
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 14(1), 27-38 (2008)

I. INTRODUCTION

 Artificial Neural Networks (ANNs) are used to solve
a wide range of problems. They play more and more
substantial and responsible roles and solve more and more
difficult problems. As usual, in order to solve complex
problems, appropriate sophisticated tools are required,
hence it is also necessary to apply proper methods to create
complex ANNs. A technique that is more and more fre-
quently used for this purpose is Evolutionary Algorithms.
To use the evolutionary approach to produce ANNs, we
have to represent them in a form of chromosomes.
However, to obtain effective, complex neural architectures
by means of evolutionary techniques, we cannot simply
copy the structure and parameters of ANN into chromoso-
me(s). In such a case we would deal with long chro-
mosomes whereas numerous experiments conducted in the
field of evolution showed that applying long chromosomes
may hamper or even prevent generating optimal solutions.
Thus, we need ANN representation that would be relatively
simple on the one hand, but on the other hand a re-
presentation that would permit creating complex neural
architectures is needed. However, the desirable feature of
ANNs is not the same complexity but, first of all,
effectiveness. In order to make ANNs not only complex but
also effective, it seems that we should try to copy the
nature which superbly copes with constructing both comp-

lex and effective organisms. Note that most, if not all,
living formations of the nature, which are more advanced
in terms of construction, have a modular structure. Let us
look at a human being. We have two very similar hands,
legs, eyes, etc. Therefore, the next desirable property of the
ANN encoding scheme, apart from the ability to generate
complex neural architectures by means of relatively short
chromosomes, is also a potential to produce modular
architectures. In the present paper, a modular ANN means
ANN made of several sub-ANNs [1, 15]. To obtain such
ANN, it is enough to repeatedly use the information
included in a genotype. If, for example, a single chromo-
some was a definition of ANN, then multiple use of the
information contained in this chromosome would create
a number of the same ANNs. To obtain one large ANN, it
is sufficient to put all small ANNs together. This way, we
obtain large ANN composed of many instances of some
sub-ANN, i.e. modular ANN.
 One of ANN encoding methods that enable creating
modular ANNs is Assembler Encoding (AE). AE originates
from the cellular and edge encoding although it also has
features common with Linear Genetic Programming
presented, among other things, in [5, 8]. AE assumes that
ANN is represented in a form of a program (Assembler
Encoding Program – AEP) whose structure is similar to
that of a simple assembler program. The task of AEP is to
create a Network Definition Matrix (NDM) containing all

Modular Neural Networks in Assembler Encoding

Tomasz Praczyk

Naval University, ul. Śmidowicza 69, Gdynia, Poland
T.Praczyk@amw.gdynia.pl

(Received: 23 March 208; revised 16 May 2008, accepted: 21 May 2008, published online: 3 June 2008)

Abstract: Assembler Encoding represents Artificial Neural Network in a form of a simple program called Assembler Encoding Program.
The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct
a neural network. To generate Assembler Encoding Programs and in consequence neural networks evolutionary techniques are used.
The paper addresses the problem of creating modular neural networks in Assembler Encoding. The paper discusses different methods used
in Assembler Encoding for this purpose. The methods are described and analyzed in terms of their effectiveness and frequency of use in
Assembler Encoding Programs.
Key words: artificial neural networks, evolution

user
Tekst maszynowy
CMST 14(1) 27-38 (2008)

user
Tekst maszynowy
DOI:10.12921/cmst.2008.14.01.27-38

user
Tekst maszynowy

user
Tekst maszynowy

T. Praczyk 28

the information necessary to produce ANN. The process of
ANN construction consists of two stages. First, AEP
creates and fills up NDM. Then, the created matrix is
transformed into ANN.
 AE offers several methods that can be used to create
modular ANNs. The mentioned methods repeatedly use the
same operations or/and the same data from AEP in many
areas of NDM. Thus arise NDMs including many elements
of the same value. Such NDMs, in turn, represent modular
ANNs. To test the potential of AE to create modular
ANNs, experiments in the capture-prey problem [2-4, 6,
16] were carried out. During the experiments the task of
each ANN was to control a team of agents-predators. The
common goal of the predators was to capture an escaping
agent-prey behaving according to a simple deterministic
strategy. Since the speed of each predator was lower than
or equal to the speed of the prey, the predators had to
cooperate to accomplish the goal.
 The main motivation to use the capture-prey problem as
a test bed for AE is its similarity to the real problem in
which we deal with control of a group of autonomous
underwater vehicles (AUV). The task of AUVs is to guard
an entrance to a harbour and to capture all dangerous
underwater objects that can appear near the guarded area.
The problem described above is the target problem that we
want to solve within the framework of the future research.

