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Abstract: In this paper, a general finite element model is proposed to analyze transient phenomena in thermoelastic model in the context 
of the theory of generalized thermoelasticity with one relaxation time with variable thermal conductivity. An application of an infinitely 
long annular cylinder was studied, where the inner surface is traction free and subjected to thermal shock, while the outer surface is 
traction free and thermally isolated. The results for the temperature increment, the stress components and the displacement component 
are illustrated graphically.  
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   Nomenclature:   

   ,λ μ  –  Lame’s constants    T –  absolute temperature 
   ρ  –  density    T0 –  reference temperature 
   EC  –  specific heat at constant strain   θ  –  temperature increment 0T T= −θ  
   t  –  time   ϑ  –  the mapping of θ  
   K –  thermal conductivity   ijσ –  components of stress tensor 
   κ  –  diffusivity   ije  –  components of strain tensor 
   αT –  lineral thermal expansion coefficient   iu  –  components of displacement vector 
   γ =  (3λ + 2μ )αT   0τ  –  relaxation time 
 
 
 

I.  INTRODUCTION 
 

 The classical uncoupled theory of thermoelasticity 
predicts two phenomena not compatible with physical 
observations. First, the equation of heat conduction of this 
theory does not contain any elastic terms. Second, the heat 
equation is of a parabolic type, predicting infinite speeds of 
propagation for heat waves.  
 Biot [1] introduced the theory of coupled thermo-
elasticity to overcome the first shortcoming. The governing 

equations for this theory are coupled, eliminating the first 
paradox of the classical theory. However, both theories 
share the second shortcoming since the heat equation for 
the coupled theory is also parabolic.  
 Due to the advancement of pulsed lasers, fast burst 
nuclear reactors and particle accelerators, etc. which can 
supply heat pulses with a very fast time-rise, generalized 
thermoelasticity theory is receiving serious attention. The 
development of the second sound effect has been nicely 
reviewed at present. Mainly two different models of gene-
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ralized thermoelasticity are being extensively used-one 
proposed by Lord and Shulman [2] and the other proposed 
by Green and Lindsay [3]. L-S (Lord and Shulman theory) 
suggests one relaxation time and according to this theory, 
only Fourier’s heat conduction equation is modified, while 
G-L (Green and Lindsay theory) suggests two relaxation 
times and both the energy equation and the equation of 
motion are modified.  
 Eraby and Suhubi [4] studied wave propagation in a cy-
linder. Ignaczak [5] studied a strong discontinuity wave 
and obtained a decomposition theorem [6]. Ezzat [7] has 
also obtained the fundamental solution for this theory. 
Many problems have been solved in the context of the 
generalized thermoelasticity by Youssef et al. [8-13]. 
 Modern structural elements are often subjected to 
temperature changes of such magnitude that their material 
properties may no longer be regarded as having constant 
values even in an approximate sense. The thermal and 
mechanical properties of materials vary with temperature, 
so that the temperature dependence of material properties 
must be taken into consideration in the thermal stress 
analysis of these elements [14, 15].  
 In this work, we will construct a model of theory of 
generalized thermoelasticity with one relaxation time 
considering the thermal conductivity to be variable. We 
consider an infinitely long annular cylinder whose inner 
surface is traction free and subjected to thermal shock. The 
outer surface is also traction free and thermally isolated. 
The medium parameters quiescent initial state. a general 
finite element model is proposed to get the solution and the 
results are represented graphically.  
 
