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Abstract: The Born-Oppenheimer (BO) potential energy curve, the adiabatic and the relativistic 
corrections for the EF state of the hydrogen molecule are calculated for the internuclear distances 
ranging from 0.01 to 20 bohr. 600-term variational expansions of exponentially correlated Gaussian 
(ECG) functions are used. The BO energies and the adiabatic corrections are more accurate than 
previously reported and the relativistic calculations confirm existing literature values. 

1. I N T R O D U C T I O N 

* Dedicated to the memory of Professor Jacek Rychlewski 

EXPONENTIALLY CORRELATED GAUSSIAN FUNCTIONS 
IN VARIATIONAL CALCULATIONS. 

THE EF STATE OF HYDROGEN MOLECULE* 

The EF state of the hydrogen molecule is the lowest excited state having the same 

symmetry as the ground state. Its most striking feature is the potential energy curve with two 

deep and well separated minima, resulting from the avoided crossing of two diabatic states, E 

and F [1]. The united atom configuration is 1S (ls2s). The dominant configuration for the inner 

part of the potential is (1sσg2sσg), whereas in the outher part of the energy curve the (2pσ u ) 2 

configuration is contributing the most to the wave function, although the (1sσg2sσg) and 

(1sσg)
2 configurations are also present. Finally, the state dissociates onto H (1s) + H(2s). AS 

a result of the two-minimum potential, two separate band systems can be observed in certain 

energy regions. The EF state has drawn significant interest and a number of variational 

calculations of increasing accuracy has been reported over the last 40 years [2-8]. The current 

most accurate electronic energy was obtained in 1999 by Orlikowski et al. [8], who used 

a 443-term expansion of the Kołos-Wolniewicz-type (KW) wave function [3] and evaluated 

also the adiabatic corrections. At R = 1.5 bohr, the Born-Oppenheimer (BO) energy of Ref. [8] 

is, however, over 0.3 μhartree higher than the older result [9] obtained by the present authors 

as a test of our exponentially correlated Gaussian (ECG) package. In the present paper we 

extend our ECG calculation to the complete BO energy curve of the EF state and calculate 

the adiabatic and relativistic corrections. The aim of this work is twofold. Firstly, to generate 

new and more accurate benchmark results. Secondly, to test the performance of our correction 
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packages. We use the direct perturbation theory (DPT) of Kutzelnigg [10] and Rutkowski [11] 

in relativistic calculations and the Bom-Handy approach [12-14] to adiabatic corrections, both 

methods never used before in studies of excited states of the hydrogen molecule. 

2. M E T H O D OF C A L C U L A T I O N 

2.1. B o r n - O p p e n h e i m e r energy 

The electronic wave function used in this work is expressed in the form of the linear 

combination of properly symmetrized two-electron basis functions, ψk 

(1) 

(2) 

where and are the electron exchange and the inversion operators, respectively. The ex-

pansion terms were assumed in the form of the ECG functions [15, 16], which in the two-

electron case are equivalent to Gaussian type geminals (GTG) [17-19] 

where 1 and 2 denote electrons and a and b - nuclei. The linear, ck, and the nonlinear 

parameters αk, βk, ζk, ηk and γk were determined variationally. The wave function was 

optimized with respect to the second eigenvalue of the Hamiltonian using Powell's conjugate 

directions method [20]. More details on the optimization of this type of the wave function can 

be found in Refs. [9,21]. 

Historically, the most successful ansatz used in the studies of the hydrogen molecule was 

the KW function, which contains terms linear in electron-nucleus and electron-electron 

distances and, in contrast to the ECGs, fulfil ls the necessary cusp conditions. All existing 

complete high-accuracy potentials of the EF state were obtained in this way [5, 6, 8]. Only in 

the last 10 years it was discovered that the ECG functions, which can easily be integrated 

analytically and therefore allow one to use larger and carefully optimized expansions without 

stability problems or prohibitive cost, can surpass the accuracy provided by the KW functions 

[9, 22, 23]. 