 The paper is organized as follows: section II is a short
presentation of AE; section III is a detailed description of
techniques that can serve to create modular ANNs; section IV
illustrates the results of the experiments; and section 5
contains a summary.

II. ASSEMBLER ENCODING – FUNDAMENTALS

 In AE ANN is represented in a form of a program cal-
led AEP, which is composed of two parts, i.e. a part
including operations (the code part of AEP) and a part
including data (the memory part of AEP). The task of AEP
is to create NDM and to fill it in with values. To this end,
AEP uses the operations which are run one after another.
When working, the operations use data located at the end
of the program (Fig. 1). Once the last operation finishes its
work, the process of creating NDM is completed. The
matrix created is then transformed into ANN.

II.1. Operations

 AEPs can use various operations. The main task of
most operations is to modify NDM. The modification can
involve a single element of the matrix or a group of
elements. Figures 2 and 3 present the implementation of
two example operations.

Fig. 1. Diagram of AE (AEP presented on the right includes four operations and four memory cells. Operation 0 changes a single
element of NDM. To this end it uses three consecutive memory cells. The first two cells store an address to the element of NDM
being updated. To determine the final address of the element mentioned values of registers are also used. The third memory cell
used by Operation 0 stores a new value of the element. The value is scaled before NDM is updated. A pointer to the memory part
 of AEP where three cells used by Operation 0 are located, is included in the Operation itself.)

Modular Neural Networks in Assembler Encoding 29

 The task of CHG operation, presented in Fig. 2, is to
change a value of a single element of NDM. The new value
of the element, stored in parameter p0, is scaled to <-1, 1>.
The address of the element being changed depends on both
parameters p1, p2 and registers R1, R2. The role of the
registers is detailed in the further part of the paper.

Fig. 4. Using ADDN and DELN by AEP

 The CHGC0 operation presented in Fig. 3 modifies
values of NDM elements located in the column indicated
by parameter p0 and register R2. The number of elements

being updated is stored in parameter p2. The index of the
first element being updated is located in register R1. To
update elements of NDM, CHGC0 uses data from AEP. The
index to a memory cell including the first data used by
CHGC0 is stored in p1.
 In addition to the operations whose task is to modify
elements of NDM, AE also uses operations changing the
size of NDM. AE assumes that the initial size of NDM is
encoded in the chromosome with data (Fig. 4). Then, each
AEP has some potential to modify the size of NDM by
means of operations ADDN and DELN. ADDN adds new
rows and columns to NDM. This procedure corresponds to
adding new neurons to ANN – neurons unconnected with
the rest of ANN. The number of added neurons is a para-
meter of ADDN. Adding new neurons does not destroy
connections already established in ANN. The task of DELN
is to remove a single neuron from ANN. The number of the
neuron is a parameter of the operation. The elimination of
the neuron practically takes place through removing the
corresponding row and column from NDM.

II.2. Network Definition Matrix
 Once AEP finishes its work, the process of transform-
ing NDM into ANN is started. To construct ANN based on
NDM, the latter has to include all the information
necessary to create the network. When we wish to create
the same skeleton of the network, i.e. the network without
determined weights of interneuron connections, NDM can
take a form of a classical connectivity matrix (CM) [7], i.e.
a square, binary matrix of a number of rows and columns
equal to the number of neurons. The value “1” in i-th column

 CHG(p0,p1,p2,*)
 {
 row=(abs(p1)+R1)mod NDM.width;
 column=(abs(p2)+R2)mod NDM.height;
 NDM[row,column]=p0/Max_value;
 }

Fig. 2. CHG operation changing a single element of NDM (in AE two classes of operations are used, i.e. four-parameter operations
and three-parameter operations [15]. The paper includes examples of only four-parameter operations. Parameters that are
 unimportant for implementation of the operation are marked by “*”)

 CHGC0(p0,p1,p2,*)
 {
 column=(abs(p0)+R2)mod NDM.height;
 numberOfIterations=abs(p2)mod NDM.width;
 for(i=0;i<=numberOfIterations;i++)
 {
 row=(i+R1)mod NDM.width;
 NDM[row,column]=D[(abs(p1)+i)mod D.length]/Max_value;
 }
 }

Fig. 3. CHGC0 operation changing a part of NDM column (D[i] denotes ith data in AEP)

T. Praczyk 30

and j-th row of such a matrix means the connection
between i-th neuron and j-th neuron. In turn, value “0”
means a lack of the connection between these neurons.
When the purpose is to create a complete ANN with
determined values of weights, types and parameters of
neurons, then NDM should take a form of a real valued
variety of CM with extra columns or rows containing de-
finitions of individual neurons. The example of such a mat-
rix is presented in Fig. 5.