 

II.  THE  GOVERNING  EQUATIONS 
 
 The heat equation [19]:  

  ( ), 0 0,
1 1, 2, 3,i Ei

K C T e itθ τ ρ θ γ∂⎛ ⎞ ⎡ ⎤= + + =⎜ ⎟ ⎣ ⎦∂⎝ ⎠
 (1) 

which can be written in the form 

  ( ), 0 0,
1 ,i i

KK T etθ τ θ γκ
∂⎛ ⎞ ⎡ ⎤= + +⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦

 (2)  

where  

  0,E
KC T Tρ θκ= = − , 

K is called the thermal conductivity (K1 is a small value) 
and κ  is the diffusivity (assumed to be constant).  
 We will use the mapping [16]:  

  ( )
0 0

1 ' '.K d
K

θ

ϑ θ θ= ∫  (3) 

By differentiating the last mapping with respect to xi, we 
get 

  ( )0 , , .i iK Kϑ θ θ=  (4) 

By differentiating the last equation again with respect to xi , 
we get 
  ( )0 , , ,

.ii i i
K Kϑ θ θ⎡ ⎤= ⎣ ⎦  (5) 

With the same manner, by differentiating the mapping with 
respect to time, we have  

  ( )0 .K Kϑ θ θ=  (6) 

Hence, the heat equation will take the form 

  
2

0
, 0 2

0
.ii

T
e

t Kt
γϑϑ τ κ

⎡ ⎤∂ ∂ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥∂ ∂ ⎣ ⎦⎣ ⎦
 (7) 

 Now, we will take the thermal conductivity as a func-
tion of the temperature with linear form as follows [16]: 

  ( ) ( )0 11 .K K K Kθ θ= = +  (8) 

Then, we have from the last equation and the mapping the 
following forms  

  21 ,
2

Kϑ θ θ= +  (9) 

  ( ), , 11i i Kϑ θ θ= +  (10) 

and  

  1

1

1 1 2
.

K
K

ϑ
θ

− + +
=  (11) 

Now, we have the equations of motion in the form [16]: 

  ( ) , , , ,i j ji i jj iu u uρ λ μ μ γθ= + + −  (12) 

which can be written as follows 

  ( ) ( )
,

, ,
1

.
1

i
i j ji i jju u u

K
ϑ

ρ λ μ μ γ
θ

= + + −
+

 (13) 

From the relation (11) we have  

  1 11 1 2 .K Kθ ϑ+ = +  (14) 

 Then, we have 

  ( ) ,
, ,

1
.

1 2
i

i j ji i jju u u
K

ϑ
ρ λ μ μ γ

ϑ
= + + −

+
 (15) 

The constitutive relation take the form [16]:  
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  1

1

1 1 2
2 .ij ij kk ij

K
e e

K
ϑ

σ μ λ γ δ
⎛ ⎞− + +

= + −⎜ ⎟⎜ ⎟
⎝ ⎠

 (16) 

 
 

III.  FORMULATION  OF  THE  PROBLEM 
 
 We consider an infinitely long annular cylinder whose 
inner surface is traction free and subjected to a thermal 
shock, while the outer surface also is traction free but ther-
mally isolated. We assume also that there are no external 
body forces or heat sources acting in the medium. 
 We use a cylindrical system of coordinates ( , , )r zψ  
with the z-axis lying along the axis of the cylinder.  
 Due to symmetry, the problem is one-dimensional with 
all the functions considered depending on the radial 
distance r and the time t where 1 2.R r R≤ ≤  
 The displacement vector has the components 

  ( ) ( ) ( ), , , , 0.r zu u r t u r t u r tψ= = =  (17) 

From equation (7), the heat equation takes the form  

  
2

2 0
0 2

0
,

T
e

t Kt
γυϑ τ κ

⎡ ⎤∂ ∂ ⎡ ⎤∇ = + +⎢ ⎥ ⎢ ⎥∂ ∂ ⎣ ⎦⎣ ⎦
 (18) 

where 

  
2

2
2

1 ,
r rr

∂ ∂∇ = +
∂∂

 

from equation (16), the equation of motion has the form 

  ( )
1

2 ,
1 2

eu
r rK

γ ϑρ λ μ
ϑ

∂ ∂= + −
∂ ∂+

 (19) 

where 

  
( )1 ,
ru

e
r r

∂
=

∂
 (20) 

and from equation (16), the constitutive equations take the 
forms 

  1

1

1 1 2
2 ,rr

Ku e
r K

ϑ
σ μ λ γ

⎛ ⎞− + +∂= + − ⎜ ⎟⎜ ⎟∂ ⎝ ⎠
 (21) 

