEP including the jump operation. The 
program mentioned proceeds as follows. First, both re-
gisters are initiated to 0. Then, the first two operations are 
performed, the result of which is visible in the top left 
corner of NDM. The next operation of AEP is the jump 
denoted in the figure as JMP(0,2,0,*). It first updates 
values of the registers and then control goes back to the 
first operation of AEP. AEP reads new values for the 
registers from the memory part. R1 is set to 0 (Memory cell 
0) whereas R2 to 2 (Memory cell 1). Once values of the 
registers are updated, the two operations preceding the 
jump are performed once again. This time, however, 
working of both operations involves a different fragment of 
NDM. Since the jump is run overall twice, each time with 
different values of the registers, the two first operations of 
AEP are executed in three different areas of NDM. 

 
 

IV.  EXPERIMENTS 
 
 In order to test the potential of AE to create modular 
ANNs, forty NDMs and AEPs generating them were 
examined. Selected NDMs and AEPs represented feed-

   CHGR1(p0,p1,p2,p3) 
   { 
   row=(abs(p1)+ R1) mod NDM.height; 
   columnInit=abs(p3) mod NDM.width; 
   iterations=abs(p2)mod NDM.width; 
   for(i=columnInit;i<=iterations+columnInit;i++) 
    { 
    column=(i+R2)mod NDM.width; 
    NDM[row,column]= p0/Max_value; 
    } 
   } 
 

Fig. 10. Implementation of CHGR1 

 
   CHGR3(p0,p1,p2,p3) 
   { 
   columnInit=abs(p3) mod NDM.width; 
   iterations=abs(p2)mod NDM.width; 
   row1=(abs(p0)+ R1) mod NDM.height; 
   row2=abs(p1) mod NDM.height; 
   for(i=columnInit;i<=iterations+columnInit;i++) 
    { 
    column=(i+R2)mod NDM.width; 
    NDM[row1,column]= NDM[row2,column]; 
    } 
   } 
 

Fig. 11. Implementation of CHGR3 
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forward ANNs generated during the experiments in which 
the task of ANNs was to control a set of three cooperating 
predators (two predators were insufficient to capture the 
prey behaving according to strategy (2) described further) 
whose common goal was to capture a fast moving prey (the 
speed of the predators was either two times lower or the 
same as the speed of the escaping prey so it would not be 
enough for the predators to simply chase the prey to grasp 
it) behaving according to a simple deterministic strategy. 
Two different strategies of the prey used in the experiments 
are presented below. 
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P – set of predators; 
A – set of actions of prey and predators 
      { }( )StandStill, North, South, West, EastA = ; 

( ),d p s  – distance between prey and predator p in state of 
environment s;   

( ), ,D s a p  – distance between prey and predator p in state 
of environment which is direct consequence of action a 
performed by prey in state s;      

( ) ( ){ }5 , , 5P s p P d p s= ∈ ≤  – set of predators whose 
distance to prey is lower or equal to 5.

 
 All NDMs and AEPs intended to be used in tests repre-
sented successful ANNs, i.e. ANNs which captured the prey 
in 20 different tested situations. ANNs generated throughout 
the experiments had 6 inputs (each input informed about the 
vertical or horizontal distance between the prey and one of 
the predators) and 3 outputs (3 predators). NDMs repre-
senting ANNs had a structure presented in Fig. 5. 

 
Fig. 13. Artificial world in which the predators’ task was to cap-
ture prey (periodic boundary conditions are implemented and each 
attempt to move beyond upper, lower, right or left border of the 
environment above caused the object making such an attempt to 
                  move to the opposite side of the environment) 

 

 

 
Fig. 12. Illustration of JMP operation 
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IV.1.  Experimental results 

 To estimate modularity of generated ANNs, we decided 
to use the following measure: 

                                NM
G

=                                      (3) 

where N denotes a number of elements different from 0 
located above the diagonal of NDM (all ANNs used in the 

experiments were feed-forward ANNs, and only elements 
above the diagonal were used to construct them) and G is 
the number of integer genes in an encoded form of AEP. N 
informs about the total number of parameters of ANN 
defined in NDM whereas G informs about the amount of 
information stored in the genotype defining ANN. The 
greater value of M, the greater degree of modularity. The 
greater value of M, the more information from AEP is re-
peatedly used to create ANN. 

 
   a) 

