
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 13(2), 131-141 (2007)

Accessing Grid Computing Resources
with g-Eclipse Platform

Paweł Wolniewicz1, Norbert Meyer1, Maciej Stroiński1, Mathias Stuempert2

Harald Kornmayer3, Martin Polak4, Harald Gjermundrød5

1Poznan Supercomputing and Networking Center
ul. Noskowskiego 10, 61-704 Poznań, Poland

e-mail: {pawel.wolniewicz/ meyer/stroinsk}@man.poznan.pl
2Forschungszentrum Karlsruhe

Postfach 3640, 76021 Karlsruhe, Germany
e-mail: mathias.stuempert@iwr.fzk.de

3NEC Laboratories Europe, IT Research Division
Rathausallee 10, D-53757 St. Augustin, Germany

e-mail: harald.kornmayer@it.neclab.eu
4Institute for Graphics and Parallel Computing (GUP) University Linz

Altenbergerstraße 69, A-4040 Linz, Austria
e-mail: mpolak@gup.jku.at

5University of Cyprus
PO Box 20537, 75 Kallipoleos Str., 1678 Nicosia, Cyprus

e-mail: harald@cs.ucy.ac.cy

(Rec: December 7, 2007)

Abstract: In the paper we present how g-Eclipse can be used for easy running computation on Grid resources. The g-Eclipse project is
an EU-founded project that aims to build an integrated workbench framework to access the power of existing Grid infrastructures. The
g-Eclipse framework provides a general, integrated workbench toolset for Grid users, operators and developers. It is very useful for
inexperienced users to interact with Grid resources independently of the underlying Grid middleware. The Grid abstraction enables Grid
users to access the Grid in a desktop-like manner with wizards specified for common use cases.
Keywords: Grid, Eclipse, g-Eclipse, user interface, grid tool, middleware independent

I. INTRODUCTION

 The growing computational requirements for modern
applications are approching the limit where it very often
cannot be fulfilled by a single organization. In Europe there
are numerous Grid projects focusing on different ap-
plications, communities and technologies. The majority of
the efforts were put on the preparation of working Grid
infrastructure; implying simplicity and user friendliness
were not the priority. As a result, Grids were not widely
accepted, because the command line interface to the Grid
required some knowledge about the underlying Grid
mechanisms. It was not a problem in the beginning of the
Grid era when most users of the Grid were involved in its
creation and configuration. The Grid proved its usefulness
for many application areas and the number of potential
users is increasing rapidly. To support new, inexperienced
users, user-friendly interfaces to the Grid are required.

 The most popular Grid infrastructure in Europe is
EGEE [1], which brings together scientists and engineers
from more than 240 institutions in 45 countries world-wide
to provide a seamless Grid infrastructure for e-Science that
is available to scientists 24 hours-a-day. EGEE is using
gLite middleware which provides a bleeding-edge, best-of-
breed framework for building Grid applications tapping
into the power of distributed computing and storage
resources across the Internet. The most popular way of
using gLite [2] middleware is to use command lines from
the dedicated access machine. This way of using Grid is
not simple and some effort was put to prepare the Genius
Grid portal [3]. Other projects like GridLab [4], Deisa [5],
UNICORE [6] also started with command line interfaces
and in the later phase Grid portals were prepared.
 Currently, portals tend to be the standard way of ac-
cessing Grid resources. However, usually they are targeted
to the specific Grid infrastructure or even the specific Grid

user
Tekst maszynowy
CMST 13(2) 131-141 (2007)

user
Tekst maszynowy
DOI:10.12921/cmst.2007.13.02.131-141

user
Tekst maszynowy

user
Tekst maszynowy

P. Wolniewicz et al. 132

application. To simplify the process of preparing portals for
specific usage (e.g. for specific scientific community),
some portal development kits vere devised, like GridSphere
[7]. Using the same portal technology has a positive effect
that many portals have similar user interface and users do
not need to learn it when they start to use new portal.
Recently some effort was put to specify a standard for
building the Grid portals.
 g-Eclipse is more than a tool for accessing Grid and has
much more functionality that those provided by Grid
portals. g-Eclipse is an integrated Grid environment for
Grid users, Grid operators, and Grid developers. In the later
part of the paper we present the general overview of g-Ec-
lipse and its architecture. We focus on g-Eclipse parts re-
lated to Grid computing, which is accessing Grid resources
and developing Grid applications.

