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Abstract: Variational calculations of the ZPI/Z ground state of boron atom are performed using a single-
term reference wave function and a 150-term wave function expansion without interelectronic distances.
The wave function is constructed with hydrogenlike orbitals. These orbitals are superior to Slater
orbitals, because the orbital 2s contains nodes. The calculated energy -24.550233 a.u. is compared with
-24.541246 a.u. using Slater orbitals and the same basis function expansion, and with -24.5689998 a.u.
obtained from full-CI calculations using a 4-31G basis set. The single-term wave function constructed
with hydrogenlike orbitals leads to an energy value of-24.501187 a.u., which is lower than the Hartree-
Fock energy using a single-zeta basis set of Slater orbitals and it is also lower than with a single-term
wave function with Slater orbitals, both lead to an energy of-24.498369 a.u. The behavior ofthe node of
the 2s orbital and its radial distribution function ofthe wave function series are discussed.

1. INTRODUCTION

Hydrogenlike orbitals contain a polynomial in » while the Slater orbitals are monomial. In
addition, the hydrogenlike orbitals have nodes. Hydrogenlike orbitals have been used in
calculations of the first row atoms by Zener [1] and Eckart [2]. The energy results were
equivalent to the ones obtained with Slater orbitals [3]. Indeed, a hydrogenlike orbital is a
linear combination of Slater ones [4]. Other similar orbitals were used by Morse [5] and Tubis
[6]. In this article we use a 2s orbital of Morse-type with two adjustable parameters.

The purpose of this work is to use hydrogenlike atomic orbitals to improve the quality of
the orbitals of a single-term and many-term wave functions, in order to have a good starting
reference wave function for a full-Hylleraas calculation. The Hylleraas method [7] is a varia-
tional method which introduces the correlation effects by including explicitly the inter-
electronic distances in the wave function.

The Hylleraas-type wave functions are linear expansions of basis functions containing
interelectronic coordinates whose coefficients are determined variationally. The calculations
of the atoms helium [8] (other sets of basis functions have been also used), lithium [9-11, 14],

and beryllium [12, 13] yielded energies close to the experiments. Parallel to the Hylleraas
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102 M. B. Ruiz and M. Rojas

method, Hylleraas-Cl and exponentially correlated wave functions yielded highly accurate
energy results for helium [15], lithium [16], beryllium [17-19] and boron [20] atoms.

Recently, calculations on the ground state of boron atom have been made using the single-
term and 150-term wave functions constructed with Slater orbitals [21]. The obtained energies
lie between the Hartree-Fock and the CI energies, including about 28 per cent of the correla-
tion energy. In this paper we use the same wave function but constructed with hydrogenlike

orbitals and we compare with the results using Slater ones.

2. THEORY

The wave function ofthe °P,, state ofboron atom is written:

1/2
Y = AQDX s (1)

where ¢ is the spatial function, A is the 5-particle antisymmetrization operator, ) is the spin
function aBafa. Since it is possible to make the restriction of using the same spatial function
forAtwo electrons in the same shell, the single-determined wave function is eigenfunction
ofS2 with eigenvalue M, = M, M, being the eigenvalue of ‘§2' Moreover, the spatial
functions may be chosen such that the total wave function is eigenfunction of [':2‘

We construct a trial wave function as the expansion [10]

=

N
¥ = ZC#A%)C = zcuwu , 2
u=l1 p=l1

where the constants Cu, are determined variationally. The N basis functions ¢/,, are products

of radial and angular functions of hydrogenlike orbitals:

-an

o) =r'e N, 9 (2) = e, 3)
02 (3) = (L= br)e®B, @, (4) = (1-brj)e®", @
02,(5) = 1%’ cos b5, 5)

with b as a constant to be optimized and i, i, i,, i,, and i, are integers j; 2 0. The orbital expo-
nents should be optimized. For the case of boron atom, with » = 5, the unpaired electron is in
a p-orbital, and in the non-relativistic theory, the three p-orbitals are degenerate in energy.

