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Abstract. In this article we wish to present and encourage the other to use bootstrap methods in statistical
analysis. We show how to bootstrap Kaplan-Meier estimator and pay attention to its advantage opposite to
classical analysis. Then we present simulation study and survival time of second remission of patients
suffering for acute leukaemia.

1. INTRODUCTION

One of the most frequently used nonparametric method of estimating survival function is
method of Kaplan-Meier.

In medical science we have very often to deal with small sample size. There are several
reasons for that. The common one is rarity of illness or difficulty with gathering patients posse-
ssing the same biochemical parameters. Furthermore, we have very often censored data.

Therefore, a small sample size either does not let us use classical statistical methods or when
they are used, they can give us too general and even false results. Using bootstrap methods can
solve some of those problems. With computer simulation we can generate many samples based
on original sample data and we can more accurately evaluate parameters determined on bootstrap

distribution.

2. ACUTE LEUKAEMIA - SECOND REMISSION STUDY

Let us assume that we have 20 times (in years) of survival times patients with acute leukaemia
in second remission and some of them are censored
* - Censored observation

Analysing our sample we get the following results of survival function S (»):

Table I. Table of survival function S(t)

Time — Number Number Riskset n  Probability  §()
in years of death cases of censored cases
1 2 3 4 5 6
2.0 1 0 20 0.9500 0.9500
2.1 0 1 19 1.0000 0.9500
2.2 0 1 18 1.0000 0.9500
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1 2 3 4 5 6
3.1 1 0 17 0.9412 0.8941
32 0 1 16 1.0000 0.8941
33 1 1 15 0.9333 0.8345
4.0 1 0 13 0.9231 0.7703
5.0 0 1 12 1.0000 0.7703
5.1 1 0 11 0.9091 0.7003
5.2 0 1 10 1.0000 0.7003
5.3 1 0 9 0.8889 0.6225
6.0 0 1 8 1.0000 0.6225
6.1 1 0 7 0.8571 0.5336
6.2 1 0 6 0.8333 0.4446
8.0 0 1 5 1.0000 0.4446
8.1 0 1 4 1.0000 0.4446

11.0 1 0 3 0.6667 0.2964
12.0 1 0 2 0.5000 0.1482
12.1 0 1 1 1.0000 0.1482

$(¢) — estimator of survival function S (8

In order to increase the accuracy of survival function estimator we use bootstrap method.
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Let us create two random variables X and Y, where random variable X has the following

empirical distribution:

Tablell. Empirical distribution of X

X p Xi p
20 0.05 53 0.05
2.1 0.05 6.0 0.05
2.2 0.05 6.1 0.05
3.1 0.05 6.2 0.05
32 0.05 8.0 0.05
33 0.1 8.1 0.05
40 005 |[11.0 0.05
5.0 0.05 [12.0 0.05
5.1 0.05 |12.1 0.05
52 0.05 .

While random variable Y, which is acensoring indicator, takes two values 1 if the observation

is full and 0 when it is censored (truncated):

Tablelll. Distribution of Y

Yi
14

1
0.5

0
0.5
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We form ordered pairs (x;, y;) for i = 1 to 20, which are generated according to empirical
distribution of random variables X and Y. We use bootstrap resampling method. There are many
statistical software packages that offer bootstrap resampling. S-plus 6 for windows (Insightful
Corporation) enablesjackknife and bootstrap resampling and also calculating bootstrap statistics
but they must be a scalar, vector or matrix. SAS offers general purposejackknife and bootstrap
capabilities via two macros available in the file jack-boot.sta at http://ftp.sas.com/techsup
/download/stat/ [1]. We did not find statistical package that provides bootstrap calculating for
Kaplan-Meier estimate where outcome is atable. In order to simulate our data we prepared simple
generating programme in Pascal 7.0 programming language. That way we receive N bootstrap
samples and N Kaplan-Meier estimates. We assume that N > 1000.

For bootstrap estimator of survival function we take

1 N
= N E
where t - considered month where t takes values:

221 22 31 3233334551525366.16.2881 11 12 121

As aresult of N= 2000 simulations we get the following outcomes:

Table IV. Comparison S() and §B 0]

Time a S‘B 63}
in years 50 N=2000

2.0 0.9500 0.9618
2.1 0.9500 0.9400
2.2 0.9500 09117
3.1 0.8941 0.8844
3.2 0.8941 0.8600
33 0.8345 0.8096
4.0 0.7703 0.7723
5.0 0.7703 0.7377
5.1 0.7003 0.7025
5.2 0.7003 0.6628
53 0.6225 0.6245
6.0 0.6225 0.5819
6.1 0.5336 0.5372
6.2 0.4446 0.4864
8.0 0.4446 0.4396
8.1 0.4446 0.3811
11.0 0.2964 0.3249
12.0 0.1482 0.2409
12.1 0.1482 0.1446
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As it is shown on the graph above, the application of bootstrap method smoothes our survival

function.
Let us compare confidence intervals.