II. g-ECLIPSE OVERVIEW

 The g-Eclipse is an integrated workbench framework to
access the power of existing Grid infrastructures. The frame-
work is built on top of the reliable eco-system of the
Eclipse community to enable a sustainable development
and to benefit from synergy effects arising from the use of
the widely spread Eclipse [8] platform. The product allows
to access Grid resources, to manage Grid resources and to
support the development cycle of new Grid applications.
 The g-Eclipse framework is based on a middleware-
-independent model and provides a graphical user interface
build upon this model. By extensively using the Eclipse ex-
tension mechanism in combination with object-oriented de-
sign patterns, the framework can be easily extended by
middleware-specific implementations. The result of this
approach is a common user interface for all potential mid-
dleware in order to lower the threshold for scientific and
industrial applications to be used on a Grid.
 In its first project year, g-Eclipse provided the middle-
ware-independent architecture and an exemplary imple-
mentation for the gLite middleware based on it. This im-
plementation directly enables the use of already existing
large Grid infrastructures such as EGEE or int.eu.grid. In
the second project year another implementation of this ar-
chitecture for the GRIA [9] middleware will be provided in
order to prove the middleware-independent concept of the
g-Eclipse model.
 The g-Eclipse project directly supports three different
user roles, Grid application users, Grid operators and Grid
application developers. Grid application users are able to
access the Grid with standardized but customizable user-
friendly interfaces. Grid operators can reduce the cost of
operation as the complexity of the Grid will be reduced
with the supporting tools. Grid application developers are
empowered to speed up the development cycle of new Grid
applications. g-Eclipse tools are organized in so called
perspectives, and the three provided perspectives corres-
pond to the three Grid roles. Each perspective contains

a predefined set of tools, but can be customised for specific
users’ needs.
 In the context of Grid computing it seems probable that
the majority of end-users will use g-Eclipse as a graphical
tool within the Eclipse workbench. These users only get in
direct contact with the UI contributions of g-Eclipse that
hides the complexity of subjacent core features. Therefore,
g-Eclipse provides a reliable and intuitive graphical inter-
face that is conformant to the Eclipse user interface
guidelines. The second group of end-users may use g-Ec-
lipse as a framework in the sense of an API. They want to
create their own applications based on the core functional-
ities rather than on the UI components. For g-Eclipse it
means that we have to design a sophisticated, but at the
same time manageable, API.
 g-Eclipse is build on the Eclipse Platform, which is
probably the most successful integration platform currently
available. The development of Eclipse was started by IBM
in the late 1990s and then handed over to the nonprofit
Eclipse Foundation [8], to be managed as an open-source
platform. Its design follows the standards set by the Object
Management Group [10] that supports the interoperability
between enterprise applications. The Eclipse platform is
freely licensed and open source. The power of Eclipse lies
in the common platform that it provides into which differ-
ent multi-vendor tools can be integrated. Eclipse was de-
signed for extensions from the very beginning and all
Eclipse components and plug-ins are built for re-use. Any-
one can write plug-ins for Eclipse and can have them work
directly with any other plug-in for the platform. Eclipse’s
success is attributable to this capability and to the Eclipse
open-source license, which allows developers to have easy
and free-of-charge access to the source code. This will al-
low them to modify it and innovate quickly to meet user
needs. Eclipse is also experiencing strong adoption in the
research area as an ideal platform for research, as it allows
the user to concentrate on the research subject, instead of
creating the basic infrastructure. The rich set of open
source extensions (>500 at the time of writing) available
from the Eclipse community can provide an additional
benefit to research projects. With all these features, Eclipse
is a perfect base on which to build an integrated Grid envi-
ronment.
 The most popular usage of Eclipse is Java and C++ In-
tegrated Development Environment. It is commonly used
by programmers around the world. But Eclipse is used as
integration platform also for many other products like
personal information managers, stock exchange analysis
and other. A lot of plug-ins are available for Eclipse and
they can be installed individually depending on users’
needs. Example plug-ins include collaboration tools, de-
velopment support tools, mail clients and many other.
Eclipse-based products are already used by many people,
and installing g-Eclipse is just updating the current
Eclipse with g-Eclipse plug-ins by pointing the Eclipse
Update Manager to g-Eclipse update site. As g-Eclipse
keeps the Eclipse style and look-and-feel, working with

Accessing Grid Computing Resources with g-Eclipse Platform 133

the Grid is easy and intuitive for people already familiar
with Eclipse-based products.