2.2. A d i a b a t i c corrections 

Traditionally, the adiabatic corrections to the BO energies of molecules are obtained as 

expectation values of a perturbation operator defined by first separating off the center-of-

mass (COM) motion and then collecting all the terms depending on nuclear masses. Such 

approach has been many times successfully used in studies of various states of the hydrogen 

molecule, including the EF state [5, 8], but becomes prohibitively complicated for larger 

molecules, because the operator contains in such cases extremely cumbersome terms 
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coupling electronic and nuclear coordinates [24]. As shown in 1997 by Kutzelnigg [14], 

the complications occurring after the separation of the COM motion can be entirely avoided if 

one chooses to work in the laboratory (instead of relative) coordinates. The use of the operator 

(3) 

leads to the correct value of the adiabatic correction, because the COM degrees of freedom are 

zeroed out when the expectation value of (3) is calculated with electronic wave functions, 

which are translation- and rotation-invariant. The sum in Eq. (3) is over all the nuclei (with 

masses MI). To calculate the adiabatic correction 

(4) 

one has to evaluate the derivatives of the electronic wave function with respect to the Carte-

sian nuclear coordinates, QI (= XI, YI, ZI). These derivatives can be approximated numerically 

by a three-point differentiation quotient 

(5) 

leading to the following compact expression for ΔE a d: 

where SQ

I represent the overlap integrals of two distorted wave functions 

(6) 

(7) 

In the case of the hydrogen molecule placed on the x axis, the evaluation of the adiabatic 

correction at a given internuclear distance requires two different expectation values, 

(8) 

which can be calculated as 

(9) 

Formally speaking, the distorted functions in Eq. (7) should be solutions of the Schrödinger 

equation corresponding to the nuclear configurations QI + ΔQ I/2 and QI - ΔQ I/2. In practice, 

it is sufficient to construct them from the original function Ψ(QI) by recalculating the linear 
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coefficients only. If the expansion (1) is long enough, the changes of ck can compensate for 

the slightly non-optimal values of nonlinear parameters. Evidently, the accuracy of 

the numerical evaluation of (4) depends critically on the chosen value of ΔQI in Eq. (5). As 

follows from tests on the ground state of H2 [25], the choice of ΔQI = 5 x 10 - 4 bohr gives 

an accuracy of 6-7 significant digits and we used this value in the present work. An additional 

check of the calculated adiabatic corrections exploits the identity 

(10) 

resulting from the total momentum conservation condition. The right-hand side of Eq. (10) 

represents an ordinary expectation value (the operator depends only on the electronic co-

ordinates) and can be evaluated analytically. This value can then be confronted with the left-

hand-side value obtained numerically, if one uses Eq. (5) to calculate also the of f diagonal 

2.3. Relativist ic corrections 

According to the DPT, the lowest-order relativistic correction can be calculated from 

the expression [10, 2 3 , 2 6 ] 

(11) 

where 

(12) 

is the expectation value of the Breit-Pauli (BP) Hamiltonian [27], which for 

singlet states of two-electron systems can be expressed as 

(13) 

with 

(14) 

(15) 

(16) 

nuclear expectation values 



Exponentially Correlated Gaussian Functions in Variational Calculations 83 

In the Eqs. (12)-(17), c = 137.03600 a.u. is the speed of light, 

and E0 are the nonrelativistic Hamiltionian and energy, p is the momentum operator, and 

δ the Dirac delta function. In all previous relativistic calculations on excited states of H 2, 

including the work on the EF state by Wolniewicz [7], the conventional BP theory was used 

instead of the DPT, that is, the corrections were calculated as the expectation values of 

the operator (13). Both theories become equivalent (to the lowest order) in the limit of 

the exact nonrelativistic wave function, because (12) vanishes in such a case. In practical 

calculations, the DPT is preferable and leads to faster convergence towards the basis set limit 

[28]. It can be explained by the fact that the operators present in the BP Hamiltonian, 

are highly singular, whereas the whole sum in Eq. (11) can be alterna-

tively written using only global operators with fast convergent expectation values [26]. 