The Hylleraas ground state wave function is a function of distance coordinates of every
electron and the interelectronic coordinates. In the case n 2 5 the Hylleraas wave function is
also function of the polar angles §; and ¢; of the electrons [21]. As a first step of a full-

Hylleraas calculation, the wave function will not yet include r, terms.
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The single-term wave function of five-electrons is:

¢ = e e (1= bry)e P (1 = bry)e PMrse ™™™ cos B (6)

A general basis function ¢” with the powers of the 2s orbital inside of the bracket, (and not

outside ofthe bracket as would be with truly hydrogen atomic orbitals) is:
hy —on I —oF, i -8 r i —Br sy —yr
¢, =n'e Hipomg =7 (1 — br* )e /3'3(1 — bry* )e ﬂ"rs’”e 75 cos 05, (7)

where i, are integers with i, 2 0. The restriction for a given basis function (using for sim-
plicity i, instead i), i, = i, and i, = i,, and i; independent of the others, ensures that the wave
function is spin-eigenfunction. The wave functions (6), (7) can be evaluated into a linear com-
bination of four basis functions constructed with Slater orbitals' with factors in 5. The orbital
exponents a, B, y and the constant b are parameters which are optimized using asimple
parabolic procedure.

The nonrelativistic Hamiltonian for n electrons in the field ofa fixed nucleus ofcharge Zis

(in a.u.):
n 1 n n 1
" 2 z
H =—E —V,— - '—.‘+ E "—‘ 9)

As the general Hylleraas wave function has explicit angular dependence (and also depends
on r,) it is convenient to transform the kinetic energy part into mutually independent distance

coordinates r, r, and polar angles 0; and @;. The derivation is given in detail in [21]:

R 1 n 2 n 1 a n 7 n 1 n 82 n 2 a
R YL Y X S X
) . ] 2
2455 o7 T a"i = N i T ;a”y‘ YR I
2 2 2 ) 2 .2 2
_li” try __'Zi =k 9 N
2 £ 1Ty ar dry 2 vy Tyt Or;; Ory,
1 1 02  1<hcoth; 9
-= - —_— =y ——+ (10)
2 2 862 z{r2 sin’0, dp? 2 o #2086,

_z 1y cosf; lcote.r[’z_r —~ 7] w PY

S\ iy sin 9 2 ! rizr,-j )86 Br

n : 2
r; sin@; | a
— 2 T sy —
= rity sin6; Bgo,ar

' This fact makes the calculation of matrix elements more cumbersome as if one uses the basis function
with Slater orbitals [21]

= piw,man g —any By -~y i ~Bry sy —yrs
Oy =n e e RN e B W TR M TV 005 s (8)
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The partial derivatives operate on the corresponding coordinates only where they appear
explicitly in the wave function. For a basis function ofthe type of Eqs. (6), (7) which does not

depend on the interelectronic coordinates, the Hamiltonian of Eq. (10) is effectively reduced to

5 2 5
1 a I 0 5 1
=—E ——+= |+ E —+
2 8)" Koor ok I

/ i<j 'y
(11)
i1 9> 1
- = 2 —5 +—cotfs —
2012 002 # 00
The volume element is:
h
2.
dt = I Ir, sinB,dr,db,dep, . (12)
i=l
From the variational principle one obtains the matrix eigenvalue problem
(H-EA)C=0 (13)
where the matrix elements are
By = jw,,vadT, Ay = Jwﬂwvdf- (14

As the antisymmetrization operator commutes with the Hamiltonian and is idempotent,

after "spin integration" we have:

(15)

12
P
/=1

On the left-hand side, the different terms are generated by the following permutations of

the initial one ¢

<(e—P}3—P24+P,3P24 — Ps = Ps + PisPy + Ps A3 +

)

is the permutation operator which interchanges the spatial

o o (16)
+ PysPy + PysRs — Py P3s Ry — P24P35P15)¢y

where € is the unit operator and Pfj
coordinates of electrons i andj. If we evaluate now H, we have four terms on the right hand
side and 12x4 terms on the left hand side, which are products of Slater orbitals.

As in the case with Slater orbitals [21], the evaluation of the matrix element of Eq. (16)
leads to the types of integrals: one-electron integrals, two-electron integrals, two-electron one-

angle integrals:
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cos 6, cos®,
=)=, (—A)=0, VY, (17)
Ty Fy
and two-electron two-angle integrals:
cos 6; cos 6, am)* | s,
= L, VY (18)
Ty 9 \g&j

where s, is the smallest of r, and r, and g, the largest of r, and r,

The resulting integrals in the Hylleraas method have been developed into programmable
expressions using the MAPLE [22] program package. The one-electron and two-electron
Slater integrals are solved with the help of auxiliary integrals [9]. They are once calculated
and stored, and read when it is necessary.

The optimization procedure is simple. The three orbital exponents and the constant b are
optimized one after the other using a numerical one-dimensional procedure. A three-point
parabolic fitting is mixed with two other procedures which are the selection ofthe point with
lower energy and the best virial coefficient. Each variable is changed with a different step-size
which decreases with the cycles of optimization. For each energy calculation the virial

coefficient is calculated to check the accuracy ofthe calculation.