Fig. 5. NDM as Connectivity Matrix

 Generally, NDM can have any structure. It is necessary
only to adjust the size of the matrix to the number of
parameters we want to store in it.

II.3. Evolution of AEPs

 In AE the evolution of AEPs proceeds according to
a scheme proposed by Potter and De Jong [9-12]. The
scheme assumes division of an evolutionarily created
solution into parts. Each part evolves in a separate popula-
tion. The complete solution is formed from selected repre-

sentatives of each population. Willing to use the above
scheme in relation to AEPs, it is necessary to divide them
into parts. In the case of AEPs the division is natural. The
operations and data make up natural parts of AEPs. Since
the chosen evolutionary scheme assumes evolution of each
part in a separate population, AEP consisting of n ope-
rations and a sequence of data evolves in n populations
with operations and one population with data. During the
evolution AEPs expand gradually. Initially, all AEPs
include one operation and a sequence of data. The opera-
tions and the data come from two different populations.
When the evolution stagnates, i.e. the lack of progress in
the fitness of generated solutions is observed over some
period, a set of the populations containing the operations is
enlarged by one population. This procedure extends all
AEPs created by one operation. During the evolution each
population can also be replaced with the newly created
population. Such situation takes place when the influence
of all individuals from a given population to the fitness of
generated solutions is definitely lower than the influence of
individuals from the remaining populations (a population
can be replaced when, for instance, the fitness of a popu-
lation measured as an average fitness of all individuals
from the population is definitely lower than that of the
remaining populations).

III. MODULAR ANNs IN AE

 In principle, AE uses two methods to create modular
ANNs. In order to accomplish a modular architecture of
ANN, both methods take advantage of the same fragment

Fig. 6. AEP encoding scheme

Modular Neural Networks in Assembler Encoding 31

of AEP many times. Repeated use of the information in-
cluded in operations and data (e.g. repeated use of the same
data by different operations) is applied by the first method.
Each use involves a different fragment of NDM. The
second method, i.e. jumps, is based on executing the same
piece of code in different places of NDM. In addition to the
mentioned methods, attempts were also made to use
procedures in AE as a method to construct modular ANNs
(Fig. 7). However, experiments reported in [13, 14] showed
that AEP encoding schemes used to form multi-procedure
AEPs are considerably less effective than the AEP
encoding scheme used currently in AE (Fig. 6). That is why
the procedures are not used in the present version of AE.

Fig. 7. Using procedures to create modular NDMs and ANNs.
Each procedure could be run many times, each time in different
place of NDM. The main program executed procedures one after
another, changing values of registers before invoking each of
 them. New values for registers were stored in the main program

III.1. Repeated use of information included
 in operations and data

 The first solution which enables AEPs to form modular
neural architectures is repeated use of the same data by

operations. To be performed, the operations very often
have to refer to information placed in the memory part of
each AEP. Because the data are common for all operations
included in the same AEP, different operations can use the
same data. This means that the information contained in the
data part of AEP can be used many times to alter various
fragments of NDM. In consequence, NDM can include the
same elements in many locations, which is the base for
modular neural architectures (Fig. 8) to arise.

Fig. 8. Repeated use of the same data

 Generally, it is also possible to repeatedly use the same
data by a single operation. Let us analyze the CHGM0
operation presented in Fig. 9. Its task is to change values of
elements located in a fragment of NDM. Elements are
updated in columns, one after another, starting from the
element pointed by parameters p0 and p1 of the operation.
The number of changed elements and the place in the
memory where new values for the elements are located, are
determined by parameters p2 and p3. Generally, the
operation can modify all elements in NDM (see variable
iterations, Fig. 9). To do so, the operation uses data
from AEP. However, AEP usually does not include enough

 CHGM0(p0,p1,p2,p3)
 {
 rowInit=abs(p0);
 columnInit=abs(p1)-1;
 iterations=abs(p2)mod(NDM.width*NDM.height);
 for(i=0;i<=iterations;i++)
 {
 sumRow=i mod NDM.height;
 if(sumRow == 0)
 columnInit++;
 row=(rowInit+R1+sumRow)mod NDM.height;
 column=(columnInit+R2)mod NDM.width;
 NDM[row,column]=D[(abs(p3)+i)mod D.length]/Max_value;
 }
 }

Fig. 9. Implementation of CHGM0

T. Praczyk 32

data so as to assign a different value to each element of
NDM. In consequence, to accomplish a task the operation
has to use the same data many times. They can be read
many times thanks to the use of mod operator (see the last
line in CHGM0).

