
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 8(1), 79-96 (2002)

MODIFICATION OF THE WEIGHTED CHECKSUM METHOD
FOR DERIVING FAULT TOLERANT VERSIONS

OF THE MAIN LINEAR ALGEBRA ALGORITHMS

OLEG MASLENNIKOV

Department of Electronics, Technical University of Koszalin

Partyzantów 17, 75-411 Koszalin, Poland

email: oleg@ie. tu. koszalin.pl

(Received 25 November, 2001)

Abstract. The modified weighted checksum method is proposed, which can be used for deriving fault
tolerant versions of most linear algebra algorithms. The purpose is the detection and correction of calculation
errors occurred due to transient hardware faults during algorithm execution. Using the proposed method,
the fault-tolerant versions of Jordan-Gauss and Faddeeva algorithms are designed. The computational
complexity of new algorithms is increased approximately on O(N2) multiply-add operations in comparison
with the original algorithms. However, new algorithms enable to detect and to correct a single error in an
arbitrary row or column of input data matrices at the each algorithm step. Hence, it is possible to correct up
to N2 and (N2/2 + N • P) single errors during realization of whole Jordan-Gauss and Faddeeva algorithms
respectively. Finally, the results of experimental verification of the proposed algorithms are represented.

Key words: algorithm-based fault tolerance, weighted checksum method, linear algebra algorithms

1. INTRODUCTION

The methods of linear algebra (LA) make a basis for mathematical models in various fields

of science, engineering and technology such as signal and image processing, system theory,

statistical and numerical analysis, biomedical researches, physical experiments, etc. For example,

here are some specific problems to be solved by modem systems of real-time signal processing:

matrix multiplication for covariance estimation, solving of linear systems in adaptive processing,

computing eigenvalues/eigenvectors for high-resolution array processing and adaptive beam-

forming [1]. However, most of LA algorithms are characterized by a high computational

complexity (O(N3) multiply-add operations, where N is the order of input data matrix) and

regularity [1-5]. Therefore, the application-specific parallel systems (ASPS) destined to

implementation of several applied algorithms and adapted to their properties are most suitable for

real time realization of these algorithms.

Application areas of ASPS demand a large degree of reliability of output results. However,

the probability of physical failures increases along with increasing of the algorithm and target

computing system complexity. Since a single temporary or permanent failure in a processor can

break down an entire computing system, fault tolerance should be provided in these cases on

hardware or (and) software levels. The most known methods for providing fault tolerance use

hardware or time redundancy, which increase the cost or degrade the performance of compu-

user
Tekst maszynowy
CMST 8(1) 79-96 (2002)

user
Tekst maszynowy
DOI:10.12921/cmst.2002.08.01.79-96

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

80 O. Maslennikov

tational systems. Therefore, they are few suitable for real-time computing systems and parallel
processors. The algorithm-based fault tolerance (ABFT) methods are more suitable for such
systems.

ABFT is an error detection, localization and correction scheme, which uses redundant
computations within the algorithms to detect and correct errors caused by transient failures in
the hardware, concurrently with normal operation [6-8], In ABFT, the input data are encoded in
the form of error detecting or (and) correcting codes. The algorithm is modified to operate on
encoded data and produce encoded outputs, from which useful information can be recovered veiy
easily. The modified algorithm will be more complex and therefore, will take more time to operate
on the encoded data in comparison with the original algorithm. This time overhead should not be
excessive. Thus, ABFT methods establish the rules of the original applied algorithms and input
data arrays modification. From this, it is clear that these methods are not a general mechanism as
some other methods (e.g. the triple modular TMR or triple time redundancy TTR methods),
because they may be varied from algorithm to algorithm [18]. However, when the modified
algorithm is actually executed on a target architecture, the overheads are required to be minimum
in comparison with other known methods. Moreover, in this case, the tolerant to transient fault
architectures of ASPS's is derived automatically, using known mapping methods for mapping of
fault tolerant algorithms into corresponding PA architectures [3],

Module-level faults are assumed [8] in the algorithm-based fault tolerance. A module
(processor or PE for parallel computers) is allowed to produce arbitrary logical errors under
physical failure mechanism. This assumption is quite general since it does not assume any
technology-dependent fault model. Without loss of generality, a single module error is assumed
in this paper. Also, communication links are supposed to be fault-free.

The most known ABFT method called weighted checksum (WCS) one, which is specially
tailored to matrix algorithms and array architectures, has been proposed by Abraham et al. [6, 7].
In their scheme, redundancy is encoded at the matrix level by augmenting the original matrix with

weighted checksums. Since the checksum property is preserved for various matrix operations,
these checksums are able to detect and correct errors in the resultant matrix. Furthermore,
the complexity of detection and correction process is much smaller than that of the original
computations. For example, the computational complexity of the modified fault-tolerant (FT)
version of the matrix multiplication algorithm A(N,N)*B(N,N) = C(N, N) increases on 2N2

operations and is equal to (N3 + 2N2) multiply-add operations. However, this version allows to
detect and to correct the single error among elements of each column of an input matrix A(M, N)
occurred during algorithm implementation. Consequently, it enables to correct up to N single
errors during solving the whole matrix multiplication task.

