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Abstract: The recently developed equation-of-motion approach with full inclusion of the connected 
triple excitation [S. A. Kucharski, M. Włoch, M. Musiał, R. J. Bartlett, J. Chem. Phys., 115, 8263 
(2001)] has been applied for the first time to calculate the adiabatic excitation energies. The two lowest 
excited states of the HCN molecule were studied and the equilibrium geometry and harmonic 
frequencies as well as the vertical excitation energies have been obtained and compared with the 
experimental data if the latter were available. The inclusion of the T3 operators improves the results by 
0.10 to 0.25 eV depending on the basis set and the state considered. 

1. INTRODUCTION 

In the accurate quantum chemical calculations the coupled cluster (CC) method [1-11] 
plays a prominent role due to the fact that the convergence with the rank of the excitation 
operator is much faster than e.g. in the configuration interaction (CI) theory. With 
the inclusion of the T4 [9] and T5 [10, 11] excitation operators one can achieve the accuracy of 
the order of tens of microhartree. We have to be aware that this is the accuracy of several 
orders lower than that reached with explicitly correlated Gaussians where the sub-microhartree 
is a standard level of accuracy [12-15]. The CC theory which has been primarily developed as 
a method for the calculation of the ground state properties, has recently gained anew 
momentum when used for the description of the excited states. The technique used for that 
purpose is based on the equation-of-motion approach introduced into the CC theory by 
the Gainesville group [16-21]. Equivalent, although formally different approach known as 
a linear response (CCLR) theory, which goes back to the works of Monkhorst [22], is being 
developed by the Aarhus group [23-25]. 

The CC scheme most commonly used in combination with the EOM approach is 
the CCSD model and its performance is well documented in literature [16-21]. This approach 
has been successfully used for the description of the excited states which are dominated by 
single excitations. Nowadays several efforts have been made to improve its accuracy also for 
the states with large double excitation character by developing CC schemes with inclusion of 
the higher-than-double excitation operators [26, 27]. This refers to the implementation of 
the approach with full inclusion of the connected triple excitations for the evaluation of 
the excited states energies [28]. The program developed in [28] is coded very efficiently both 
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at the CCSDT level (with quasilinear formulation of the CC equations) and at the CI step, 
where most of the terms engaging three- and four-body elements of the operator were con-
sequently factorized out. 

In the EOM-CC approach an excited state is created by the action of an elementary excita-
tion operator (5) on the CC reference state obtained within the CC formalism with an expo-
nential operating on the Hartree-Fock reference, The expansion coefficients for the ex-
cited state are defined by the solution of the matrix eigenvalue equation obtained by 
the projection of the eigenvalue problem upon a suitable set of configurations. The diago-
nalization also yields directly the excitation energies. In other word, EOM-CC may be viewed 
as a diagonalization of the CC similarity transformed Hamiltonian, in the CI configuration 
space. 

The aim of the current work is to investigate the importance of the T3 operator in 
the EOMCC evaluation of the equilibrium geometry and harmonic frequencies for the two 
lowest excited states of the HCN molecule. The analogous properties for the ground state were 
studied in [29], where also higher cluster operators, T1 to T5, were discussed. The results of 
[29] brought us to the conclusion that in order to calculate e.g. the equilibrium bond length 
with the high accuracy (0.0001 Å or better) one has to incorporate into the CC expansion 
the T4 or even T5 operators. On the other hand, the high accuracy calculations require using 
large basis sets and those two conditions are mutually prohibitive. The CC approaches 

including higher clusters ( T3 ) are computationally so demanding that the calculations are 
feasible only for small basis sets. 

This apparent difficulty can be circumvented due to the observation made in papers 
[30, 31], where it was shown that for the certain classes of basis sets, like e.g. correlation-
consistent basis sets of Dunning [32] the corrections due to the particular cluster operator are 
very stable and change very little when going from small to large basis sets. This observation, 
exploited in [30, 31], made it possible to evaluate the equilibrium bond length and harmonic 
frequency with accuracy of the order of 0.0001 A and 1-2 cm - 1, respectively. The procedure 
adopted there relies on the low rank CC calculations (CCSD or CCSD(T)) for large basis sets 
(e.g. cc-pV5Z or cc-pV6Z) and on the a posteriori corrections due to the higher cluster made 
on the basis of their evaluation for small basis sets (cc-pVDZ or cc-pVTZ). In the current 
work we use the cc-pVTZ and cc-pVQZ basis sets at the CCSD level - to assess the effect of 
the basis set size and for smaller basis sets, cc-pVDZ and PBS of Sadlej [33], we run full 
EOM-CCSDT calculations. 