Modularity of ANNs can also be accomplished by
means of a single operation which updates a set of elements
in NDM and does not use data for that purpose. This is the
case, for example, with the CHGR1 operation presented in
Fig. 10. It assigns the same value stored in a parameter p0
to several elements in a column of NDM. Thus, many con-
nections in ANN have the same strength. The information
concerning the strength is stored in the operation only once.
 The modular architecture of ANNs can also be gener-
ated by means of the CHGR3 operation presented in
Fig. 11. In this case, new values for the elements of NDM
are stored neither in the data part of AEP, nor in parameters
of the operation. The operation simply copies values from
one row of NDM to another. Thus, weights assigned by one
operation to some interneuron connections are also
assigned to other connections. Values of the weights are
stored in either the data part of AEP or in some operation
as parameters only once.

III.2. Jumps

 The next method which can be used to create modular
ANNs are jumps denoted as JMP. JMP makes it possible to

repeatedly use the same code of AEP in different places of
NDM. It is possible thanks to changing values of registers
once the jump is performed. Figure 12 presents an example
of performing AEP including the jump operation. The
program mentioned proceeds as follows. First, both re-
gisters are initiated to 0. Then, the first two operations are
performed, the result of which is visible in the top left
corner of NDM. The next operation of AEP is the jump
denoted in the figure as JMP(0,2,0,*). It first updates
values of the registers and then control goes back to the
first operation of AEP. AEP reads new values for the
registers from the memory part. R1 is set to 0 (Memory cell
0) whereas R2 to 2 (Memory cell 1). Once values of the
registers are updated, the two operations preceding the
jump are performed once again. This time, however,
working of both operations involves a different fragment of
NDM. Since the jump is run overall twice, each time with
different values of the registers, the two first operations of
AEP are executed in three different areas of NDM.

IV. EXPERIMENTS

 In order to test the potential of AE to create modular
ANNs, forty NDMs and AEPs generating them were
examined. Selected NDMs and AEPs represented feed-

 CHGR1(p0,p1,p2,p3)
 {
 row=(abs(p1)+ R1) mod NDM.height;
 columnInit=abs(p3) mod NDM.width;
 iterations=abs(p2)mod NDM.width;
 for(i=columnInit;i<=iterations+columnInit;i++)
 {
 column=(i+R2)mod NDM.width;
 NDM[row,column]= p0/Max_value;
 }
 }

Fig. 10. Implementation of CHGR1

 CHGR3(p0,p1,p2,p3)
 {
 columnInit=abs(p3) mod NDM.width;
 iterations=abs(p2)mod NDM.width;
 row1=(abs(p0)+ R1) mod NDM.height;
 row2=abs(p1) mod NDM.height;
 for(i=columnInit;i<=iterations+columnInit;i++)
 {
 column=(i+R2)mod NDM.width;
 NDM[row1,column]= NDM[row2,column];
 }
 }

Fig. 11. Implementation of CHGR3

Modular Neural Networks in Assembler Encoding 33

forward ANNs generated during the experiments in which
the task of ANNs was to control a set of three cooperating
predators (two predators were insufficient to capture the
prey behaving according to strategy (2) described further)
whose common goal was to capture a fast moving prey (the
speed of the predators was either two times lower or the
same as the speed of the escaping prey so it would not be
enough for the predators to simply chase the prey to grasp
it) behaving according to a simple deterministic strategy.
Two different strategies of the prey used in the experiments
are presented below.

 ()
()

()
1

StandStill if , 5

arg max , ,arg min , otherwise

p P

p Pa A

d p s
s

D s a d p s
π

∈

∈∈

⎧ ∀ >
⎪

= ⎨ ⎛ ⎞⎪ ⎜ ⎟
⎝ ⎠⎩

 (1)

 ()
()

() ()
()5

2

5

StandStill if , 5

1arg max , , otherwise

p P

a A p P s

d p s

s
D s a p

P s

π
∈

∈ ∈

⎧ ∀ >
⎪
⎪= ⎛ ⎞⎨

⎜ ⎟⎪
⎜ ⎟⎪ ⎝ ⎠⎩

∑
 (2)

P – set of predators;
A – set of actions of prey and predators
 { }()StandStill, North, South, West, EastA = ;

(),d p s – distance between prey and predator p in state of
environment s;

(), ,D s a p – distance between prey and predator p in state
of environment which is direct consequence of action a
performed by prey in state s;

() (){ }5 , , 5P s p P d p s= ∈ ≤ – set of predators whose
distance to prey is lower or equal to 5.

