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Abstract: The main aim of this work is to verify the effectiveness of Poisson’s transformation in the summation of multiple-valued, 
double infinite modal series, encountered in the computational electromagnetism related to analysis of shielded microstrip circuits. In 
this contribution, the Poisson summation formula has been applied to accelerate the rate of convergence of the static part of the modal 
series under consideration in order to enable the effective application of Kummer’s transformation. The need for the use of Poisson’s 
formula has resulted from the fact that the studied modal series is a multiple-valued one and hence the conventional approach based on 
the complex contour integral method can not be exploited. Finally, the use of Kummer’s transformation in conjunction with Poisson’s 
summation formula has proved to be very efficient and enabled radical savings in computational time. This feature makes the proposed 
method a good candidate for practical applications, especially for electromagnetic CAD tools.  
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1. INTRODUCTION 

 The double infinite modal series arise in the full-wave 
analysis of shielded microstrip circuits by means of the 
integral equations – method of moments (IE-MoM) 
approach. A method for its efficient summation, based on 
Kummer’s transformation and the complex contour integral 
method, has been recently described in [1]. Unfortunately, 
the proposed method can not be directly applied to 
multiple-valued series with summand having branch points, 
which are not isolated singularities. In such a case, the resi-
due theorem can not be exploited and the complex contour 
integral, involved in the series transformation, includes an 
integration along branch cuts, which must be evaluated 
numerically. This is, obviously, a task that entails a huge 
computational effort what makes the approach highly in-
effective. Nevertheless, it is still possible to accelerate 
the rate of convergence of such the modal series by using 
the Poisson summation formula. It has been shown that this 
integral transformation proved to be very effective in the 
accelerated summation of periodic, free-space Green’s 
functions, which take the form of multiple-valued series 
[2]. Hence, the main aim of this contribution is to verify 
the usefulness of Poisson’s transformation in the summa-
tion of double infinite modal series arising during analysis 
of vertical current sources embedded in a shielded multi-
layered medium. 
 The method for series transformation, described in this 
paper, is adopted partly form [1] and consist of two stages. 

Firstly, the modal series under consideration will be trans-
formed by means of Kummer’s method, and than the re-
sulting double infinite series will be transformed into single 
infinite ones. Secondly, we shall discuss the possibility of 
the Poisson summation formula application. In order to 
demonstrate the proposed method for series transformation 
we shall apply it to one of the modal series, which has been 
already described in [1], namely the series 3 ,Z  which is 
a multiple-valued series.  

 
2. SERIES TRANSFORMATION 

 The double infinite modal series under consideration is 
associated with a diagonal entry of the MoM matrix result-
ing from the analysis of a vertical strip embedded in a rec-
tangular cavity filled with an isotropic, linear medium [1]. 
The series has the following form 
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and where, all the remaining quantities have been defined 
and described in [1]. As we can see, the series in Eq. (1) is 
a double-valued series with complex terms due to the 
square root standing in the denominator of the summand. 
This property directly impinges on the possibility of appli-
cation of the integral representation of the series, but this 
issue will be discussed somewhat later. Now, we shall 
focus on the first stage of the series transformation, i.e. we 
shall transform the series 3Z  via Kummer’s transforma-
tion.  
 The concept of the Kummer’s transformation has been 
described in [1]. Upon applying this transformation to the 
series in Eq. (1), provided that its static part is determined 
for 0,f →  we can write 
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3 3 3Z Z Z= + , (3) 
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 The gain resulting from the use of Kummer’s 
transformation pertains to a reduction in computational 
effort due to the fact that stat

3Z  does not depend on the 
frequency at which circuit analysis is carried out. Hence, 
the computations in the frequency loop confine to 
evaluation of dyn

3 ,Z  which is a rapidly converging series, 
and then to addition of the obtained result to the previously 
evaluated static part stat

3 .Z  Although the static part is 
evaluated only once (before the frequency loop is entered) 
the involved computational effort is very high and is almost 
equal to that associated with the original series. Therefore, 
we shall focus now on the integral transformation of stat

3Z  
that will enable its fast summation.  
 To proceed, we shall adopt the method described in [1] 
and try to transform the double infinite series stat

3Z  into 
a single infinite one using an integral transformation. Con-
sequently, we shall rewrite stat

3Z  in the following form 

  ( )stat
3

1 1 1
4 4n mn n n

m n n
Z j F G j F G

∞ ∞ ∞

= = =
= − ⋅ ⋅ = − ⋅ ⋅∑∑ ∑ , (6) 

where 

  
( ) ( )

2

1 2

2

cos cos
n n

n

y y
n

y

k y k y
F

k

 − = , (7) 

  

( )

( )