  1

1

1 1 2
2 ,

Ku er Kψψ
ϑ

σ μ λ γ
⎛ ⎞− + +

= + − ⎜ ⎟⎜ ⎟
⎝ ⎠

 (22) 

  1

1

1 1 2
,zz

K
e

K
ϑ

σ λ γ
⎛ ⎞− + +

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

 (23) 

  0.zr r zzψσ σ σ= = =  (24) 

We will use the following non-dimensional variables 

  
1/ 2 1/ 22 2' , ' ,r ur uλ μ λ μ

ρ κ ρ κ
+ +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  

  0
0

2 2' ' ,tt
τλ μ λ μτρ κ ρ κ

+ +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  
1/ 2 1/ 2

0 0

2' , ' ,
2

Rq q R
K T

κ ρ λ μ
λ μ ρ κ

+⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
 

  1 1 0
0

' , ' , ' .K K T
T
ϑ σϑ σ μ= = =  

 Using these non-dimensional variables, the above equa-
tions take the form (dropping the primes for convenience)  

  [ ]
2

2
0 2 ,ge

t t
ϑ τ ϑ

⎡ ⎤∂ ∂∇ = + +⎢ ⎥∂ ∂⎣ ⎦
 (25) 
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2
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ϑ
σ β β
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ϑ
σ β β
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where 
1/ 2

0
2

0

2, , and .
T bb g a

K
γ γκ λ μβμ μ β

+⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

 We will use the boundary conditions on the internal sur-
face, r = R1 and the outer surface, r = R2 which are given by  

(1) The thermal boundary conditions  

 I. The internal surface r = R1 is subjected to a thermal 
shock in the form  

  0( , ) ( ) ,R t H tθ θ=  (30) 

  1( , ) ( ),R t H tϑ δ=  (31) 

where  

  1
0 01 .

2
Kδ θ θ⎛ ⎞= +⎜ ⎟

⎝ ⎠
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 II. The outer surface r = R2, we have not any heat flux. 
We will use the generalized Fourier law of heat conduction, 
namely  

  0 ( ) .r
r

qq K
t r

θτ θ∂ ∂+ = −
∂ ∂

 (32) 

By using equation (4), we have  

  0 0 .r
r

qq K
t r

ϑτ ∂ ∂+ = −
∂ ∂

 (33) 

After using the non-dimensional variables, the last equation 
will take the form 

  0 .r
r

qq
t r

ϑτ ∂ ∂+ = −
∂ ∂

 (34) 

Now, by using the boundary condition at r = R2 which we 
have qr = 0.  
 Then, we get  

  
( )2 ,

0.
R s
r

ϑ∂
=

∂
 (35) 

 
(2) The mechanical boundary conditions  

 The internal and the outer surfaces r = R1 and r = R2 is 
traction free i.e.  

  1( , ) 0rr R tσ =  (36) 

and  
  2( , ) 0.rr R tσ =  (37) 
 
 

IV.  FINITE  ELEMENT  METHOD 
 

 In order to investigate the thermo-mechanical shock 
problem of generalized thermoelasticity for an infinitely 
long annular cylinder with variable thermal conductivity 
problem by finite element method, the (FEM) [17-19] is 
adopted due to its flexibility in modeling layered structures 
and its capability in obtaining full field numerical solution. 
The governing equations (25) and (26) are coupled with 
initial and boundary conditions. The numerical values of 
the dependent variables like displacement u and the map-
ping of temperature ϑ  are obtained at the interesting points 
which are called degrees of freedom. The weak formula-
tions of the nondimensional governing equations are 
derived. The set of independent test functions to consist of 
the displacement uδ  and the mapping of temperature δϑ  
is prescribed. The governing equations are multiplied by 
independent weighting functions and then are integrated 
over the spatial domain with the boundary. Applying 
integration by parts and making use of the divergence 