 All NDMs and AEPs intended to be used in tests repre-
sented successful ANNs, i.e. ANNs which captured the prey
in 20 different tested situations. ANNs generated throughout
the experiments had 6 inputs (each input informed about the
vertical or horizontal distance between the prey and one of
the predators) and 3 outputs (3 predators). NDMs repre-
senting ANNs had a structure presented in Fig. 5.

Fig. 13. Artificial world in which the predators’ task was to cap-
ture prey (periodic boundary conditions are implemented and each
attempt to move beyond upper, lower, right or left border of the
environment above caused the object making such an attempt to
 move to the opposite side of the environment)

Fig. 12. Illustration of JMP operation

T. Praczyk 34

IV.1. Experimental results

 To estimate modularity of generated ANNs, we decided
to use the following measure:

 NM
G

= (3)

where N denotes a number of elements different from 0
located above the diagonal of NDM (all ANNs used in the

experiments were feed-forward ANNs, and only elements
above the diagonal were used to construct them) and G is
the number of integer genes in an encoded form of AEP. N
informs about the total number of parameters of ANN
defined in NDM whereas G informs about the amount of
information stored in the genotype defining ANN. The
greater value of M, the greater degree of modularity. The
greater value of M, the more information from AEP is re-
peatedly used to create ANN.

 a)

Operations:
0000001 0110110 1100100 1010011 1110111
0011010 1010011 0010110 1010111 0011101
Data:
0010110 0001101 0100001 0111011 1001110
0101100 1010100 1101001 0001001 1010101
1111000 0000000 0001110 0110110 0001001
0010010

b)
0 0 0 0 0 0 0 0 0 -0.15873 0.52381 0.428571 -0.666667 0.206349
0 0 0 0 0 0 0 0 0 -0.587302 0.873016 0.571429 -0.111111 0
0 0 0 0 0 0 0 0 0 0.571429 -0.444444 0.285714 0 0
0 0 0 0 0 0 0 0 0 -0.666667 0.206349 0.698413 0.444444 0
0 0 0 0 -0.793651 -0.793651 -0.793651 0 0 -0.111111 -0.15873 0.52381 0.428571 0
0 0 0 0 0 0 0 0 0 0.285714 0 -0.587302 0.873016 0.571429
0 0 0 0 0 0 0 0 0 0.698413 0.444444 0.571429 -0.444444 0.285714
0 0 0 0 0 0 0 0 0 0.52381 0.428571 -0.666667 0.206349 0.698413
0 0 0 0 0 0 0 0 0 0.873016 0.571429 -0.111111 -0.15873 0.52381
0 0 0 0 0 0 0 0 0 -0.444444 0.285714 0 -0.587302 0.873016
0 0 0 0 0 0 0 0 0 0.206349 0.698413 0.444444 0.571429 -0.444444

Fig. 14. (a) example of successful AEP encoded, G = 26,
(b) NDM generated by AEP, N = 64, M = 2.46

 a)

Operations:
0000001 0110110 1100100 1010011 1110111
0011010 1010011 0010110 1010111 0011101
Data:
0010110 0001101 0100001 0111011 1001110
0101100 1010100 1101001 0001001 1010101
1111000 0000000 0001110 0110110 0001001
0010010

 b)
0 0 0 0 0 0 -0.714286 0 -0.603175 -0.349206 0.68254 -0.47619 0.047619 -0.047619
0 0 0 0 0 0 0.619048 0 -0.0952381 -0.253968 0.714286 -0.285714 -0.456349 -0.174603
0 0 0 0 0 0 0 0 -0.68254 0.365079 -0.904762 0.142857 0.436508 -0.126984
0 0 0 0 0 0 -0.603175 0 -0.301587 0.920635 0.619048 -0.714286 -0.0595238 0.18254
0 0 0 0 0 0 -0.0952381 0 -0.222222 -0.031746 0.285714 0.619048 0.00396825 0.384921
0 0 0 0 0 0 -0.68254 0 -0.47619 -0.984127 0.793651 -0.0952381 -0.418651 -0.0714286
0 0 0 0 0 0 -0.301587 0 -0.285714 -0.380952 -0.603175 -0.349206 -0.047619 -0.611111
0 0 0 0 0 0 -0.222222 0 -0.904762 0.142857 -0.412698 -0.0952381 -0.656746 -0.261905
0 0 0 0 0 0 -0.47619 0 0.619048 -0.714286 -0.777778 -0.68254 -0.103175 0.0714286
0 0 0 0 0 0 -0.285714 0 0.285714 0.619048 -0.698413 -0.301587 0.261905 -0.357143
0 0 0 0 0 0 0.142857 0 0.793651 -0.0952381 0.111111 -0.222222 0.246032 0.309524