2

3
1 1

2
3

3/22 21

sin

sin
2 ,

ρ

α

π β

∞ ∞

= =

∞

=

= = =

 
    = ⋅ 

  +

∑ ∑

∑

m

mn

x o
n mn

m m

m n

k x
G G

k

m
a

m

 (8) 

and where 
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Before we proceed with the integral transformation, let us 
simplify the form of nG  by rewriting it as  
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Fig 1. The contour of integration assumed for the integral repre-
  sentation of the multiple-valued series 2S  
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With these equations, our further considerations can be 
restricted to the treatment of the series 2S  and its asymp-
totic form for 0α → , which, finally, gives the series 1.S   
 Following the method described in [1], the series 2S can 
be expressed by means of the complex contour integral of 
the following function  
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where ( )3/ 22 2( ) ,nP z z β= +  with the path of integration 
shown in Fig. 1. Since ( )F z  is a multiple-valued function 
of ,z  the z-plane is cut into two Riemann’s sheets by two 
branch cuts, which have been defined in the way that the 
integral representation of 2S  is enabled. Additionally, the 
path of integration must lie in the proper Riemann sheet in 
order to assure physical meaning of the integral. As a con-
sequence, the contour oC  must avoid the both branch cuts, 
as shown in Fig. 1, and this gives rise to a non-zero 
contribution to the closed-loop integral of ( ),F z  which can 
be mainly attributed to the integration along the branch cuts 
and around the branch points. Unfortunately, in our case 
the branch points are non-isolated singularities and hence 
the residue theorem can not be used to facilitate the integral 
evaluation. In practice the contribution, especially related 
to the branch points, must be evaluated numerically and 
this makes the approach highly ineffective. This problem 
can be solved, as it has been already mentioned in the intro-
duction, by means of the Poisson transformation, which has 
proved to be a good solution for a certain type of multiple-
valued series, often encountered in the computational elec-
tromagnetism (see, e.g. [2]). The question of the use of 
Poisson’s summation formula to accelerate the summation 
of the series 2S  will be addressed in the next section.  

3. THE POISSON TRANSFORMATION  

 The Poisson transformation is based on Poisson’s 
summation formula [3], which allows us to transform 
a slowly converging series into a rapidly converging one. 
In certain cases, this transformation allows the sum of a se-
ries to be evaluated in the closed form and such a case will 
be of great importance for our further considerations.  
 When we take into consideration a single infinite series 
the Poisson summation formula takes the following form  
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and where { }( )f xF denotes the Fourier transform of ( ).f x  
Consequently, in the case of the series 2S  we need to 
determine the Fourier transform of the summand upon 
evaluation of the following integral  
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where v mα= ⋅  and .
no nβ α β= ⋅  The integral in Eq. (15) 

can not be evaluated in the closed form and expressed by 
means of the elementary transcendental functions. On the 
other hand, the integral constitutes an integral representa-
tion of the modified Bessel function ( )K zν  of the integer 
order ,ν  which for 1ν =  has the following form (see, 
Eq. (9.6.25), p. 376 in [4])  
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where Γ  stands for the Gamma function and 0z R∈ > , 
and arg( ) 2.u π<  Upon substituting Eq. (16) into Eq. (15) 
and then using Eq. (13) we can, finally, express the sum of 
the series 2S  as  
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As we can see, the use of Poisson’s summation formula has 
allowed the original infinite series to be transformed into 
another infinite series. Taking this fact into account we can 
conclude, at first sight, that the gain resulting from such 
transformation is very slight, since the new form of 2S  can 
possibly require even higher computational effort due to 
evaluation of the Bessel function 1.K  However, before 
drawing the final conclusion concerning the rate of conver-
gence of the new series we need to discus its properties.  
 When it comes to practical applications, namely the 
electromagnetic analysis of a vertical strip embedded in a 
rectangular cavity [1], all arguments of the Bessel function 
in Eq. (17) are real (see, the definition in Eq. (9)). Hence, 

1K  is real, positive and strictly decreasing, with a very 
high rate of decrease (see, [4] for details). Therefore 
the most significant contribution to the final sum of 2S  
comes mainly from such terms of the series for which 
the argument of 1K  is very small. In our case, such 
terms are related to all the indexes m  for which 
( 2(2 ) 0mπ α⋅ + → ), i.e. { }..., 1, , 1, ...o o om m m m∈ − + , 
where 
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Since, in practice 0 1ox a< < , we always have { }1,  0om ∈ − , 
and in addition to this, 1K  decays very rapidly as m  
increases, hence, the sum of the series 2S  can be evaluated 
upon summation of only several adjacent terms around .om   
 In view of the foregoing facts, the Poisson summation 
formula should prove very effective in the summation of 
the double infinite modal series under consideration. All 
details concerning validation of this viewpoint will be ad-
dressed in the next section. 