III. GENERAL ARCHITECTURE

 In order to provide a common interface for accessing
local and remote resources, the g-Eclipse framework offers
a mechanism for accessing and managing both local ele-
ments, i.e. local files and folders, and Grid elements, i.e. ei-
ther local or remote Grid resources. This abstraction layer
is called the Grid Model. It is responsible for providing ba-
sic interfaces and classes that may be extended by specific
middleware implementations. Moreover, it provides stan-
dard and abstract implementations for common types of re-
sources, for instance, local files or standard containers that
may contain other resources. This makes it easy for devel-
opers to build their specific implementations upon the Grid
model. To add support for specific Grid middleware it is
enough to implement some interfaces. The g-Eclipse archi-
tecture is presented in Fig. 1.

Eclipse Platform

g-Eclipse

Abstraction Layer

Core UI

Implementation Layer
(Middleware)

Eclipse Extension Point
Fig. 1. g-Eclipse architecture

 The central point for a user to access Grid resources
from within g-Eclipse is the Grid project (see Fig. 2). Every
time a user wants to work on the Grid, a Grid project has to
be created. Each Grid Project has similar structure and
groups all currently used resources. There can be user-
defined resources like job descriptions, submitted jobs or
open connections to remote file systems. The Grid project
also allows for easy access to Grid services connected with
this project, like resource brokers, information systems or
storage systems. The set of available resources is deter-
mined by the Virtual Organization chosen for the project.
 In the Grid world Virtual Organization is the central au-
thorization point for accessing Grid resources. g-Eclipse
uses an even more enhanced concept of VO which is not
only the authorization point, but also the central informa-
tion point providing information about all resources avail-

Fig. 2. Example contents of Grid Project View

able for this VO. g-Eclipse can support many Grid infra-
structures by the set of middleware dependent plug-ins. VO
implementation plug-in is one of the central plug-ins. It
provides middleware-dependent authentication to the Grid
using specific implementation of Abstract Authentication
Tokens, and provides the list of available services. For
simple Grid infrastructures which do not use the concept of
VO we defined generic VO which does not provide user
authentication. It provides only a manually added list of
services. A sample Dialog defining VO is shown in Fig. 3.

Fig. 3. VO Definition Dialog

P. Wolniewicz et al. 134

 The g-Eclipse architecture is designed to simplify the
way of interacting with Grid resources. Users interact with
Grid using user-friendly graphical wizards and editors.
They should not need to deal with details like the syntax of
the job description language, specific steps needed to do
some complex actions or details of the authentication process.

Fig. 4. Example Error dialog

g-Eclipse prompts users if an action is necessary (e.g. au-
thentication is required) and in case of errors presents pos-
sible hints and solutions for the problem, independently of
reporting problem of the underlying middleware (see
Fig. 4).

IV. GRID-USER PERSPECTIVE

 The Grid User Perspective (see Fig. 5) is one of the g-Ec-
lipse perspectives that groups tools for the specific needs of
Grid users. It offers a simple way for Grid users to interact
with Grid resources. The most common interactions of
a Grid user are the submission and monitoring of com-
putational jobs and the management of data within a Grid
infrastructure.
 The User Perspective provides extensions on top of
Eclipse that respect the common Eclipse guidelines; this
means it contains separate views and editors for different
functionalities. These functionalities are served by a set of
tools, implemented as component-orientated Eclipse plug-
ins that integrate seamlessly with other views and editors
which will be integrated in the g-Eclipse Grid User
Perspective. The elements of the User Perspective will now
be presented.