3. CALCULATIONS

The first basis function ¢|, Eq. (6), can be considered as an approximation to the Hartree-

Fock wave function constructed with medium size basis set of orbitals.

b= (‘I/| |‘l’|>

where Y} = A(DI)(. We need a condition to calculate the energy ofthe state. The condition is

Then the energy is given by

(19)

that the virial theorem should be fullfiled. Therefore a factor x, the ratio between potential
<V> and kinetic energies <T> should be precisely 2% 10 '°. This factor # is evaluated in every

calculation to ensure that the state is the appropriate one:
n=--. (20)
()

The optimization of the exponents @, f, y and the constant b leads to the energy

E ,=24.501187 a.u., virial factor # = 1.9999999999, a =4.688051, f =1.357372 y = 1.204539

and b = 6.5242. This energy is lower than the energy the calculated with Slater orbitals [21]
-24.498369 a.u. The optimized exponents «a, p, of the wave function with hydrogen-like
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orbitals are very close to those obtained using the wave function with Slater orbitals, a =
4.6794196, y = 1.2106724. The reason is that the ls and 2p orbitals have the same form in
both wave functions and they are only weakly dependent on the form ofthe 2s orbital. As it is
expected, the exponent of the 2s orbital is different compared with f§ = 1.2880853 for Slater
orbitals. In the optimization of b one finds a very flat parabola.

The energy lies between the Hartree-Fock energy -24.498369 a.u. calculated using a
single-zeta basis set and -24.527920 a.u. obtained with a double-zeta basis set [23]. Other
results are given in Table IV. The energy obtained using hydrogenlike orbitals is lower than
using Slater orbitals.

In this method the energy is improved by adding new basis functions in a systematic way,
from i, = 0 until i =7, in some cases i, = 9, ordered by similarity to facilitate the optimization
of the exponents. The orbital exponents and the constant b have been optimized for every
group of similar basis functions which is added. We have used the same basis function
expansion than in the previous calculations with Slater orbitals [21]. In Table 1, the powers of
the orbitals ofthe basis functions are given. For example, the basis functions 1 to 38 introduce
flexibility to the outer electrons. The basis functions 39 to 57 give flexibility to the inner
electrons. The rest of the basis functions introduces some correlation effects due to the use of
more extended orbitals.

The energy results are shown in Table 2, together with the energies of those basis function
expansions using Slater orbitals. For the first eight basis functions we have i, i, ~ 0, as
the basis set is the same, the form ofthe hydrogenlike orbital 2s coincides with the Slater one
for these basis functions except for a factor, therefore the energy results for both wave
functions are equal. Taking more basis functions, the wave function of hydrogenic orbitals
lead to an energy about 1 mhartree lower than the energy calculated with Slater orbitals.
The difference increases with increasing number up to 150 basis functions. The final energy
for N = 150 is E,;, = - 24.550233 a.u., 8.98 mhartree lower than the energy with Slater basis
functions. This energy includes about 33 per cent of the total correlation energy for boron
atom. 6 per cent more correlation energy have been obtained using hydrogenlike orbitals
instead of Slater ones. This is due that they are physically more appropiate and to the presence
of one more variational parameter, the constant b.

The optimized exponents and constants are given in Table 3. The final exponents are

a=4.520884, = 1.338861, and y=0.750846, and the constant is fitted to » = 2.398. These
exponents are slightly smaller than the ones calculated using Slater orbitals. In the first basis
functions @ and vy coincide with the ones of Slater, but not 3. Adding more basis functions
the exponents became more different. In contrary, the S exponent became more close to
the Slater one.

In Figure 1 the radial distribution functions of the Slater and hydrogenic 2s orbital using

the optimized parameters of the 150-term wave function are shown. The hydrogenic orbital
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Table 2. Energies (in au.) for a given number of basis functions, using Slater orbitals [21], and
hydrogenlike orbitals in the wave function, respectively. In addition the difference E(hydrogenlike) -
E(Slater)isgiven