Operations: 
0000001 0110110 1100100 1010011 1110111
0011010 1010011 0010110 1010111 0011101
Data: 
0010110 0001101 0100001 0111011 1001110
0101100 1010100 1101001 0001001 1010101
1111000 0000000 0001110 0110110 0001001
0010010 

b) 
0 0 0 0 0 0 0 0 0 -0.15873 0.52381 0.428571 -0.666667 0.206349  
0 0 0 0 0 0 0 0 0 -0.587302 0.873016 0.571429 -0.111111 0  
0 0 0 0 0 0 0 0 0 0.571429 -0.444444 0.285714 0 0  
0 0 0 0 0 0 0 0 0 -0.666667 0.206349 0.698413 0.444444 0  
0 0 0 0 -0.793651 -0.793651 -0.793651 0 0 -0.111111 -0.15873 0.52381 0.428571 0  
0 0 0 0 0 0 0 0 0 0.285714 0 -0.587302 0.873016 0.571429  
0 0 0 0 0 0 0 0 0 0.698413 0.444444 0.571429 -0.444444 0.285714  
0 0 0 0 0 0 0 0 0 0.52381 0.428571 -0.666667 0.206349 0.698413  
0 0 0 0 0 0 0 0 0 0.873016 0.571429 -0.111111 -0.15873 0.52381  
0 0 0 0 0 0 0 0 0 -0.444444 0.285714 0 -0.587302 0.873016  
0 0 0 0 0 0 0 0 0 0.206349 0.698413 0.444444 0.571429 -0.444444 

Fig. 14. (a) example of successful AEP encoded, G = 26,  
(b) NDM generated by AEP, N = 64, M = 2.46 

 

     a) 

Operations: 
0000001 0110110 1100100 1010011 1110111
0011010 1010011 0010110 1010111 0011101
Data: 
0010110 0001101 0100001 0111011 1001110 
0101100 1010100 1101001 0001001 1010101
1111000 0000000 0001110 0110110 0001001
0010010 

   b) 
0 0 0 0 0 0 -0.714286 0 -0.603175 -0.349206 0.68254 -0.47619 0.047619 -0.047619  
0 0 0 0 0 0 0.619048 0 -0.0952381 -0.253968 0.714286 -0.285714 -0.456349 -0.174603  
0 0 0 0 0 0 0 0 -0.68254 0.365079 -0.904762 0.142857 0.436508 -0.126984  
0 0 0 0 0 0 -0.603175 0 -0.301587 0.920635 0.619048 -0.714286 -0.0595238 0.18254  
0 0 0 0 0 0 -0.0952381 0 -0.222222 -0.031746 0.285714 0.619048 0.00396825 0.384921  
0 0 0 0 0 0 -0.68254 0 -0.47619 -0.984127 0.793651 -0.0952381 -0.418651 -0.0714286  
0 0 0 0 0 0 -0.301587 0 -0.285714 -0.380952 -0.603175 -0.349206 -0.047619 -0.611111  
0 0 0 0 0 0 -0.222222 0 -0.904762 0.142857 -0.412698 -0.0952381 -0.656746 -0.261905  
0 0 0 0 0 0 -0.47619 0 0.619048 -0.714286 -0.777778 -0.68254 -0.103175 0.0714286  
0 0 0 0 0 0 -0.285714 0 0.285714 0.619048 -0.698413 -0.301587 0.261905 -0.357143  
0 0 0 0 0 0 0.142857 0 0.793651 -0.0952381 0.111111 -0.222222 0.246032 0.309524 

Fig. 15. (a) example successful AEP encoded, G = 44,  
(b) NDM generated by AEP, N = 79, M = 1.79 
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 Having used the set of forty successful AEPs and 
NDMs to estimate modularity of ANNs generated by 
means of AE, the following results were obtained: 

• average M = 1.22 
• the best M = 2.46 
• the worst M  = 1.01. 

 The results above show that AE is the method which 
successfully creates ANNs of modular architecture. Given 
selected NDMs it is necessary to state that all of them 
represent modular ANNs, defining repeatedly occurring 
schemes of interneuron connections, and the information 
concerned with the connections is included in AEPs gene-
rating NDMs only once.  
 In addition to the modularity itself, another interesting 
issue is how individual methods presented in section III 
contribute to creating modular ANNs (Tab. 1).  
 

Table 1. 