Fig. 5. General view of g-Eclipse User Perspective

Accessing Grid Computing Resources with g-Eclipse Platform 135

IV.1. Grid Job Submission Management

 The submission of Grid jobs includes some standard
steps such as the selection of the executable, the definition
of the input parameters and input data and the definition of
the output data. The g-Eclipse User Perspective provides
tools that support the Grid user through the various steps of
the job submission procedure. The Grid job submission
tool can be re-used and customized by any particular Grid
application to execute a computational job on Grid re-
sources. To submit a job to the Grid, first a job description
must be created. The most general and middleware-in-
dependent job description format is currently the Job
Submission Definition Language (JSDL) [11] which is de-
fined by the OGF group. JSDL is the main job description
language used in g-Eclipse, although other job description
formats can be used as well. An example of this is the
Resource Specification Language (RSL) [12] which is used
to define Globus jobs. If the middleware does not support
JSDL job description, then the responsible plug-ins
transparently transforms a JSDL job description to a mid-
dleware native description. This is now done for gLite
which supports the Job Definition Language (JDL) [13]
only. JSDL is transformed to JDL automatically before the
job is submitted.
 The JSDL wizard is used to create JSDL files. The
wizard asks for the most important JSDL parameters and
creates the JSDL file. The file can later be edited using the
JSDL multi-page editor.
 In this way users can submit a simple executable and
pass all necessary parameters for it. For more advanced
applications the standard wizard can be enhanced with
application-defined wizard pages. This can be used to ask
the user about application-specific parameters in a more
user-friendly way than just command-line arguments, e.g.
check for parameter correctness, warn about erroneous
values, use lists, combo boxes and sliders, etc. Such an
advanced wizard should be prepared by an application
developer or integrator, and be provided as an additional
plug-in or XML file. Resulting JSDL file can be than
edited using multi-page editor that assists the user in
editing a document by grouping together common parts of
the document in one tab and also provide instruction and
information about the fields/properties/text that can be
edited in that specific tab. Again, this provide a higher level
of abstraction for the user compared to editing a pure xml
file. In addition to simplify the task of creating and editing
a JSDL file, the JSDL multi-page editor also helps in
creating a well-formed document with a structure that is
verified. As a result, the user is given error messages when
she has entered invalid data into fields.

IV.2. Grid Job Monitoring

 Access to a large number of Grid resources allows the
Grid user to execute many, but slightly different jobs at the
same time to compare their results. The g-Eclipse Grid
User Perspective provides a user-friendly and intuitive tool

to monitor and control these jobs on-line. A list of jobs is
presented to the user containing fundamental information
about each of them, such as the date of submission, current
status and other common values. More details will be dis-
played on-demand for selected jobs.
 The Grid job monitoring view shows a list of all cur-
rently existing jobs with some properties about each of
them, such as the job name and status. The list can be
filtered by status, date, job directory, hosts etc. Another
view shows all information about a specific job. It includes
all the status information that is available from the Grid
middleware. e.g. status history, job description etc.
 Another way of presenting standard job information is
via the usage of the standard PropertyDialog, which shows
properties for any GridElement in the Grid project tree.

IV.3. Grid File Management

 Files containing data are distributed in the Grid and
replica management layer controls access to them. The users
of Grid resources would prefer a similar method of accessing
the files to the way they access files on their personal com-
puter. Moreover, there are various replica managers for
different middleware (some, like gLite, have more than one).
g-Eclipse's task is to present a consistent `look and feel' to
the user. The g-Eclipse User Perspective provides methods
that enable Grid users to access an abstract storage space. It
contains a unified view to different types of storage, such as
Storage Elements, GridFTP, DPM implementation of Grid-
FTP or Storage Resource Manager (SRM) resources and
local media, such as hard disk and removable media (CD,
DVD, USB memory sticks).
 The g-Eclipse data management subsystem hides low-
level details about the file systems. The user deals with
high level operations only – create directory, copy file,
remove file, copy directory etc.
 Common user actions such as drag & drop or copy &
paste are supported as well. File transfers that would take
a long time can be put into the background to avoid blocking
the user interface. Except for a small time delay, users
should notice no difference between remote and local file
systems.
 Because of good integration with the Eclipse platform,
g-Eclipse is able to utilize third-party implementations of
file systems. g-Eclipse exploits the core Eclipse File
System (EFS) API and therefore, any file system which
was developed to work with the Eclipse Platform will also
work with g-Eclipse.
 The Grid is composed of distributed, heterogeneous
resources. Transferring data between different nodes in-
volves the use of several tools. In g-Eclipse, these tools are
selected automatically. Scientists and engineers can focus
on their task rather than on which tools to use.
 Easy use is the highest priority for g-Eclipse. Earlier,
users had to remember not only a lot of information, but
also the location of the information. g-Eclipse utilizes the
BDII information system in the background, so that the user

