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Abstract: The aim of this publication is to present a new probability distribution which for particular parameter values has a bimodal 
density function and a bathtub hazard rate function. All the main reliability properties of such distribution will be described in details in this 
paper. Such a distribution can constitute a very good mathematical model that would enable the description of the lifetime of technical 
devices. It can successfully be implemented in the planning of a burn-in procedure and a preventive maintenance of non-repairable devices.  
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Symbols 
MMD – Makeham’s modified distribution 
MGD – Makeham’s generalised distribution 
h(t) – hazard rate function   
f(t ) – density function 
F(t) – cumulative distribution function 
R(t) – reliability function 
 

 

I.  INTRODUCTION 
 

Until 1980s the bathtub hazard rate function (with a flat 
minimum) was considered as an old failure pattern for the 
lifetime of technical devices. Several publications which 
appeared at the beginning of the 1980s [5-7, 15, 22, 29, 30] 
suggested that the exemplary distribution of the lifetime of 
technical devices, especially of electronic components, is 
a bimodal distribution. The first mode relates to failure that 
result from internal defects which are the consequence of 
material defects or imperfection of manufacturing process. 
The second mode, which is situated substantially further 
from the first one, relates to wear out processes. It was the 
so called new failure pattern. The old failure pattern, on the 
other hand, was connected with the bathtub hazard rate 
function. In this paper an attempt of MMD improvement is 
made with the ultimate goal of arriving a bimodal distri-
bution. The bathtub hazard rate function is an necessary 
condition in a distribution of the lifetime of technical 
devices, whereas, the bimodal density function is a suf-
ficient condition. A mathematical model based on the 
bathtub hazard rate function and a bimodal density function 
allows planning burn-in procedures and preventive 
maintenance of non-repairable devices. On the basis of 
a model with a decreasing hazard rate function it is possible 

to assess the optimal time of burn-in procedures for a given 
guarantee time, maximizing the probability of correct work 
during this period of time. For an increasing hazard rate 
function it is possible to determine the optimal time for 
preventive maintenance. By minimizing the sum of two 
factors: loss due to failures and costs of preventive 
maintenance the balancing of burn-in and preventive 
maintenance procedures based on MMD and MGD have 
been presented in detail in papers [19, 20], and those based 
on Weibull’s distribution in paper [10]. 

The aim of this paper is to present a new reliability 
distribution having the bimodal density function and the 
bathtub hazard function. Compare it with the known distri-
butions with bathtub hazard functions used in reliability 
theory so far. These are: generalized gamma distribution 
[26, 27], Firkowicz’s distribution [12], beta distribution of 
the first kind [14], Muth’s distribution [24], Urban’s 
distribution [28], Weibull’s generalized distribution [8], 
Kao distribution [16], Malik’s distribution [23], Make-
ham’s modified distribution (MMD) [4, 8, 19]. By imple-
menting a shape function instead of a shape parameter into 
MMD (this idea is taken from Weibulls’ generalized 
distribution) Makeham’s generalized distribution (MGD) is 
obtained. This distribution becomes a bimodal distribution 
of a bathtub hazard function for certain parameter values.  
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The mentioned distributions: Firkowicz’s distribution, 
beta distribution of the first kind or Muth’s distribution are 
based on a limited time interval. They have the bathtub 
hazard function with a vertical asymptote. However, from 
a physics of failure it is difficult to explain as it includes 
the assumption that after a certain time all the devices will 
stop to work, whereas lifetime is assumed as a random va-
riable. Moreover, Malik’s and Kao distribution have a com-
plicated mathematical form. They require calculation of 
large number of parameters. The generalized gamma 
distribution seems to be very flexible, yet, this flexibility is 
in this case rather a shortcoming than an advantage since 
the hazard function can be constant, bathtub, increasing or 
decreasing. In practice, the optimalization of burn-in 
procedures and preventive maintenance would include the 
values obtained from analyzing the data from failures (an 
estimation of these parameters) instead of parameter values 
that are actually known. However, the accuracy of para-
meter value estimation, and especially of shape parameters, 
by the generalized gamma distribution is relatively low 
[27]. Thus, it may be so that the hazard function of the 
observed devices can be of the bathtub type. The parameter 
estimate obtained from the sample are of such a value that 
the theoretical hazard function obtained by substituting the 
estimation to the final formula is not of a bathtub type. On 
the other hand, the gamma distribution is not flexible 
enough to obtain a bimodal density function from it. As far 
as Urban’s distribution is concerned, the shortcoming is the 
fact that the scale parameter value influences on the shape 
of the hazard function. This distribution is only equipped 
with the scale parameter and a certain weight which 
significantly reduces the possibility of modeling of life-
time. What is more, it can only be expanded on the time 
axis. Finally, Weibull’s generalised distribution which 
produces a bathtub hazard function can also give a bimodal 
density function though with certain restrictions regarding 
the range of its parameter values. This distribution is well-
defined when a certain relation between the scale and shape 
parameters is fulfilled, otherwise the density function is 
negative in a certain range.  