Method used in AEP Percentage of use in successful 
AEPs [%] 

Jump 1.34 
Data (e.g. CHGM0) 59.06 
Constant (e.g. CHGR1) 39.60 
Copy (e.g. CHGR3) 0.00 

 Table 1 shows that repeated use of data by different 
operations is the most frequent method used by AEPs to 
create modular ANNs. Another method very often used by 
successful AEPs is using constants to update NDMs. The re-
maining methods are used infrequently or are not used at all. 
 Generally, it is necessary to state that even though 
NDMs very often contain repeatedly occurring values, the 
created ANNs do not include repeated sub-ANNs of a lar-
ger size. Usually, if some sub-ANNs repeat in ANNs, they 
do not contain a large number of neurons. It seems that the 
lack of large scale modularity in ANNs is mainly caused by 
the fact that there is no need to divide ANNs into large 
repeated sub-ANNs. In other words, each of the predators 
controlled by ANNs carried out a different task to capture 
the prey as the roles assigned to each of them were dif-
ferent. Consequently, ANNs could not use similar sub-
ANNs to control the predators. 
 
 

V.  SUMMARY 
 

 The aim of the paper was to present AE in general, and 
to show that AE is capable of creating modular ANNs that 
satisfy two conditions. First, they have to be composed of 

a) b) 

CHGM1|59|19|58|34 
CHGM2|45|-38|45|2 
ADDN|47 
CHGM2|30|29|-16|43 
Data:47|18|-39|28|58|-57|-52|8|31|-51|30|45|-45|-18|-1|-18|-
54|58|5|-59|16|36|-32|19|-19  

Operations: 
1010011 0110111 0110010 0010111 0010001 
0100001 0101101 1011001 0101101 0010000 
0100010 0111101 1011100 0001100 1010001 
0111100 0011110 0101110 1000010 0110101 
Data: 
0111101 0010010 1111001 0001110 0010111 
1100111 1001011 0000100 0111110 1110011 
0011110 0101101 1101101 1010010 1100000 
1010010 1011011 0010111 0101000 1110111 
0000010 0001001 1000001 0110010 1110010  

 
                                               c)   

 
0.4 0.9 0 0 0 0 0 0 0 0 0 0 -0.2 -0.5 -0.8 -0.2 -0.3  
-0.8 0 0 0 0 0 0 0 0 0 0 0 0.03 0.3 0.1 -0.8 0.7  
0.4 0 -0.3 -0.4 -0.4 0.1 0 0 0 0 0 -0.4 -0.5 -0.6 0.4 0.9 0.2  
0.7 0 0.2 0.2 0.4 -0.1 0 0 0 0 0 -0.4 -0.5 0.5 -0.8 0.07 -0.6  
-0.7 0 0.4 0.3 0.03 0.3 0 0 0 0 0 0.06 0.4 0.4 0.4 -0.9 0.4  
0.9 -0.2 -0.4 -0.3 -0.4 0.1 0 0 0 0 0 0.2 -0.5 0.07 -0.6 0.7 0.2  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
-0.9 -0.01 -0.4 -0.1 0.1 -0.3 0 0 0 0 0 -0.4 -0.1 -0.9 0.4 -0.7 0.5 
-0.8 -0.2 0.06 -0.007 0.2 0.2 0 0 0 0 0 0.2 0.8 0.2 0.9 -0.2 -0.5 
0.1 -0.8 0.2 -0.1 -0.2 0.4 0 0 0 0 0 0.3 -0.3 0.5 -0.9 -0.01 0.3 

Fig. 16. (a) Example AEP which created successful ANN (b) encoded form of AEP presented in point (a),  
(c) NDM generated by AEP presented in points (a) and (b) 
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sub-ANNs. Second, the information necessary to create 
sub-ANNs has to be stored in a genotype encoding ANN 
only once.  
 AE offers several methods that can be used to create 
modular ANNs. All the mentioned methods take advantage 
of the same fragment of AEP many times. AEPs include 
operations and data. In turn, the operations include pa-
rameters. To create modular ANNs, AEPs repeatedly use 
operations, data or parameters of the operations.  

 

 
Fig. 17. Example behavior of predators and prey (neuro-con-
troller: ANN whose NDM is presented in Fig. 16 (c)). Circles in-
dicate initial positions of predators and prey (black circle – prey, 
circle with vertical stripes – predators; all predators started from 
the same point), round symbols with diagonal lines denote final 
positions, arrowed lines indicate directions of movement (solid 
line – prey, dashed or dotted lines – predators), whereas black 
  boxes determine time of occurrence of individuals in given place 
 