P. Wolniewicz et al. 136

is able to browse the Grid and its storage elements without
knowledge about its addresses or configuration. But
advanced or experienced users can work with this raw data,
if they find it more useful.

IV.4. Grid Visualization

 The Grid allows complex calculations of any kind for
Grid users and scientists. The presentation of the results of
such calculations is another challenging task. In many
scientific domains, the graphical visualisation of these
results will provide the scientists and engineers with
a deeper insight into the problem and its solutions.
Therefore the integration of a user-friendly and interactive
visualisation tool in a general integrated Grid environment
is addressed by the g-Eclipse Grid User Perspective.
 For this task, the g-Eclipse project builds upon the well
known Open Source Visualization Toolkit (vtk) by Kitware
[14]. This has the advantage that scientists who are already
used to doing their visualization with this widely used toolkit
only need very little learning efforts to perform their
visualization tasks interactively on the Grid using g-Ec-
lipse.
 Depending on the trade-off between the size of the data
to be visualized and the computing rendering power of
a user's desktop, g-Eclipse offers two different ways of per-
forming the visualization, which should be usable trans-
parently in the future. One is to move the data to the client
host running g-Eclipse using the integrated data manage-
ment of the platform and performing local rendering with

the g-Eclipse vtk client. The other is to find a machine
close to the data on the Grid offering remote rendering
functionality being advertised in the information system
and the usage of the native vtk-gvid applications. The
former makes sense for small datasets and more powerful
machines, the latter for large datasets where powerful
hardware-based remote rendering is available.
 In the first release, remote rendering with GVID[15] is
available. The application needs to implement the vtk-
based visualisation and needs to be linked with the GVID
vtk libraries. Being submitted to a Grid site being prepared
appropriately, offering off-screen hardware rendering func-
tionality, the user can then transparently use an application
being rendered remotely, only interacting with a video stream
using the g-Eclipse GVID client. Fig. 6. shows a screenshot
of a vtk demo application.

IV.5. Grid Command Console

Sometimes experienced users would like to access Grid
computers directly. The g-Eclipse Grid command console
provides a low-level interface to Grid-based resources.
Similarly to the command line interface on standard
desktop workstations, a user may need to access, inspect
and steer resources in the Grid environment using a normal
shell access. A command console is now implemented with
two protocols: SSH and gLogin. The SSH console is just
the standard secure shell using standard authorization.
gLogin offers ssh-like shell access to remote machines
based on X.509 user credentials for authentication and the

Fig. 6. Example visualisation

Accessing Grid Computing Resources with g-Eclipse Platform 137

same features such as port-forwarding and X11 tunneling.
Even if the idea of having such functionality in the Grid
looks very straightforward, it has not been foreseen from
the beginning and therefore had to be developed by tricking
the first middleware. The same functionality offering
interactive shell access is also used to offer a generic
interactive tunnel into the Grid being used by many parts of
g-Eclipse, e.g. remote debugging or the GVID component.

V. GRID DEVELOPER PERSPECTIVE

 The g-Eclipse Developer Perspective contains very
high-level features to support developers developing for
Grids working through the full development cycle of their
applications. This includes support for preparing Grid
applications, and debugging applications remotely.