 

4. NUMERICAL EXAMPLE 

 In order to verify usefulness of the Poisson transformation 
in the modal series summation we shall analyze the relative 
error of the series 3Z  sum. All calculations, described in 
this section, have been carried out under the following 
assumptions: 30 20 10× × = × ×a b c mm, 10 mm,ox =  

1 4y = mm, 2 6y = mm, 2.2z∆ = mm, 5.5f = GHz and 
0 02ok fπ µ ε= . However, before we proceed we shall 

verify the effectiveness of Poisson’s summation formula in 
the evaluation of the sum of the single infinite series 2S .  
 As we can see from Eq. (17), the sum of 2S  depends on 
the value of ,nβ  which, on the other hand, depends on the 
index .n  This index strongly affects the rate of conver-
gence of the both form of 2S  (the original and the 
transformed ones). Consequently, when the direct summa-
tion method is applied to the evaluation of 2 ...M

m MS =−= Σ , 
the number of terms ,M  which must be taken into account 
in order to obtain the required level of the relative error 
of the series sum, increases very rapidly as n  is on the in-
crease (see, Fig. 2). Therefore, when evaluating the sum of 
the double series 3 ,Z  in practice, a huge number of terms 
along the index m  must be summed up to assure an ac-
curate and stable result. This is not the case when 
the transformed form of 2S  is used and it suffices to apply 
a single term approximation (i.e. for om m= ) in order to 
get a very low level of the relative error of the series sum 
(see, Fig. 3), especially for sufficiently large values of n  
(i.e. usually for 3n > ). In addition to this, it has been noted 
that for most of practical cases it suffices to use only 
the three-term approximation when 3n ≤  (i.e. for 

1,om m= −  , 1+o om m ). It is also worth to note that the 
results of calculation, shown in Fig. 2 and 3, have been 
obtained for the exact value of the sum 2S  evaluated using 
the transformed form of 2S  with 10.M =  In summary, 
the Poisson transformation has allowed the rate of conver-
gence of the series 2S  to be extremely increased, so 
finally, it suffices to sum up at most several single terms to 
obtain the required accuracy of the series sum. 
 Having determined the usefulness of Poisson’s sum-
mation formula in the transformation of the series 2 ,S  we 
are in a position to analyze the results of calculation ob-
tained for the double infinite series 3.Z  Using Eq. (17) and 
the three-term approximation of 2 ,S  we can transform 

stat
3 ,Z  by means of Eq. (6), into the single infinite series 

that depends only on the index .n  The results of calcula-
tion, shown in Fig. 4, reveal that the transformation greatly 
enhance the rate of convergence of stat

3 ,Z  and it suffices 
to take less then 100 terms to obtain very accurate results.  
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Fig 2. Number of terms required in the direct summation of the 
series 2S  in order to obtain the relative error of the series sum
   below 310−  versus the value of the index n  
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Fig 3. The relative error of the series 2S  sum versus the value of 
the index ,n  calculated using the single-term approximation of
   2S  resulting from the Poisson summation formula 
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Fig 4. The rate of convergence of the static part of the series 3,Z  
obtained for the direct summation method and the Poisson sum-
mation formula (the direct summation method uses the square set
   of terms, i.e. containing ( )M N N= × terms) 
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Fig 5. The rate of convergence of the series 3Z , obtained for 
the direct summation method and the Kummer transformation 
 
Once the static part of the series 3Z  has been determined 
we can exploit Kummer’s transformation, described in Eq. 
(3), to calculate very effectively the sum of 3Z  in the 
frequency loop. This time, the calculations can be restricted 
to the direct evaluation of the dynamic part of 3Z  (defined 
in Eq. (5)) since in practice dyn

3Z  converges very rapidly. 
Consequently, the use of Kummer’s transformation in 
conjunction with the Poisson summation formula allows 
the sum of the original series 3Z  to be evaluated very ef-
fectively, and the final results of calculation are shown in 
Fig. 5. 

 

5. CONCLUSIONS 
 The paper describes the method for very fast evaluation 
of the multiple-valued, double infinite modal series, which 
arise in the analysis of shielded microstrip circuits in 

the frame of the IE-MoM approach. It has been shown that 
in such a case the application of the double-to-single series 
transformation, which allows us to evaluate the sum of 
the modal series very effectively, can not be accomplished 
by means of the complex contour integral and the residuum 
theorem. This problem can be solved by means of Pois-
son’s summation formula, which has been exploited to 
transform the static part of the modal series into the very 
rapidly converging single infinite series. Finally, it has 
been shown that the use of Poisson’s formula has enabled 
very effective application of the Kummer transformation, 
which significantly reduces the computational effort re-
quired to evaluate the sum of the modal series under con-
sideration.  
 In summary, the proposed method proved to work very 
effectively, but its use requires much analytical work, 
which must be done in order to derive the Fourier trans-
form involved in the Poisson summation formula.  
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