 All the methods that can generate modular ANNs were 
described in the paper. Then, the potential of AE to create 
modular ANNs was examined. The experiments showed 
that AE is able to create ANNs of modular architecture. All 
ANNs generated throughout the experiments were mo-
dular, i.e. they included sub-ANNs which were encoded in 
AEPs only once. During all the experiments no case of 
a large scale modularity was noticed. In most cases the 
modularity related only to small fragments of ANNs. Lack 
of modularity on a large scale seems to result not from the 
inability of the encoding method proposed to produce large 
scale modular ANNs, but from the problem ANNs had to 
solve. The task of ANNs created during the experiments 
was to control a team of autonomous agents called pre-
dators. The common goal of the predators was to grasp the 
fast moving prey behaving according to a simple deter-
ministic strategy. During the experiments it turned out that 

in order to carry out the task, each of the predators had to 
do something else. Thus, to control different predators 
ANNs could not use sub-ANNs of similar construction. 
 To test whether AE is able to produce large-scale 
modular ANNs, i.e. ANNs including sub-ANNs of a large 
size (in relation to the size of the whole ANN), further 
experiments are necessary. In the future research we plan to 
modify the predator–prey problem used in the current 
experiments so as to increase the chance to create large-
scale modular ANNs. The task of ANNs in the future 
experiments will be to control two teams of predators. Each 
team will live in a separate artificial world, and to survive 
each of them will have to capture a prey.  
 Generally, to effectively control two separate teams of 
predators, ANNs can use different strategies. One of them 
is to force both teams to behave in the same way. In order 
for both teams to do so, ANN controlling them has to 
consist of the same two large sub-ANNs, i.e. it has to be 
a large-scale modular ANN that we want to obtain.  
 In the future experiments we also aim to use additional 
operations. The main goal of the mentioned operations will 
be to facilitate AEPs to create large-scale modular ANNs. 
The task of the simplest operation we plan to use is to fill 
in several columns (rows) of NDM with the same values. 
Since each column (row) of NDM defines a simple ANN 
including more neurons than sub-ANNs created so far, it 
seems that using the operation described above can help 
create large-scale modular ANNs. 
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CHG – Update of element. Both the new value and address 
of the element are located in parameters of the operation. 
 
CHGC0 – Update of a certain number of elements in 
column. Index of column, index of the first element in the 
column that will be changed, the number of changed 
elements and a pointer to data, where new values of 
elements are memorized, are located in parameters of the 
operation. 
  
CHGC1 – Update of a certain number of elements in the 
column. Index of column, index of the first element in the 
column that will be changed, the number of changed 
elements and a new value for the column’s elements, the 
same for all elements, are located in parameters of the 
operation. 
 
CHGC2 – Update of a certain number of elements in the 
column. A new value of every element is a sum of the 
operation’s parameter and the current value of this element. 
The second parameter of the operation is an index of the 
column. The third and fourth parameter of the operation 
determine the number of changed elements and index of 
the first element in the column that will be changed, 
respectively.   
 
CHGC3 – A number of elements from one column are 
transformed to another column. Both columns are indicated 

by parameters of the operation. The number of transferred 
elements and index of the first element in the column that 
will be transferred are also included in parameters of the 
operation. 
  
CHGC4 – Update of a certain number of elements in the 
column. A new value of every element is a sum of the 
current value of this element and the respective value from 
memory of a program. An index of the column, an index of 
the first element in the column that will be changed, the 
number of changed elements, and a pointer to data, where 
ingredients of individual sums are memorized, are located 
in parameters of the operation. 
 
CHGR0 – like CHGC0 but an update refers to the row of 
matrix. 
 
CHGR1 – like CHGC1. 
 
CHGR2 – like CHGC2. 
 
CHGR3 – like CHGC3. 
 
CHGR4 – like CHGC4.  
 
CHGM0 – Change of a block of elements. Elements are 
updated in columns, in turn, one after another, starting from 
an element pointed by parameters of the operation. The 

 
 
 
 

APPENDIX  1 
A  LIST  OF  OPERATIONS  USED  IN  EXPERIMENTS 

 
 



T. Praczyk 38

number of changed elements and place in the memory 
where new values for elements are located are determined 
by parameters of the operation. 
  
CHGM1 – like CHGM0, but a new value of every 
element is a sum of its current value and parameter of the 
operation. 
  
CHGM2 – like CHGM0, but a new value of each element 
is a sum of its current value and value from the memory 

part of a program. The number of changed elements and 
place in the memory where arguments of individual sums 
are located are determined by parameters of operation. 
 
JMP – Jump operation. The number of jumps, a pointer to 
the next operation and new values of registers are located 
in parameters of the jump operation. 
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