No. E (Slater) E . Difference [No. £ (Slater) E ) Difference
(hydrogenlike) (hydrogenlike)
1 24348104 24351385 —0.003281 |77 -24.540131 —24.542418 —0.002287
8 24432419 24432427 —-0.000008 |79 -24.540146  -24.542464 -0.002318
13 24491764 24494885 -0.003121 |87 24540156  —24.542582 —0.002426
20 24516098 -24.516143 -0.000045 |91 -—24.540246  —-24.542602 —-0.002356
26 24518749  —24.518898 ~0.000149 |95 -24.540293  —24.542609 —-0.002316
31 24519192  —24.519968 -0.000776 |99 —24.540292  —24.542609 -0.002317
35 24519215  -24.520470 —0.001255 {103 -24.540305  -24.542613 —0.002308
38 24519225  -24.520575 —0.001350 {109 ~-24.540309 -24.542621 -0.002312
42 24525574  -24.528064 ~0.002490 117 -24.540337  —24.542628 —-0.002291
46  —24.535417  -24.536589 -0.001172 127 -24.540697  -24.545418 —0.004721
49 24536008 —24.537109 —0.001101 129 —24.540700 -—-24.545960 -0.005260
52 24536502  —24.538329 -0.001827 (131 —24.540719  —24.545987 —0.005268
55 —24.536553  —24.538352 -0.001799 136 —24.540730  -24.545990 —-0.005260
57 24536607 —24.538491 —0.001884 |137 -24.540762  —24.546496  —-0.005734
65 24539255  —24.540783 —0.001528 {140 -24.540753  —24.547476 —0.006723
68 —24.539624  —24.540786 —0.001162 |144 24541177 -24.549774 —0.008597
71 24539974  —24.542265 -0.002291 150 -24.541246  —24.550233 —0.008987
74 24540018  —24.542364 —0.002346

o
N
(=]

Fig. 1. Radia distribution function of the 2s
1 hydrogenlike orbital (with a node) and the Slater
type one calculated with the optimized exponents
of a 150-term wave function

Radial distribution
o
o

[=]
-
(=]

has a node and the maximal probability at larger distance. For i3, iy, = 1 the hydrogenlike
orbital coincides with the hydrogenic orbital.

In Figures 2 and 3 the radial distribution functions of the 2s orbitals with different powers
i3, is show different behavior at small r. The hydrogenlike orbitals present nodes, which move
to large  with increasing powers. The Slater orbitals have a maximum at nearer distances to
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the nucleus than the hydrogenlike ones. In both Figures the probability to find the electron is

higher for power 1 and decreases with increasing power.

Table 3. Results using hydrogenlike orbitals: energies in (a u.) for a given number of basis functions,

optimized orbital exponents and orbital coefficient b, and virial coefficient

(hydrogenlike) B Y b virial ratio
1 -24.351385  4.62183388 0.74896367 0.47489419 7.136869 2.0000000344
8 -24.432427  4.62670884 0.72026697 1.65453049 5.852452  2.0000080293
13 -24.494885  4.67718391 1.05324185 0.64033174 2.753014  2.0000000000
20 24516143 4.68590000 1.24058271 0.63399000 4.599031 2.0000000000
26 -24.518898  4.68620737 1.27517474 0.88807764 6.834067 2.0000000000
31 -24.519968  4.68641492 1.24694281 1.60862117 5.470780 2.0000000000
35 -24.520470  4.68641492 1.22935089 1.61343967 4.077469 2.0000000000
38 -24.520575  4.68676343 121088914 1.61937951 3.785341 1.9999999971
42 -24.528064  4.55953982 1.23382125 0.72695372 2.919047  2.0000000000
46 -24.536589  4.45773982 1.25648021 0.69123238 3.517716  2.0000000000
49 -24.537109  4.44461335 1.23386413 0.68764275 3.571725 2.0000000000
52 -24.538329  4.44841053 1.21365925 0.69109923 3.030002 2.0000000000
55 -24.538352  4.44975485 1.20919613  0.69322458 2.948800 1.9999999034
57 -24.538491  4.44701898 1.20534653 0.69306467 2.949590 1.9999998022
65 -24.540784  4.42490154 1.20982109 0.74509752 3.108249  2.0000000015
68 -24.540786  4.42490154 1.21082109 0.74841752 3.125801 2.0000000015
71 -24.542265  4.41928966 1.21987149 1.00909552 2.872800 1.9999999081
74 -24.542364  4.41762286 1.21987149 1.00909552 2.872800 1.9999999131
77 -24.542418  4.41653618 1.21987149 1.00909552 2.867022 1.9999999894
79 -24.542464  4.41660018 1.21987149 1.00909552 2.855222  2.0000000509
87 -24.542582  4.42267218 1.21987149 1.00909552 2.783861 1.9999999919
91 -24.542602  4.42237993 1.21987149 1.00909552 2.780100 1.9999999989
95 -24.542609  4.42239693 1.21987149 1.00909552 2.778428  1.9999999999
99 -24.542609  4.42226869 1.21986069 1.00909732 2.779800 1.9999999917
103 -24.542613  4.42214949 1.21986133 1.00908742 2.779000 . 1.9999999980
109 -24.542621  4.42229789 1.21984899 1.00898732 2.771000 1.9999999973
117 -24.542628  4.42206969 1.21985069 1.00909738 2.778000 1.9999996485
127 -24.545419  4.39900000 1.27000160 0.83784000 2.599200 1.9999999171
129 -24.545960  4.40000000 1.26016160 0.89900000 2.498000 1.9999999659
131 -24.545987  4.40101164 1.27035180 0.91071746 2.509400 2.0000001621
136 -24.545990  4.40116722 1.28307195 0.92082000 2.504400 1.9999998322
137 -24.546496  4.40426969 1.23087969 0.89209732 2.578000 2.0000000398
140 -24.547476 4.41000000 1.24979687 0.88833184 2.388000 2.0000002533
144 -24.549774 451281980 1.33886068 0.71579732 2.398000 2.0000000454
150 -24.550233  4.52088419 1.33886068 0.75084613 2.398000  2.0000000481
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Fig. 2. Radia distribution functions of the 2s Fig. 3. Radia distribution functions of the 2s