Thus, the MGD can be apply for planning burn-in and 
preventive maintenance procedures of non-repairable devices.   

 
 
II.  MAKEHAM’S  MODIFIED  DISTRIBUTION 

 
The aim of this paper is to define the distribution of the 

bimodal density function and the bathtub hazard rate 
function. Thus, important characteristics of the distribution 
in question is the hazard rate function. It is a quotient of the 
density and the reliability function [2, 13, 17, 25]:  

 ( )( )
( )

f th t
R t

= . (1) 

Hazard rate function is the conditional probability that 
failure of the device will occur during a small interval 
<t; t + Δt > given that device has survived to time t.  

The bathtub hazard rate function is typical for the life-
time description of most technical devices. At the begin-
ning the failure rate decreases, after a while it becomes 
stable, then it increases due to natural wear out  processes. 

In literature [1, 3, 4, 11] Makeham’s distribution is pre-
sented as an hazard rate function of this kind:  

 ( )1 2 0( ) exph t tρ ρ ρ= +   (2) 

where ρ0 and ρ1  are failure rate coefficients and ρ2 is the 
scale parameter.  
 

 

Fig. 1. The hazard rate function of Makeham’s distribution  
for the particular parameter values 

The hazard rate function of this distribution is strictly 
increasing. However, empirical distributions used for the 
description of the lifetime do usually have a bathtub hazard 
rate function, which is characterised by a flat minimum. By 
introducing (2) the shape parameter b to Makeham’s distri-
bution the hazard rate function will be of the following 
form: 

 ( )1
1 2( ) expb bh t t tρ ρ−= ⋅ ⋅ .  (3) 

By applying a more popular form of the notation of the 
formula (3) the following is obtained:  

 
1

( ) exp
b bb t th t

a a a

− ⎡ ⎤⎛ ⎞ ⎛ ⎞= ⋅ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

,  (4) 

where a is the scale parameter and b the shape parameter. 
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Fig. 2. The hazard rate function of Makeham’s modified 

distribution for the particular parameter values 

The distribution presented in this paper is called 
Makeham’s modified distribution (MMD). The function (4) 
is the product of a monotonically decreasing and a mono-
tonically increasing function. For b < 1 the hazard rate 
function has a bathtub curve. This is a very desirable 
characteristic of the reliability models. Such a distribution 
is described in [18, 20, 21]. MMD is here only the starting 
point to obtain a new reliability distribution with a bimodal 
density function. 

 
 

III.  MAIN  CHARACTERISTICS  
OF  THE  MAKEHAM’S  GENERALISED  

DISTRIBUTION 
 

The cumulative distribution function of the MMD is of 
the following form:  

 ( ) 1 exp 1 exp .
btF t

a

⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

  (5) 

By introducing MMD the shaping function b(t) we 
receive the bimodal density function with the bathtub 
hazard rate function. This idea was taken from [8].  

Let the shaping function be a linear function of the 
following form:  

 0 1( )b t b b t= + .  (6) 

Then the cumulative distribution function will be ex-
pressed by means of this formula: 

 
0 1

( ) 1 exp 1 exp
b b ttF t

a

+ ⋅⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

,  (7) 

where a is the scale parameter and b0 and b1 are the shape 
parameters. This distribution will be called Makeham’s 
generalised distribution (MGD). 

As it will show later a distribution so defined has not 
only a bathtub hazard rate function but also a bimodal 
density function (the condition is 0 1b ≤ ). 

 

 
Fig. 3. The cumulative distribution function of MGD for the 

particular parameter values 

 
 
IV.  BASIC  LIFETIME  CHARACTERISTICS 

OF  MGD 
 

The cumulative distribution function is strictly con-
nected with the reliability function of this form:  

 ( ) 1 ( )R t F t= −   (8) 

so for MGD it is:  
 

 
Fig. 4. The reliability function of MGD for the particular 

parameter values 
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0 1

( ) exp 1 exp
b b ttR t

a

+ ⋅⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

.  (9) 

Derivative of the cumulative distribution function (7) 
gives density function of the following form:  

 
( )

0 1

0 1 0 1

0 1
1

( )

ln

exp 1 exp .