Fig. 15. (a) example successful AEP encoded, G = 44,
(b) NDM generated by AEP, N = 79, M = 1.79

Modular Neural Networks in Assembler Encoding 35

 Having used the set of forty successful AEPs and
NDMs to estimate modularity of ANNs generated by
means of AE, the following results were obtained:

• average M = 1.22
• the best M = 2.46
• the worst M = 1.01.

 The results above show that AE is the method which
successfully creates ANNs of modular architecture. Given
selected NDMs it is necessary to state that all of them
represent modular ANNs, defining repeatedly occurring
schemes of interneuron connections, and the information
concerned with the connections is included in AEPs gene-
rating NDMs only once.
 In addition to the modularity itself, another interesting
issue is how individual methods presented in section III
contribute to creating modular ANNs (Tab. 1).

Table 1.

Method used in AEP Percentage of use in successful
AEPs [%]

Jump 1.34
Data (e.g. CHGM0) 59.06
Constant (e.g. CHGR1) 39.60
Copy (e.g. CHGR3) 0.00

 Table 1 shows that repeated use of data by different
operations is the most frequent method used by AEPs to
create modular ANNs. Another method very often used by
successful AEPs is using constants to update NDMs. The re-
maining methods are used infrequently or are not used at all.
 Generally, it is necessary to state that even though
NDMs very often contain repeatedly occurring values, the
created ANNs do not include repeated sub-ANNs of a lar-
ger size. Usually, if some sub-ANNs repeat in ANNs, they
do not contain a large number of neurons. It seems that the
lack of large scale modularity in ANNs is mainly caused by
the fact that there is no need to divide ANNs into large
repeated sub-ANNs. In other words, each of the predators
controlled by ANNs carried out a different task to capture
the prey as the roles assigned to each of them were dif-
ferent. Consequently, ANNs could not use similar sub-
ANNs to control the predators.

V. SUMMARY

 The aim of the paper was to present AE in general, and
to show that AE is capable of creating modular ANNs that
satisfy two conditions. First, they have to be composed of

a) b)

CHGM1|59|19|58|34
CHGM2|45|-38|45|2
ADDN|47
CHGM2|30|29|-16|43
Data:47|18|-39|28|58|-57|-52|8|31|-51|30|45|-45|-18|-1|-18|-
54|58|5|-59|16|36|-32|19|-19

Operations:
1010011 0110111 0110010 0010111 0010001
0100001 0101101 1011001 0101101 0010000
0100010 0111101 1011100 0001100 1010001
0111100 0011110 0101110 1000010 0110101
Data:
0111101 0010010 1111001 0001110 0010111
1100111 1001011 0000100 0111110 1110011
0011110 0101101 1101101 1010010 1100000
1010010 1011011 0010111 0101000 1110111
0000010 0001001 1000001 0110010 1110010

 c)

0.4 0.9 0 0 0 0 0 0 0 0 0 0 -0.2 -0.5 -0.8 -0.2 -0.3
-0.8 0 0 0 0 0 0 0 0 0 0 0 0.03 0.3 0.1 -0.8 0.7
0.4 0 -0.3 -0.4 -0.4 0.1 0 0 0 0 0 -0.4 -0.5 -0.6 0.4 0.9 0.2
0.7 0 0.2 0.2 0.4 -0.1 0 0 0 0 0 -0.4 -0.5 0.5 -0.8 0.07 -0.6
-0.7 0 0.4 0.3 0.03 0.3 0 0 0 0 0 0.06 0.4 0.4 0.4 -0.9 0.4
0.9 -0.2 -0.4 -0.3 -0.4 0.1 0 0 0 0 0 0.2 -0.5 0.07 -0.6 0.7 0.2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.9 -0.01 -0.4 -0.1 0.1 -0.3 0 0 0 0 0 -0.4 -0.1 -0.9 0.4 -0.7 0.5
-0.8 -0.2 0.06 -0.007 0.2 0.2 0 0 0 0 0 0.2 0.8 0.2 0.9 -0.2 -0.5
0.1 -0.8 0.2 -0.1 -0.2 0.4 0 0 0 0 0 0.3 -0.3 0.5 -0.9 -0.01 0.3