hydrogenlike orbitals with different powers of r, Slater orbitals with different powers inr, iz = iy
iz = iy from Eq. (7). Calculated with the opti- from Eq. (8). Calculated with the optimized
mized exponents of the 150-term wave function exponents of the 150-term wave function

Table 4. Comparison of the energies for boron atom calculated with different methods and the
nonrelativistic energy (all values in a.u.)

Reference Year Method Basis Set Energy
Clementi [23] 1989 HF ¢—GTO small geom. —24.495670
Clementi, Roetti {24] 1974  HF STO single zeta —24.498369
Ruiz [21] 2004  refHy (1-term) —24.498369
Present Work 2004  ref Hy hydrog. (1-term) -24.501187
Clementi, Raimondi [25] 1963 HF STO minimal basis ~ —24.498370
Clementi, Roetti [24] 1974 HF STO double zeta —24.527920
Clementi [23] 1989 HF GTO large geom. —24.528486
Huzinaga [26] 1977  HF STO —24.528709
Froese—Fisher er La [29] 1993 numerical HF —24.529036
Clementi, Roetti [24] 1974  HF STO extended —24.529057
Clementi, Chakravorty [23] ;(9)?)?1 g£~Gaussian—98 CGCILS\/e;tZra faree 432;%3?894
Mayer [28] 2004 full-CI 4-31G —24.530874
Ruiz [21] 2004 Hylleraas 150 (without r) —24.541246
Present Work 2004 Hylleraas 150 (without 1) —24.550233
Froese—Fisher et /a [30] 1994  multiref. CI -24.560354
Mayer [28] 2004  full-CI DZV —24.568999
Mayer [28] 2004  full-CI DZp —24.585533
Estimated nonrelativistic [31] 1993 —24.65391

Small geom. stands for small geometrical basis set, large geom. for large geometrical basis set, DZV for
valencc double zeta basis and DZP for double zeta basis with polarization functions. In the literature,
usually the best HF energy value is quoted as only HF, this is-24.52905 a.u.
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Finally, in Table 4 we compare our energy results with the ones of other methods.
The 150-term energy obtained using hydrogenlike orbitals is lower by 19.3 mhartrees than
the energy of a full-Cl wave function with 4-31G basis set [28]. It is also lower than numerical
HF calculations. The calculated energy is higher by 10.1 mhartrees than the multireference ClI
energy [29], and 18.7 mhartrees higher than the full-Cl energy using a double-zeta basis set.
The energy using polarization basis functions is still lower. A similar energy to the full-ClI
using medium size basis set (DZV) could probably be achieved if the expansion serie would
be extended to a larger number of basis functions. Nevertheless, our purpose is to introduce
more correlation energy introducing interelectronic coordinates into the wave function, this

work is in progress.

4. CONCLUSIONS

Substituting the 2s Slater orbital by the hydrogenlike 2s one into the reference Hylleraas
wave function the energy result improves by 6 per cent for a large number of basis functions.
This is due, on the one hand, to the higher quality of the 2s orbital, which has a node, as the
exact solution of Schrodinger equation of the hydrogen atom. On the other hand, it is due to
the presence of an aditional variational parameter. The orbitals with high powers in r of
the expansion series are not exactly Slater neither hydrogenic, they are of s-type. It can be
understood as a basis function set inside of a shell. The obtained energy approaches the full-Cl
calculations using valence double-zeta basis set. We expect to introduce more correlation
effects by introducing in this reference wave function interelectronic variables. Thiswork is in
progress.

Finally, the calculated energy is comparable with the energy of full-Cl calculations.
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