b b t

b b t b b t

tf t
a

b b ttb
a t

t t
a a

+ ⋅

+ ⋅ + ⋅

⎛ ⎞= ×⎜ ⎟
⎝ ⎠

⎡ ⎤+ ⋅⎛ ⎞× ⋅ + ×⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞× − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (10) 

The function (10) determines the probability density if:  

 
( )0 1

1 ln 0
b b ttb

a t
+ ⋅⎛ ⎞⋅ + ≥⎜ ⎟

⎝ ⎠
. (11) 

By defining an auxiliary function: 

 0
1 1( ) ln

btu t b b
a t

⎛ ⎞= ⋅ + +⎜ ⎟
⎝ ⎠

 (12) 

the derivative was established 

 01
2'( )

bb
u t

t t
= − . (13) 

By solving the formula: 

 '( ) 0u t = . (14) 

The result is that for:  

 0

1

b
t

b
=  (15) 

this function can have an extreme. Thus if u(t) is non-nega-
tive the following condition must be fulfilled: 

 

0

1

0
1 1

1
ln 2 0 .

b
u

b

b
b b

b a

⎛ ⎞
=⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⋅ + ≥⎜ ⎟⋅⎝ ⎠

 (16) 

The condition is fulfilled if:  

 0
2

1

1 .
b
b a e

≥  (17) 

Thus the function (10) determines the density only if 
the condition (17) is fulfilled. 

The density function can be unimodal for b0 > 1 that for 
particular parameter values is shown in Fig. 5  

 

 

Fig. 5. The unimodal density function of MGD for the parti-
cular parameter values 

 
However, for 0 1b ≤  the density function of MGD can 

have two modes (the first mode at 0, the second mode 
substantially further) which is shown in Fig. 6.  

 

 

Fig. 6. The bimodal density function of MGD for the particular 
parameter values 

 

We can determine the location of the mode only on 
numerical way. The results for the numerical treatment are 
presented in Fig. 7. 
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Fig. 7. Location of the second mode as a function of the 

parameter b1 depending on the b0 particular parameter values 

 

As can be seen in the Fig. 7 the position of the mode is 
approaching one with the increase of the shape parameter. 

By substituting formulas (10) and (9) into formula (1) 
the MGD hazard rate function is obtained:  

. 

( )0 1

0 1

0 1
1( ) ln

exp .

b b t

b b t

b b tt th t b
a a t

t
a

+ ⋅

+ ⋅

⎡ ⎤+⎛ ⎞ ⎛ ⎞= + ×⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞× ⎜ ⎟
⎝ ⎠

 (18) 

 
Fig. 8. MGD hazard rate function for the particular parameter 

values 

 

The MGD hazard rate function has a minimum only for 
0 1b ≤ . They can be determined numerically. The results 

for the numerical treatment are presented in Fig. 9. 

 
Fig. 9. Minimum of the MGD hazard rate function as a function of 
the parameter b1 depending on the b0 particular parameter values 

 

The minimum of the MGD hazard rate function as a func-
tion of the parameter b1 are decreasing for a = 1, b0 = 0.5 and 
b0 = 0.75 and slowly increasing for a = 1 and b0 = 1. 

In practice it is easier to determine a hazard rate aver-
age function [1], of the following form:  

 
0

1( ) ( )
t

śh t h u du
t

= ∫ . (19) 

Thus substituting (18) into (19) the formula for the ha-
zard rate average function for MGD is obtained:  

 
0 11( ) 1 exp

b b t

s
th t

t a

+⎡ ⎤⎛ ⎞= − ⋅ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

. (20) 

 

 

Fig. 10. The MGD hazard rate averaging function for particular 
parameter values 
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V.  THE  MOMENTS  AND  RELATED 
CHARACTERISTICS  OF  MGD 

 
When examining numerical characteristics of MGD, the 

formula for MGD’s ordinary moments was taken into con-
sideration. They are determined by the following formula:  

 

0 1

0 1 0 1

0 1
1

0

ln

exp 1 exp .

b b t
k

k

b b t b b t

b b tt tm t b
a a t

t t dt
a a

∞ +

+ +

+⎡ ⎤⎛ ⎞= + ×⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞× − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫
 (21) 

In this paper the first ordinary moment, which most 
common is called the expected value, defines the mean 
time to failure. The mean time to failure of the MGD 
distribution depending on the parameters b0, b1 is shown 
graphically in Fig. 11, Fig. 12  

 

 

Fig. 11. The mean time to failure as a function of the parameter b0 

 

 

Fig. 12. The mean time to failure as a function of the parameter b1 

Figure 11 shows that the mean time to failure as 
a function of the parameter b0 increases when parameter 
values of b0 increases. 