Fig. 16. (a) Example AEP which created successful ANN (b) encoded form of AEP presented in point (a),
(c) NDM generated by AEP presented in points (a) and (b)

T. Praczyk 36

sub-ANNs. Second, the information necessary to create
sub-ANNs has to be stored in a genotype encoding ANN
only once.
 AE offers several methods that can be used to create
modular ANNs. All the mentioned methods take advantage
of the same fragment of AEP many times. AEPs include
operations and data. In turn, the operations include pa-
rameters. To create modular ANNs, AEPs repeatedly use
operations, data or parameters of the operations.

Fig. 17. Example behavior of predators and prey (neuro-con-
troller: ANN whose NDM is presented in Fig. 16 (c)). Circles in-
dicate initial positions of predators and prey (black circle – prey,
circle with vertical stripes – predators; all predators started from
the same point), round symbols with diagonal lines denote final
positions, arrowed lines indicate directions of movement (solid
line – prey, dashed or dotted lines – predators), whereas black
 boxes determine time of occurrence of individuals in given place

 All the methods that can generate modular ANNs were
described in the paper. Then, the potential of AE to create
modular ANNs was examined. The experiments showed
that AE is able to create ANNs of modular architecture. All
ANNs generated throughout the experiments were mo-
dular, i.e. they included sub-ANNs which were encoded in
AEPs only once. During all the experiments no case of
a large scale modularity was noticed. In most cases the
modularity related only to small fragments of ANNs. Lack
of modularity on a large scale seems to result not from the
inability of the encoding method proposed to produce large
scale modular ANNs, but from the problem ANNs had to
solve. The task of ANNs created during the experiments
was to control a team of autonomous agents called pre-
dators. The common goal of the predators was to grasp the
fast moving prey behaving according to a simple deter-
ministic strategy. During the experiments it turned out that

in order to carry out the task, each of the predators had to
do something else. Thus, to control different predators
ANNs could not use sub-ANNs of similar construction.
 To test whether AE is able to produce large-scale
modular ANNs, i.e. ANNs including sub-ANNs of a large
size (in relation to the size of the whole ANN), further
experiments are necessary. In the future research we plan to
modify the predator–prey problem used in the current
experiments so as to increase the chance to create large-
scale modular ANNs. The task of ANNs in the future
experiments will be to control two teams of predators. Each
team will live in a separate artificial world, and to survive
each of them will have to capture a prey.
 Generally, to effectively control two separate teams of
predators, ANNs can use different strategies. One of them
is to force both teams to behave in the same way. In order
for both teams to do so, ANN controlling them has to
consist of the same two large sub-ANNs, i.e. it has to be
a large-scale modular ANN that we want to obtain.
 In the future experiments we also aim to use additional
operations. The main goal of the mentioned operations will
be to facilitate AEPs to create large-scale modular ANNs.
The task of the simplest operation we plan to use is to fill
in several columns (rows) of NDM with the same values.
Since each column (row) of NDM defines a simple ANN
including more neurons than sub-ANNs created so far, it
seems that using the operation described above can help
create large-scale modular ANNs.

References

[1] F. Gruau, Neural network Synthesis Using Cellular En-
coding And The Genetic Algorithm, PhD Thesis, Ecole Nor-
male Superieure de Lyon (1994).

[2] T. Haynes and S. Sen, Co-adaptation in a team, Inter-
national Journal of Computational Intelligence and
Organizations, 1(4) (1996).

[3] T. Haynes and S. Sen, Evolving behavioral strategies in
predators and prey. Lecture Notes in Computer Science
113-126 (1996).

[4] T. Haynes and S. Sen, Crossover operators for evolving
a team, In: Proceedings of Genetic Programming 1997: The
Second Annual Conference 162-167 (1997).

[5] K. Krawiec and B. Bhanu, Visual Learning by Coevolutio-
nary Feature Synthesis, IEEE Trans. on Systems, Man, and
Cybernetics, Part B: Cybernetics 35, 409-425 (2005).

[6] G Miller and D. Cliff, Co-evolution of pursuit and evasion:
Biological and game-theoretic foundations, Technical Re-
port CSRP311, School of Cognitive and Computing
Sciences, University of Sussex, UK (1994).

[7] G. F. Miller, P. M. Todd and S. U. Hegde, Designing
Neural Networks Using Genetic Algorithms, Proceedings of
the Third International Conference on Genetic Algorithms.
379-384. of Schaffer J. D. (1989).