V.1. Grid Application Development and Debugging
 Tools for C++ and Java

 Supporting the Application Development Cycle on the
Grid using g-Eclipse is projected in two parts. The first

idea is to support developers using g-Eclipse with the same
type of tooling they are used to when developing for their
desktop using their favourite Integrated Development
Environment (IDE). The second idea is to support their
work by providing wizards for creating stubs and templates
as a basis for developing applications that can utilize Grid
middleware functionality on an API basis or even more
sophisticated – developing extensions to the g-Eclipse plat-
form itself.
 The first set of tooling is already quite complete and
usable. It is integrated in the first release of g-Eclipse and
outlined briefly in the following paragraphs. The project
has identified support for developing C/C++ and Java
applications in its scope of work, both of which are already
very well supported within the Eclipse Platform through
CDT (the C/C++ Development Tooling) and JDT (the Java
Development Tooling). This includes editing, building and
graphical debugging. So the main idea has not been to re-
invent a full set of tools for developing for the Grid, but
instead to find mechanisms to interface the existing tooling
to operate locally on a user's machine with the Grid. This is
currently achieved by creating application-transparent

Fig. 7. Remote debugging of MPI application on Grid

P. Wolniewicz et al. 138

interactive communication channels using the g-Eclipse
gLogin plugin for accessing remote resources and inter-
facing locally built & remotely deployed binaries with the
local workbench and its debugging facility.
 The g-Eclipse way to build and run or debug appli-
cations with CDT or JDT is to edit the source files in the
corresponding development perspective of Eclipse and then
to create so called ”launch configurations”. These auto-
matically deploy the locally built binaries to the respective
Grid resource, launch them and connect the local work-
bench to the remotely running instance through the
interactive connection to the Grid. The same functionality
is available for Java projects as well and is handled for that
case in a similar way. In the case of C/C++ applications, g-
Eclipse additionally supports the development of parallel
applications using the message passing interface (MPI)
[16] programming paradigm and the same concept of
having special launch configuration for running on the Grid
utilizing the interactive gLogin communication channel.
 Figure 7 shows a simple parallel (MPI) application
being debugged, running on a Grid computing node. The

only way this view differs from a normal Eclipse CDT
debugging view is the way processes are launched through
the g-Eclipse Launch Configuration and how the graphical
debugging frontend is connected through gLogin to the
debugging backends on the Grid.

V.2. Grid Application Deployment Tools

 When the application is prepared, compiled and tested
locally, it must be deployed on the Grid to share it with
other users. For some Grid infrastructures it may require
a special permission. Application deployment using g-Ec-
lipse is split into two separate parts. The first one is
the definition of a generalised User Interface (UI) frontend
that enables the deployer to select the resources to deploy,
the targets where these resources should be deployed and
an optional deployment tag. As soon as these deployment
parameters are fixed, the second part becomes operative.
This is the actual deployment process.
 The deployment process itself can be either represented
by a shallow middleware-independent operation or by a high-

Fig. 8. Example workflow definition

Accessing Grid Computing Resources with g-Eclipse Platform 139

ly specialised middleware dependent operation. The first one
makes use of the core functionalities for mounting remote
filesystems and for transfering data between the local in-
stallation and these remote targets. In that sense the deploy-
ment process is equivalent to a simple copy of the resources
that have to be deployed to one or more target systems.
 In order to make a clean application deployment to the
Grid, one has to use the middleware-specific mechanisms
to upload files and to register these files as application(s).
This is then made available for the users of the Grid on the
corresponding computing elements by the middleware.
Within the g-Eclipse framework, these deployment
techniques may not be implemented by the core itself but
by a specific middleware extension. The framework itself
again provides a common UI to the deployer and the
possibility to choose among all registered deployment tools
in order to start a deployment process.

V.3. Graphical Grid Workflow Builder

 The part of g-Eclipse providing support for workflows has
two distinct components - a graphical editor to create & edit
workflows and the execution management part. A workflow
model was defined and a graphical editor was created on the
basis of this model. Currently, this editor allows the creation
of workflows by the addition of workflow jobs and links
between them. The description of a workflow composed in
the g-Eclipse Worklow Editor (See Fig. 8) can be saved to a
file. At the moment it is in an XML Metadata Interchange
(XMI) format. In order to support other workflow description
languages, it is envisaged to provide an `Export to' and
`Import from' functionality. This would allow users to export
their workflows created in g-Eclipse to formats supported by
various workflow engines. As the Grid middleware chosen
for the first year of the g-Eclipse Project is gLite, work on an
export funtionality to the Job Description Language (JDL) is
ongoing. In JDL, a workflow is represented as a Directed
Acyclic Graph (DAG). Hence, the current workflow model
used in g-Eclipse does not support loops.