2. THEORY 
Let us consider the Schrödinger equation 

(1) 

assuming that describes the k-th excited state. In the coupled-cluster formalism the refer-
ence wave function is obtained by the action of the exponential 



Equation-of Motion Coupled Cluster Calculations l65 

and ωk is the energy change connected with the excitation process. The EOM-CCSDT 

requires solution of the CCSDT equations, Eq. (5), for T1, T2, and T3 amplitudes and then 

where is the reference determinant and T is the cluster operator. Within the CCSDT 

(2) 

model, the cluster operator is approximated as 

(3) 

(4) 

and Tk is defined as 

where the indices a, b, ... (i,j, ...) refer to the virtual (occupied) one-particle levels. The cluster 

amplitudes, , are obtained by solving the CC equations: 

(5) 

is a k-tuply excited determinant and the subscript c in the above equation indicates that 

only connected diagrams should be considered. 

Within the EOM formalism the k-state wave function 

with the R(k) operator on the ground state wave function 

is obtained by operating 

(6) 

The R(k) is a linear (CI-like) excitation operator limited in this approach to the single, double 

and triple excitations: 

(7) 

or in the expanded form 

(8) 

Inserting the wave function, Eq. (6), into the Schrödinger equation, Eq. (1), we obtain 

- after simple algebra - the equation-of-motion 

(9) 

where is the similarity transformed Hamiltonian, formally defined as 

(l0) 
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while the intermediates must be recomputed in each iteration. However, it does not change 

the general conclusion concerning this procedure. 

3. RESULTS 

The calculations carried out in the current work involve the optimization of the ground 
state geometry, optimization of the excited states geometry, calculation of the harmonic 
frequencies for both ground and excited states and evaluation of the vertical and adiabatic 
transition energies. Four different basis sets were used: correlation consistent basis set of 
Dunning [32], cc-pVDZ, cc-pVTZ and cc-pVQZ and the polarized basis set (PBS) of Sadlej 

the construction of the operator, according to Eq. (10). To obtain the eigenvalues and 
eigenvectors we employ a direct diagonalization scheme [34] analogous to the Davidson 
method [35] for symmetric matrices. In case of the solution for the right-hand-side 
eigenvectors we require the results of the EOM-CC matrix right multiplying an arbitrary 
vector 5,i.e., R. 

The form of which is required for the construction and solution of the EOM-CCSDT 

equations in their standard form involves up to four-body elements. Emphasizing the many-
body structure of , we may decompose it into individual n-body contributions, In, as follows: 

The many-body type of the elements expressed through the amplitudes is deter-
mined by the number of indices i.e. and correspondto the I1, I2, I3 and I4 

operators, respectively. 
All elements of are defined in the recursive way, see Ref. [9], i.e. the lower rank 

element can be used in the definition of the element of higher rank. The important thing is that 
once a given element is constructed it can be used in all equations. 

The standard way of derivation of the EOM-CC equation assumes that we use in 
the equation all required elements regardless of the complexity of the considered term. This 
means that in the standard version we employ all required three- and four-body terms. 

Such a formulation of the EOM-CCSDT problem, although most natural one, would result 
in the high rank of the computational procedure both at the step of the construction and at 

the step of the solution of the EOM equations. To avoid this, we need to apply a factorization 
scheme which would allow to eliminate the difficult terms i.e. those engaging the four-body 

element and some of the three-body ones. 

The factorization procedure, i.e. replacement of some elements contracted with the R 

operators with the appropriate intermediates contracted with the T operator makes the evalua-
tion of the ( ) quantities much more efficient. By the intermediate we understand here the 
quantity obtained by the contraction of the integral or element with the R operator. We 
should remember, however, that the elements are computed only once in the whole process 
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[33]. Since the full inclusion of the connected triple excitations in the EOMCC formalism is 

a demanding computational scheme we adopted a following strategy in the calculations: for 

the smaller basis sets, i.e. cc-pVDZ and PBS we performed both the CCSD and CCSDT 

calculation, for the larger basis sets, i.e. cc-pVTZ and cc-pVQZ, only the EOMCCSD 

approach was used. The results for the smaller basis sets enabled us to estimate the T3 effect 

for the studied property while the larger basis sets indicate the expected basis limit. 