Figure 12 shows that the mean time to failure as a func-
tion of the parameter b1 increases when parameter values of 
b1 increases. 

Most common numerical characteristics of distribution 
is also standard deviation. It is shown graphically for MGD 
in Fig. 13 and Fig. 14. 

 

 

Fig. 13. Standard deviation as a function of the parameter b0 
 
Standard deviation as a function of the parameter b0 

decreases when parameter values of b0 increases. 
 

 

Fig. 14. Standard deviation as a function of the parameter b1 

 
Standard deviation as a function of the parameter b1 

decreases when parameter values of b1 increases. 
The estimation of the MGD parameters by means of 

classical analytical methods may result impossible due to 
the intrication of the distribution form and as many as three 
parameters for estimation.  
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VI.  NUMERICAL  EXAMPLE 
 

Example   

Tabele 1 shows the lifetime of a certain device. Check 
whether the lifetime of this device followed the MGD 
distribution with the estimated parameter values.  

 
Table 1. The lifetime of a certain device 

i ti i ti 

1 0.0094 16 10.0192 
2 0.0500 17 10.4077 
3 0.4064 18 10.4791 
4 4.6307 19 11.0706 
5 5.1741 20 11.3250 
6 5.8808 21 11.5284 
7 6.3348 22 11.9226 
8 7.1654 23 12.0294 
9 7.2316 24 12.0740 
10 8.2604 25 12.1835 
11 9.2962 26 12.3549 
12 9.3812 27 12.5381 
13 9.5223 28 12.8049 
14 9.8783 29 13.4615 
15 9.9346 30 13.8530 

Source – Data obtained by the author 
 

Firstly, the MGD parameters were estimated. In case of 
so many parameters even the maximum likelihood method 
does not provide satisfactory values of the estimations [27].  

Thus, in order to estimate the parameters of this distri-
bution the least squares method was used. The method 
consists in the minimalisation of the squared deviations of 
the experimental cumulative distribution function from the 
theoretical cumulative distribution function by means of 
Excel Solver. After performing all the necessar calculations 
the estimated parameter values are a = 12.3586, b0 = 0.5472, 
b1 = 0.2736. The null hypothesis states that the data from 
Tab. 1 can be described by means of MGD with parameters 
a = 12.3586, b0 = 0.5472, b1 = 0.2736. This hypothesis was 
verified using the Mizes-Smirnov test. A computer im-
plementation of this test can be found in [9]. The empirical 
value of the test statistics is  2 0.01863.nω =  In comparison 
with the Mizes-Smirnow critical values it appears that at 
the level of significance 0.01α =  there exists no founda-
tion for discarding the null hypothesis. Thus the data from 
Tab. 1 can be described by means of MGD with the 
estimated parameter values.  

The hazard rate function and the MGD density function 
for the estimated parameter values of the distribution. 

 
Fig. 15. The MGD hazard rate function with the estimated
                                        parameter values 

 

The hazard rate function fulfils the necessary condition 
of the distribution for the description of the lifetime of 
technical devices because it has the desired bathtub charac-
teristic. It reaches minimum with t = 1.962. 

 

 
Fig. 16. The MGD density function for the estimated parameter 

values 
 
The density function fulfils the sufficient condition of 

the distribution that describes the lifetime of the technical 
devices because it is bimodal (the first mode at zero). The 
second reaches maximum at t = 11.907. 

On the basis of Fig. 15 and Fig. 16 it can be concluded 
that the analysed device most probably can be subject to 
a breakdown at the beginning of its use. It could be the result 
of a latent defect acquired during the production process. If 
the damage does not occur until the time t = 1.962 then until 
time t = 11.907 its failure probability will be decreasing. It is 
a typical using time. After time t = 11.907 a reduction in the 
efficiency of the device may be noticeable, thus the proba-
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bility of failure will be increasing. It is a result of wear out 
processes of the device.  
 
 

VII.  CONCLUSION 
 

MMD is a distribution whose hazard function is bathtub 
for certain parameter values. This is highly desirable in the 
modeling of the lifetime of technical devices. Yet, it is such 
a flexible distribution that by implementing a linear shape 
function, instead of a shape parameter, MGD is obtained. The 
MGD hazard function is bathtub for particular parameter 
values and the density function is bimodal which means that 
the distribution fulfills both the necessary condition of 
a distribution for modeling of the lifetime of technical devices 
and the sufficient condition as was proven in the 1980s. The 
considerable advantage of the above presented distribution is 
its simple analytical form and a small number of parameters 
for calculation which is crucial in small random sample 
commonly used in reliability research.     
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