3. RESULTS A N D DISCUSSION 

The 600-term wave functions of the form of Eq. (1) and (2) were generated for internuclear 

distances ranging from R = 0.01 to R = 20.0 bohr. The extensive nonlinear optimization proc-

ess was led separately at each distance. Table 1 lists the energies and the derivatives at a large 

selection of distances. The derivatives of the energy were inferred from the virial theorem. 

Our ECG curve lies everywhere below the best previous Born-Oppenheimer curve calculated 

by Orlikowski et al. [8], the improvement ΔEBO ranging from 0.007 cm - 1 at R = 3.0 bohr to as 

much as 0.5 cm-1 at R = 0.5 bohr, see the last column of Table 1 and Fig. 1. Note that the full 

list of energy values and adiabatic corrections obtained by Orlikowski et al. is available on 

their web page [29]. Since the integrals containing the KW wave function are too time 

consuming for a full optimization of nonlinear parameters, the usual procedure is to optimize 

them in the most relevant regions and interpolate between them. This probably explains 

a relative drop of accuracy of results from Ref. [8] around 10 bohr and at very short distances. 

In Ref. [9] we analyzed the convergence of our ECG expansions for various two-electron 

systems, including the EF state of H2 at R = 1.5 bohr. We concluded that it was difficult to 

estimate the error of the 600-term expansion for the EF state because of a somewhat irregular 

convergence pattern. However, the 600-term expansions for other excited states of H2 yielded 

accuracy of the order of 0.001 cm - 1, and even in the least favorable (because of the lack of 

the inversion symmetry) case of HeH+ it was better than 0.01 cm - 1. We can, therefore, 

conservatively estimate the error of the present BO energies as about 0.01 cm - 1 (0.05 μhartree) 

in the vicinity of R = 1.5 bohr, which corresponds to the accuracy better by almost one order 

of magnitude than the best previous results. Since our wave functions were fully optimized at 

each value of R, the error should not change dramatically along the potential energy curve, 

although we expect some gradual lowering of accuracy when moving from larger towards 

smaller internuclear distances. 

especially and 

is the kinetic energy operator, 

(17) 
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Fig. 1. Born-Oppenheimer energy improvement 
over the best previous calculations of Orlikowski et 
al. [8] as a function of R 

Table 1. Born-Oppenheimer energy curve for the EF state of H2. The last column denotes 
the improvement with respect to Ref. [8] 
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Table 2: The expectation values of the nuclear coordinate derivative operators (in atomic 
units). X is the direction parallel and Y - perpendicular to the internuclear axis. In Eq. (5) 

and a(b) stands for a × 10b 

85 
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Table 2 - continued 

Fig. 2. Adiabatic correction o f ' 1H2 

Fig. 3. Differences in the adiabatic correction of 1H2 

obtained from ECG and KW w a v e functions 

The optimized electronic wave functions were used to calculate the expectation values of 

the second derivatives over the nuclear coordinates according to (9). The results are listed in 

Table 2, along with the off-diagonal expectation values obtained from an analogous equation. 

The coefficients η in the last column are measures of the inaccuracies introduced by the nu-

merical differentiation (see Eq. (10)) and —log10 |η| roughly corresponds to the number of 

exact significant digits in the results calculated at a given value of R. The adiabatic corrections 

calculated from Eq. (8) are listed in Table 3 for all six isotopomers of the hydrogen molecule 

and presented graphically (for H2) in Fig. 2. Judging from the very high quality of 
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Table 3. The adiabatic correction curves (in cm-1) for 6 isotopic species. The following nuclear masses 
were used (in units of electron mass): M(H) = 1836.153, M(D) = 3670.483, M(T) = 5496.921. 
The conversion factor 1 EH = 219474.631 cm-1 has been used throughout the table 
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Table 3. - continued 

the electronic wave functions and from the fact that the numerical differentiation affected 

the expectation values at most at the sixth significant digit, we believe that all the numbers in 

Table 3 are exact, possibly with the exception of the last digit in the cases where 

the corrections have exceptionally large values. In the ground state of H2, where a careful error 

analysis has been performed [25], a 600-term ECG wave function yields a relative accuracy of 

10 - 6. The behavior of the adiabatic correction mirrors that of the electronic wave function, 

which is most clearly pronounced in the region between 3.0 and 3.5 bohr. Because of the 

avoided crossing between the diabatic E and F states, the BO function rapidly changes its 

character, which causes large values of the derivatives over the nuclear coordinates. 