Tables 1 and 2 present the equilibrium geometry and harmonic frequencies for two small 

basis sets, cc-pVDZ and PBS, respectively. As it was mentioned before, the effect of thepar-

ticular cluster on the equilibrium geometry and on the harmonic frequency of the ground state 

has already been studied elsewhere [29]. Here it is confirmed that theinclusion of the T3 

operator increases the HC bond length by 0.0016 and 0.0018 Å (for the cc-pVDZ and PBS 

basis sets, respectively) and by 0.0062 and 0.0064 Å for the CN bond. 

Table 1. Equilibrium geometry (in Å) and harmonic frequencies (in cm-1) for ground and excited states 
of the HCN molecule (cc-pVDZa) basis set) 

a)Ref. 32 
b) Δ represents the difference between CCSDT and CCSD values 

Table 2. Eqilibrium geometry (in Å) and harmonic frequencies (in cm-1) for ground and excited states of 
the HCN molecule (PBSa) basis set) 

a) Ref. 35 
b) Δ represents the difference between CCSDT and CCSD values 

The HCN system exists in the excited states as a nonlinear molecule and the computed 

bond lengths are significantly larger compared to the ground state values, e.g. HC bond is 
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longer by 0.067/0.068 Å for the 1A" state and by 0.108/0.129Á for the 1A' state (CCSD/-

CCSDT). Similar behaviour is observed in the case of the CN bond. In both excited states 

the CN bond length increases to ca. 1.30 Å compared to ca. 1.17 Å for the ground state. The 

HCN angle for the 1A" state is close to 120° and is significantly reduced, to ca. 95/98°, for the 
1A' state. 

We observe also that for the excited states the T3 effect is much more visible, confirming 

that the proper correlation treatment is more important for the excited states than for 

the ground one. The T3 effect for the optimum bond lengths in the 1A" state is twice as large as 

the ground state T3 effect. The next excited state is characterized by the substantial increase of 

the HC bond length and a very moderate change in the CN bond (comparable to the ground 

state effect). This indicates a certain weakening of the HC bond in the 1A' state. 

The computed harmonic frequencies show changes which are consistent with bond length 

effects. The stretching frequencies are significantly reduced in the excited states, e.g. the HC 

stretching frequency goes down from 3447 cm -1 for the ground state to 2482 cm-1 and 1874 

for the 1A" and 1A' states, respectively (both values refer to the CCSDT scheme). Similarly, 

theCN stretching frequency is reduced by 574 and 812 cm -1 for the 1A" and 1A' states 

(CCSDT values), respectively. The ω3 frequency, representing the bending mode, behaves in 

a more irregular way: we observe its increase in the 1A" state by ca. 250 cm-1 and a substantial 

decrease for the 1A' state. The T3 effect for the harmonic frequencies is larger for the excited 

states but only for the HC stretching frequency. In particular the inclusion of the T3 operator 

reduces the HC value for the 1A' state by 248 cm-1. Also the bending frequency for the same 

state is more sensitive to the correlation treatment, the T3 operator reduces the ω3 value by 

167 cm-1. 

In order to investigate the basis set effects we turn to Table 3, where we listed the CCSD 

results for the series of three correlation consistent basis sets: cc-pVDZ, cc-pVTZ and 

header we collected the values obtained by 

extrapolating the results to the complete basis set (CBS) limit [36]. The observed effects 

indicate - which is commonly known for the ground state - that by getting closer to 

the Hartree-Fock limit the bond lengths are reduced. We should be aware that the values 

collected in Table 3 refer to the CCSD method and realistically evaluating the bond lengths we 

should include the T3 effect which works in the opposite direction, i.e. increases bond length. 

So e.g. the CBS limit for the HC bond for the 1A' state is ca. 1.149 Å, see the last column of 

the Table 3. So taking into account the T3 effect equal to ca. 0.022 Å we can estimate the CBS 

limit of HC bond length in the 1A' state equal to approximately 1.171 Å. Similar considerations 

the 1A" state give the value of 1.121 Å. The analogous procedure applied to the CN bond 

indicates the CBS limit to be equal to 1.283 and 1.266 Å for the 1A" and 1A' states, respec-

tively. After inclusion of the estimated T3 correction the final values are equal to 1.296 and 

1.273 Å for the two considered states, respectively. 