V.4. Grid Application Monitoring

 From the Developers' Perspective, Application Mo-
nitoring is split into two different levels of granularity.
Coarse-grained Application Monitoring concerns the
tracking of submitted jobs' status which is already addres-
sed through the g-Eclipse job-status plug-in. Fine-grained
Application Monitoring, on the other hand, involves
fetching of the status of remotely running process(-es) at
the Operating System level. The latter allows selecting
processes and resources from the context menu in the Grid
Project View and is implemented in a separate plug-in.

VI. CONCLUSIONS

 g-Eclipse is a user-friendly environment for accessing
Grid resources. It can support a wide range of potential

Grid users, from Grid newbies to application developer
experts. It has proved to be a very useful tool for accessing
Grid resources. Currently the supported Grid infrastruc-
tures are gLite and Globus. Support for GRIA is started and
this will be the first usage of g-Eclipse in industry. g-Ec-
lipse is based on the open Eclipse platform founded by
IBM. The usefulness and significance of g-Eclipse were
noticed by the Eclipse Foundation and terefore became an
official Eclipse technology project. As a result g-Eclipse is
an open source project and the sources are public and
available for the g-Eclipse community, which can easily
add support for other Grid middleware.
 g-Eclipse is a valuable tool that can be used by all Grid
users for their daily work. As it does not require deep Grid
knowledge, it is really suitable for inexperienced users that
would just like to run their computations on the Grid
without lerning its complexity.

Acknowledgments

g-Eclipse project is funded by the European Commission's
6th Framework Programme, Contract number IST-034327.

References

 [1] F. Gagliardi, The EGEE European Grid Infrastructure Pro-
ject, LNCS, Volume 3402/2005, p. 194-203.

 [2] F. Hemmer, E. Laure, M. Barroso Lopez, A. Di Meglio,
S. Fisher, L. Guy, P. Kunst and F. Prelz, Middleware for
the Next Generation Grid Infrastructure, Proceedings of
CHEP 2004, Intelaken, Switzerland, 2004.

 [3] G. Andronico, R. Barbera, A. Falzone, G. Lo Re, A. Pulvirenti
and A. Rodolico, The GENIUS web portal: grid computing
made easy, International Conference on Information Tech-
nology: Computers and Communications, 2003, p. 425-431.

 [4] G. Allen, K. Davis, K. Dolkas, N. Doulamis, T. Goodale,
T. Kielmann, A. Merzky, J. Nabrzyski, J. Pukacki, T. Rad-
ke, M. Russell, E. Seidel, J. Shalf and I. Taylor, Enabling
Applications on the Grid: A GridLab Overview, Internatio-
nal Journal of High Performance Computing Applications,
Aug. 2003, p. 449-466.

 [5] Distributed european infrastructure for supercomputing
applications – DEISA, http://www.deisa.org

 [6] D. W. Erwin and D. F. Snelling, UNICORE: A Grid
Computing Environment. Euro-Par 2001, LNCS Volume
2150/2001: p. 825-834.

 [7] J. Novotny, M. Russell and O. Wehrens, GridSphere: An Ad-
vanced Portal Framework. EUROMICRO 2004: p. 412-419.

 [8] Eclipse platform – www.eclipse.org
 [9] M. Surridge, S. Taylor, D. De Roure and E. Zaluska, Ex-

periences with GRIA – Industrial Applications on a Web
Services Grid, Proceedings of the First International Con-
ference on e-Science and Grid Computing, 2005, p. 98-105.