Modular Neural Networks in Assembler Encoding 37

[8] P. Nordin, W. Banzhaf and F. Francone, Efficient Evolution
of Machine Code for {CISC} Architectures using Blocks
and Homologous Crossover, Advances in Genetic Program-
ming III, MIT Press, L. Spector, W. Langdon, U. O'Reilly
and P. Angeline 275-299 (1999).

[9] M. Potter, The Design and Analysis of a Computational
Model of Cooperative Coevolution, PhD thesis, George
Mason University, Fairfax, Virginia (1997).

[10] M. Potter and K. A. De Jong, Evolving neural networks
with collaborative species, In: T. I. Oren, L. G. Birta (Eds.),
Proceedings of the 1995 Summer Computer Simulation
Conference, 340-345. The Society of Computer Simulation
(1995).

[11] M. A. Potter and K. A. De Jong, A Cooperative Coevolutio-
nary Approach to Function Optimization, The Third
Parallel Problem Solving From Nature, Jerusalem, Israel,

249-257, Springer-Verlag (1994).

[12] M. A. Potter and K. A. De Jong, Cooperative coevolution:
An architecture for evolving coadapted subcomponents,
Evolutionary Computation 8(1), 1-29 (2000).

[13] T. Praczyk, Evolving co-adapted subcomponents in Assem-
bler Encoding, International Journal of Applied Mathe-
matics and Computer Science 17(4) (2007).

[14] T. Praczyk, Procedure application in Assembler Encoding,
Archives of Control Science 17(LIII), 1, 71-91 (2007).

[15] T. Praczyk, Using genetic algorithms and assembler en-
coding to generate neural networks, Computing and Infor-
matics (2008) (in press).

[16] C. H. Yong and R. Miikkulainen, Cooperative Coevolution
of Multi-Agent Systems, Technical Report AI01-287, The
University of Texas at Austin (2001).

CHG – Update of element. Both the new value and address
of the element are located in parameters of the operation.

CHGC0 – Update of a certain number of elements in
column. Index of column, index of the first element in the
column that will be changed, the number of changed
elements and a pointer to data, where new values of
elements are memorized, are located in parameters of the
operation.

CHGC1 – Update of a certain number of elements in the
column. Index of column, index of the first element in the
column that will be changed, the number of changed
elements and a new value for the column’s elements, the
same for all elements, are located in parameters of the
operation.

CHGC2 – Update of a certain number of elements in the
column. A new value of every element is a sum of the
operation’s parameter and the current value of this element.
The second parameter of the operation is an index of the
column. The third and fourth parameter of the operation
determine the number of changed elements and index of
the first element in the column that will be changed,
respectively.

CHGC3 – A number of elements from one column are
transformed to another column. Both columns are indicated

by parameters of the operation. The number of transferred
elements and index of the first element in the column that
will be transferred are also included in parameters of the
operation.

CHGC4 – Update of a certain number of elements in the
column. A new value of every element is a sum of the
current value of this element and the respective value from
memory of a program. An index of the column, an index of
the first element in the column that will be changed, the
number of changed elements, and a pointer to data, where
ingredients of individual sums are memorized, are located
in parameters of the operation.

CHGR0 – like CHGC0 but an update refers to the row of
matrix.

CHGR1 – like CHGC1.

CHGR2 – like CHGC2.

CHGR3 – like CHGC3.

CHGR4 – like CHGC4.

CHGM0 – Change of a block of elements. Elements are
updated in columns, in turn, one after another, starting from
an element pointed by parameters of the operation. The

APPENDIX 1
A LIST OF OPERATIONS USED IN EXPERIMENTS

T. Praczyk 38

number of changed elements and place in the memory
where new values for elements are located are determined
by parameters of the operation.

CHGM1 – like CHGM0, but a new value of every
element is a sum of its current value and parameter of the
operation.

CHGM2 – like CHGM0, but a new value of each element
is a sum of its current value and value from the memory

part of a program. The number of changed elements and
place in the memory where arguments of individual sums
are located are determined by parameters of operation.

JMP – Jump operation. The number of jumps, a pointer to
the next operation and new values of registers are located
in parameters of the jump operation.

TOMASZ PRACZYK. Education: Military University of Technology, Warsaw – MSc (1996); Maritime Uni-
versity, Szczecin – PhD (2001). Activities: intelligent navigational systems, neural networks, genetic al-
gorithms, neuroevolution, evolutionary reinforcement learning.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 14(1), 27-38 (2008)