cc-pVQZ. In the column with the 



Table 3. Computed and extrapolateda) equilibrium geometry (in Å) and harmonic frequencies (in cm-1) for ground and excited states of the HCN molecule 
at the CCSD level 

a) Ref. 36 
b) bond length from Ref. 37, harmonic frequencies from Ref. 38 
c) bond length and angle from Ref. 39. 
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The same reasoning can be applied to the harmonic frequencies. For the 1A" state the basis 
set effect is smaller, the CBS limit is equal to 2693, 1592 and 930 cm - 1, for three considered 
modes. The 1A ' state is more sensitive to the size of the basis set: e.g. the HC stretching 
frequency increases by ca 200 cm - 1 when going from double zeta to quadruple zeta basis set. 
Hence, in the realistic evaluation of the HC stretching frequency we should consider the ex-
trapolated 2348 cm - 1 value reduced by the T3 effect (-257 cm - 1 - PBS) to give 2091 cm - 1. 
The latter value, of course, can be further reduced by the inclusion into the calculations of 
the higher cluster operators. 

Table 4. Vertical and adiabatic excitation energies (in eV) of the HCN molecule with EOM-CC methods 

a)Ref. 32 
b)Ref. 35 
c )see Ref. 36 for the extrapolation formula 
d)Ref. 39 

The excitation energy values are collected in Table 4. From the fact that the excited state 
geometry significantly differs from the ground state - see Tables 1-3 - it may be deduced that 
there occurs a considerable differentiation between vertical and adiabatic excitation energies. 
The data collected in Table 4 fully confirm this, e.g. the adiabatic excitation energy for the 1A" 

state is lower by ca. 1.6 to 1.9 eV from its vertical counterpart. For the 1A' state the decrease is 
similar i.e. between 1.4 and 1.9 eV. The T3 effect is very stable for the vertical transitions, and 
is equal to 0.17-0.19 eV. The changes in the adiabatic values - due to the T3 - are larger for 
the pVDZ basis set (> 0.2 eV) and distinctly smaller for the PBS basis set (0.15 eV for 1A" and 
0.10 eV for 1A'). 

Comparing the computed excitation energies for the sequence of the basis sets: pVDZ, 
pVTZ and pVQZ we observe rather a small effect connected with the basis set size, e.g. for 
the vertical values the 1A" state energy goes down from 8.59 eV (pVDZ) to 8.46 eV (pVQZ). 
Consequently, an extrapolation of the computed values to the CBS limit gives the value which 
is only slightly different from the cc-pVQZ results. The adiabatic values change in different 
direction: the excitation energy increases with the size of the basis set, but the net effect is 
even smaller than in the case of the vertical transitions. 
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4. CONCLUSIONS 

The EOM-CCSDT method, representing the state-of-the-art treatment of the excited states 

with coupled cluster theory, has been applied to study the excited states of the HCN molecule. 

The full inclusion of the T3 operator provides much more reliable description of the equilib-

rium geometry, and - eo ipso - of the adiabatic excitation energies. The role of the T3 

operator is much more important in the description of certain excited states than in the case of 

the ground state. e.g. the T3 effect on the HC bond length in the 1A' state is 0.022 Å compared 

to 0.002 for the ground state. The similar large T3 effect is observed for the HC stretching 

frequency in the same state. 

The excited states show also a slower convergence with the size of the basis sets, e.g. 

the extrapolated CBS value for the HC bond length is smaller by 0.004 Å than that for the cc-

pVQ basis set, while for the ground state the same effect is equal to 0.0001 Å. 

Since the experimental data are available only for the 1A" state the performance of 

the method can be assessed only with respect to this state. The PBS EOM-CCSDT adiabatic 

excitation energy, 6.50 eV, is in perfect agreement with the experimental value of 6.48 eV. 

The computed bond length values for the PBS basis set are slightly too large: 1.156 vs. 1.14 Å 

and 1.315 vs. 1.30 Å. However, taking into account the basis set effect (i.e. CCSD 

value corrected by the T3 effect) we arrive at the 1.121 and 1.296 Å values compared with 

the experimental 1.14 and 1.30 Å results. 

We realize that the EOM-CCSDT method, although significantly more accurate than e.g. 

the EOM-CCSD scheme, cannot be routinely applied to the large chemical systems. However, 

its usefulness and reliability in the description of the excited states of small molecules opens 

the important field of the possible applications, especially as these states are more difficult to 

access experimentally. 
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