 [10] Object Management Group, www.omg.org
 [11] Job Submission Description Language (JSDL) Specifi-

cation, Version 1.0, http://www.gridforum.org/documents/
GFD.56.pdfl

 [12] The Globus Resource Specification Language RSL v1.0,
http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html

P. Wolniewicz et al. 140

 [13] Job Description Language Attributes Specification,
https://edms.cern.ch/file/590869/1/EGEE-JRA1-TEC-
590869-JDL-Attributes-v0-8.pdf

 [14] The Visualisation Toolkit, http://www.vtk.org/

 [15] T. Stütz, and M. Polak, Gvid – Video Coding and
Encryption for Advanced Grid Visualization, 1st Austrian
Grid Symposium, Hagenberg, Austria, December 1, 2005.

[16] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Don-
garra, MPI: The Complete Reference, Massachusetts Insti-
tute of Technology, 1996.

PAWEŁ WOLNIEWICZ graduated from Poznań University of Technology and received M.Sc. in computer
Science in 1997. In 2003 he presented and defended his Ph.D. thesis in computer science at the Institute of
Computing Science, Poznań University of Technology. Currently he works for Poznań Supercomputing
and Networking Center, Poznań, Poland. His research interests include Grids, distributed environments and
scheduling. Since 2002 he has been working on several international research projects in the field of Grid
Computing.

NORBERT MEYER is currently the head of the Supercomputing Department in Poznań Supercomputing and
Networking Center. His research interests concern resource management in GRID environment, GRID
accounting, data management, technology of development graphical user interfaces and network security,
mainly in the aspects of connecting independent, geographically distant Grid domains. NM conceived the
idea of connecting Polish supercomputing centres, vision of dedicated application servers and distributed
storage infrastructure. He is the author and co-author of 40+ conference papers and articles in international
journals, member of programme committees of international conferences related high performace
computing and grid computing.

MACIEJ STROIŃSKI received the Ph. D. degree in Computer Science from the Technical University of
Gdańsk in 1987. Currently he is Technical Director of the Poznań Supercomputing and Networking Center.
He is also lecturer in the Institute of Computing Science of the Poznań University of Technology. His
research interests concern computer network protocols and management. He is author or co-author of over
100 papers in major professional journals and conference proceedings.

MATHIAS STÜMPERT is the project coordinator of the g-Eclipse project. He is working as a principle
researcher in the Institute for Scientific Computing at the Forschungszentrum Karlsruhe. His background is
astro-particle physics where he made his PhD in November 2007 by investigating anisotropies in cosmic-
ray arrival directions using data of the KASCADE-Grande experiment. In August 2006 he joined the g-
Eclipse project as responsible person for the architecture of the framework, the quality of the source code
and the integration of the different components. He became project coordinator in October 2007 and is still
responsible for large parts of the g-Eclipse core

Accessing Grid Computing Resources with g-Eclipse Platform 141

DR. HARALD KORNMAYER works as senior researcher in the IT Division of NEC Laboratories Europe in
St. Augustin, Germany. His research agenda focus on distributed wide scale IT systems including Grid and
SOA technologies. Before he joined NEC Laboratories Europe, he worked in different European and
national Grid projects (i.e. CrossGrid, EGEE, D-Grid). He is Eclipse project lead of the g-Eclipse project
since 2006 and coordinated the European project until September 2007 as scientific coordinator.

MARTIN POLAK is currently doing his Ph.D. under the supervision of Univ. Prof. Dr. Jens Volkert at the
Institute of Graphics and Parallel Processing (GUP), University Linz. His interest and focus of is work is
studying the applicability of more efficient encryption methods to interactive video streams for usage in
grid based high performance visualization scenarios. Since 2002 he has been working on several
international research projects in the field of Grid Computing and he also is an official Eclipse.org
committer.

HARALD GJERMUNDRØD is currently a postdoctorate associate at the High-Performance Computing
Systems Laboratory in the Computer Science Department of the University of Cyprus. His research
interests include middleware, distributed computing systems, and Grid computing. Gjermundrød received
his PhD, MS, and BS degrees in computer science from Washington State University in 2006, 2001, 1999
respectively and Dipl.-Ing degree from Oslo University College in 1998 (including a year as an
Socrates/Erasmus student at the Robert Gordon University). Gjermundrød has worked on projects funded
by the National Institute of Technology and the National Science Foundation in the USA and served as
a reviewer for several scientific conferences.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 13(2), 131-141 (2007)