The difference between the present adiabatic corrections for the H2 isotopomer and 

the results of Orlikowski et al. [8, 29] is presented in Fig. 3. It reaches its absolute maximum 

value of 0.4 cm- 1 where the correction itself reaches the maximum. Since we estimate 

the error of our results as much less than 0.4 cm - 1, these discrepancies are probably due to 

the fact that the wave functions used in Ref. [8] were less accurate. 

Table 4 contains the expectation values of the relativistic operators (14)-(17) and 

the relativistic corrections calculated both from the DPT expression (11) and from the BP 

theory, the latter choice corresponding to the neglect of Δ D P T in Eq. (11). The quantities 

depending on the electron-nucleus coalescence, described by operators (14) and (16), are 

known to converge very poorly in Gaussian basis sets. Indeed, a comparison with previous 

results obtained with the KW wave functions [7, 30] reveals an agreement in only 3 to 4 

significant digits, and there is no doubt that the expectation values calculated by Wolniewicz 
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Table 4: The relativistic corrections and their components 
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Table 4 - continued 

are more accurate than ours, because the KW wave functions describe properly the electron-

nucleus and electron-electron cusps. However, the big advantage provided by the DPT is 

the fact that the total correction, E2 (DPT), has usually much smaller error than its 

components, because it is an expectation value of a global operator. Indeed, the values of 

E2 (DPT) are very close to that reported by Wolniewicz [7, 30], the difference being in 

mosteases smaller than 0.001 cm"' and reaching the maximum value of 0.0033 cm-1 at 

R= 1.0 bohr, where the result that can be extracted from the data given in Ref. [30] amounts 

to -4 .0828 cm -1. It is rather hard to find out which results are more accurate without 

performing a detailed convergence analysis, but it is worth noting that the expectation value of 

(15), fast convergent in the ECG functions, is actually the least accurate of the four relativistic 

expectation values in some reported calculations involving the KW functions [23], apparently 

because of the numerical problems caused by the necessity to use series expansions [7], In 

some cases, the agreement between the expectation values of (15) from Table 4 and those in 

Ref. [30] hardly reaches one significant digit, for example our value of 0.000726 versus 

Wolniewicz's 0.000660 at R = 15.0 bohr. In the ground state of H2 [23], a 600-term ECG wave 

function yields more than 5 significant digits of accuracy and it is rather unlikely that 



Exponentially Correlated Gaussian Functions in Variational Calculations 91 

the values in the third column of Table 4 are much less accurate. This discrepancy between 

the present results and those in Ref. [30] does not cause significant differences in the total 

relativistic corrections, because the expectation values of (15) are fairly small in the EF state. 

The fact that the last two columns of Table 4 are almost indistinguishable seems to 

contradict the superiority of the DPT and question the purpose of calculating the DPT term 

(12). However, this near-equality of DPT and BP results is not a general behavior, but rather 

a manifestation of an interesting phenomenon first observed and explained in Ref. [23], In 

the special case of Gaussian functions with all linear and nonlinear parameters completely 

optimized, the errors of expectation values of (14) and (16) cancel to a large extent and 

the term (12) vanishes even for a finite basis set expansion. The value of (12) is in such cases 

determined more by the quality of the nonlinear optimization than by the overall accuracy of 

the wave function. 

4. CONCLUSIONS 

The results presented in this work represent the current most accurate adiabatic curve of 

the EF state of the hydrogen molecule. The obtained relativistic corrections have, for all 

practical purposes, the same accuracy as those obtained from the Kołos-Wolniewicz expan-

sions, despite the well-known deficiencies of the Gaussian functions in describing the electron 

density in the close vicinity of the nuclei. The Born-Handy approach to adiabatic corrections 

with numerical computation of derivatives over nuclear coordinates, as introduced in Ref. 

[25], proved very efficient and sufficiently accurate even in the cases where the adiabatic 

corrections reach several hundreds of cm - 1. 
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