theorem reduce the order of the spatial derivatives and 
allows for the application of the boundary conditions. The 
same shape functions are defined piecewise on the ele-
ments. Using the Galerkin procedure, the unknown fields u 
and ϑ  and the corresponding weighting functions are 
approximated by the same shape functions. The last step 
towards the finite element discretization is to choose the 
element type and the associated shape functions. Three 
nodes of quadrilateral elements are used. The shape 
function is usually denoted by the letter N and is usually 
the coefficient that appears in the interpolation polynomial. 
A shape function is written for each individual node of 
a finite element and has the property that its magnitude is 
1 at that node and 0 for all other nodes in that element. We 
assume that the master element has its local coordinates in 
the range [–1, 1]. In our case, the one-dimensional quad-
ratic elements are used, which given by:  
 linear shape functions 

  ( ) ( )1 2
1 11 , 1 ,
2 2

N Nξ ξ= − = +  

 quadratic shape functions 

  ( ) ( )2 2 2
1 2 3

1 1, 1 , .
2 2

N N Nξ ξ ξ ξ ξ= − = − = +  

 On the other hand, the time derivatives of the unknown 
variables have to be determined by Newmark time integra-
tion method with 0.02 as time step [17]. In our investiga-
tion, we prepared the programs for finite element methods 
by using Scilab and Matlab software.  
 After obtaining ,ϑ  the temperature increment θ  can be 
obtained by solving equation (11).  
 
 

V.  NUMERICAL  RESULTS  AND  DISCUSSION 
 

 The copper material was chosen for purposes of nu-
merical evaluations. The constants of the material were 
taken as [13]:  

3 5 1
0

3 2 1 2
0

10 10

2
0

386 , 1.78 (10) ,

8954 , 293 383.1

3.86 (10) , 7.76 (10) ,

0.02 , 4, 0.042, 1.61, 0.0105.

1

1 2 1 2

km m K s K

kg m K, m K s

kg m  s  kg m  s

T

E

K

T C

s b g a

α

ρ

μ λ

τ β

− − − −

− − −

− − − −

= =

= = =

= =

= = = = =

 

 The computations were carried out for t = 0.20, R1 =1, 
R2 = 3 and 0θ  = 1 with different values of K1 (0.0, –0.5, 
–1.0) where the value of K1 = 0.0 shows the old case when 
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the thermal conductivity is independent of temperature. 
The field quantities, temperature, stresses and displacement 
depend not only on the state and space variables t and r but 
also depend on the value of K1. It has been observed that, 
K1 plays a vital role on the development of all the fields. 
 Figure 1, displays the temperature distribution and we 
have noticed that, the value of K1 has a significant effect on 
the temperature. In the same point of r, when K1 decreases, 
the temperature decreases.  
 Figure 2, displays the displacement distribution and we 
have noticed that, the value of K1 has a significant effect on 
the displacement. In the same point of r, when K1 de-
creases, the absolute value of the displacement decreases.  
 Figures 3 and 4, displays the stresses distribution and 
we have noticed that, the value of K1 has a significant 
effect on the stresses. In the same point of r, when K1 
decreases, the absolute value of the stresses decreases. 
 Physically, we can say that, when K is variable with 
linear function of temperature with negative values of K1, 
the values of the thermal conductivity decreasing with 
increasing temperature and then the distance between the 
particles will increase which makes the speed of waves 
 

 

Fig. 1. The temperature distribution with different values of K1  
 
 

 

Fig. 2. The displacement distribution with different values of K1  

 

Fig. 3. The stress distribution with different values of K1 

 

 

Fig. 4. The stress σψψ  distribution with different values of K1 

 
progress of all the fields will be more slow and hence the 
values of all that fields will be decreasing.  
 
 

VI.  CONCLUSION 
 
 Due to this work we can say that, the thermal con-
ductivity plays a very important role in the behavior of the 
particles of the elastic materials. The consideration of the 
thermal conductivity to be variable also is very important 
where all the fields have been affected by this consideration. 
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