Classical confidence interval for Kaplan-Meier estimator is given by formula:
~ Al A A Al A o
S@ - Dn}- u(%) NORIANOIE u[—i)

where t(k) < t<t(k+1),k=1,2, ..., 18 and D {$(?)} is standard error of survival function and
according to Greenwood [2] is given by formula:

p{sw}=[sw] for t(k) s t<t(k+1)

While u (a) is the quantile of standard normal distribution of the order of a.
When value ofSA(t) is close to zero or unity, the variance valueDA{S(t)} may be overestimated

and in that case we use formula [2]:

pls) - S005D
U

for #(k) < t <t(k + 1) where n, is the number of cases with death risk in time #k).
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For our sample we have the following 95% confidence intervals evaluation:

Table V. Standard errors and 95% confidence intervals for S(7)

ir:r)i/?:rs S D{8()} 95% confidence intervals
2.0 0.9500  0.0487 (0.8545; 1.0000)
2.1 0.9500  0.0487 (0.8545; 1.0000)
2.2 0.9500  0.0487 (0.8545; 1.0000)
3.1 0.8941  0.0710 (0.7549; 1.0000)
3.2 0.8941  0.0710 (0.7549; 1.0000)
33 0.8345  0.0878 (0.6624; 1.0000)
4.0 0.7703  0.1018 (0.5707; 0.9699)
5.0 0.7703  0.1018 (0.5707; 0.9699)
5.1 0.7003  0.1142 (0.4766; 0.9240)
5.2 0.7003  0.1142 (0.4766; 0.9240)
5.3 0.6225  0.1252 (0.3771; 0.8679)
6.0 0.6225  0.1252 (0.3771; 0.8679)
6.1 0.5336  0.1353 (0.2684; 0.7987)
6.2 0.4446  0.1389 (0.1724; 0.7169)
8.0 0.4446  0.1389 (0.1724; 0.7169)
8.1 0.4446  0.1389 (0.1724; 0.7169)
11.0 0.2964  0.1524 (0.0000; 0.5951)
12.0 0.1482  0.1296 (0.0000; 0.4022)
12.1 0.1482  0.1296 (0.0000; 0.4022)

In order to evaluate bootstrap confidence intervals we use the percentile method. We take
the empirical distribution of random variable SB(t) received during N-fold generating of 20
elements sample of ordered pairs (x, y,) which have (X, Y) distribution. Obtained sequences of

evaluations Sy(f) for

may be used for percentile evaluation.

Let .%a)(t) denotes the a percentile. Sequence of evaluations SB(t) is organised non-decreasing
order. Percentile Sé“)(t) is the value that stands on o N, position (N, number of evaluation .SA'B(t))
for given year provided that this is integral number, in other case the position of percentile is
determined by [(N; +1)-a] for O<a<0S5and N+ 1 - [V, +1)- (1 - a)] for0.5<a < 1 [3-5],
We should point out that number N, of evaluations jB(t) is different each month and number of
simulations N. In our samples particular times of death may repeat or don't occur at all with

the probability that is specified by random variable X.
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Confidence Interval for S(#) obtained using this method is as follows:
' A ~ 1__
P(S;“)(z)d(t) <$! “)(t)) =1-2a
where S,g“)(t) is a percentile and S’,‘,““’(t) is 1 - a percentile.

Table VI. 95% bootstrap confidence intervals for S(7)

Time 95% bootstrap confidence interval
in years for S(7)
2.0 (0.9000; 1.0000)
2.1 (0.8421; 1.0000)
2.2 (0.7895; 1.0000)
3.1 (0.7374; 1.0000)
32 (0.6906; 1.0000)
3.3 (0.6272; 0.9500)
4.0 (0.5844; 0.9444)
5.0 (0.5304; 0.8972)
5.1 (0.4897; 0.8824)
5.2 (0.4327; 0.8657)
5.3 (0.3914; 0.8345)
6.0 (0.3445; 0.7972)
6.1 (0.2722; 0.7566)
6.2 (0.2210; 0.7205)
8.0 (0.1667; 0.6858)
8.1 (0.1034; 0.6335)
11.0 (0.0000; 0.5891)
12.0 (0.0000; 0.5196)
12.1 (0.0000; 0.4377)

confidence intervals for S(t)
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3. CONCLUSION

Using traditional method probability of survival for censored cases remains the level of pre-

vious time for uncensored data. Using bootstrap method we obtain both censored and uncensored

cases for each time. That is why our survival curve is smoother and we don't have such a rapid

jumps for probability of survival. Furthermore bootstrapping denotes confidence intervals, which

have the same range. For some observations the range of interval is even smaller. In our study

confidence intervals for time of 2 years and form 3.3 to 11.0 years are smaller from obtained in

traditional way. This method is useful especially when dealing with small sample observations

and helps us to estimate more reliable outcomes.
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