However, the original WCS method is not suitable for most LA algorithms, since a single
transient fault in a processor or a processor element of an array during computation might cause
multiple output errors, which can not be located and corrected. Therefore, in the papers [9-11],
we propose the modified WCS method and FT versions of Gauss elimination, Cholesky,
Householder reflections and Givens rotations algorithms. In this paper, we establish the sufficient

Modification of the Weighted Checksum Method 81

conditions to use modified WSC-method and then apply its for designing fault-tolerant versions
of Jordan-Gauss and Faddeeva algorithms. Finally, the verification results of the proposed
algorithms are represented.

2. WEIGHTED CHECKSUM (WCS) METHOD AND ITS MODIFICATION
FOR DESIGNING OF FAULT TOLERANT VERSIONS

OF MAIN LA ALGORITHMS

The WCS code has been adopted by Jou and Abraham [7] in matrix arithmetic operations
for algorithm-based fault tolerance. The idea is to compress the information contained in
the row/column elements of matrix into a single element, which is named as a check element.
Information is compressed in such a way that it is preserved during algorithm implementation.
For example, a WCS encoded data vector v(N) with Hamming distance equals three, which can
correct a single error (SEC) can be expressed as

(1)

(2)

(3)

(4)

The difficulty with the first choice is a loss of the numerical accuracy due to large weights,
while the second choice leads to larger extra computations necessary to correct an error.

Moreover, the following more advanced encoder vector pares were proposed in the Ref. [13]:
1) average and weighted average encoder vectors:

(5)

2) normalized encoder vectors:

where vi is a element of a data vector v(N),

PCS = p T x [v1 v2 ... vN] ,

QCS = q T x [v 1 v 2 . . . v N] ,

and p(N), q(N) - are encoder vectors.
Possible choices for vector pares p and q are, for example, [7]
(were q is named the exponential weighted encoder vector), or [12]

p T = [1 1 ... 1] and q T = [20 21 ... 2 N - 1]

(were q is named the linear weighted encoder vector).

p T = [1 1 ... 1] and q T = [1 2 ... N]

pT = [l/N l/N ... l/N] and qT = [l/N 2/N ... N/N];

82 O. Maslennikov

a) for vector a(N)

pT = [c/ |a |2 c/|a |2 ... c/ |a |2] (6)

b) for matrix A(N,N)

pT = [c/|a |2 c/|a |2 ... c/ |a |2] and qT = [1 • c/|A | 2 • c/|A | ... N-c/ |A|] , (7)

where | A | is the average value of matrix column (or row) Euclidean norms and c is a constant
fixed by user.

Experimental evaluation of numerical error for proposed encoder vectors also were researched
in [13] for the set of random generated matrices. The main results are as follows: when round
errors are the larger problem, one should use normalized encoder vectors; for overflow problems,
one should use average encoder vectors.

Based on the linear encoding vector (4), for example, a matrix A(M,N) can be encoded as
either a row encoded matrix AR given by

AR=[A A x p (N) Axq (N)] = [a PRS QRS], (8)

where

PRS i = ai1 + a i 2 + ... + a i N ,

QRS i = 1 x ai1 + 2 x a i 2 + ... + N x a i N

a column encoded matrix AC

where

PCSj = a1j + a2 j + ... + a M j ,

QRSj = 1 x ajj + 2 x a2j + ... + M x aMj,

or a full encoded matrix ARC [12, 14] given by

(10)

(9)

Modification of the Weighted Checksum Method 83

when round (S2/S1) is the nearest integer number to the value S2/S1. Note, that the value of S2/S1

may be not integer number due to roundoff errors occurred during computations.
Thus, the computational complexity of the modified version of the matrix multiplication

algorithm increases only on the 2N2 operations and is equal to (N3 + 2N2) multiply-add opera-
tions. This version allows to detect and to correct the single error among elements of each column
of an input matrix A(M,N) occurred during algorithm implementation. Consequently, it is
possible to correct up to N single errors during solving the whole task.

However, the original WCS method is not suitable for such LA algorithms as, for example,
Gauss elimination, Jordan-Gauss, Faddeeva and Cholesky algorithms, Householder reflections
and Givens rotations algorithms, etc., since a single transient fault in a processor or a processor
element of an array might cause multiple output errors, which can not be located. In fact,
the common property of all above mentioned algorithms is the computation on the any i-th
algorithm step (may be not one time) the elements of leading (i-th) row or/and column of matrix
Ai = {aji

i} and then modification of other matrix rows (columns) by means of leading ones.
The example of corresponding fragment of such algorithms with leading column computations
is represented by means construction (12), were values of variables K, K1, K2 and functions g1,

cij:
 = cij - S1, (11)

and

For example, for matrix multiplication A(M,N) * B(N,K) = C(M,K), the column encoded matrix

AC of a form (9) is exploited [12]. Then, the following expression is computed:

AC x B = CC .

To verify the computation, syndromes S1 and S2 for the j-th column of matrix C should be

calculated (j = 1,..., K):

In order to correct a single error, the following procedure (11) is used:

if S1 = S2 = 0 then no error has been detected;

if S1

if S2

if S1

0 and S2 = 0 then PCSj is inconsistent;

0 and S1 = 0 then QCSj is inconsistent;

0 and S2 0 then i = round(S2/S1) and element cij is erroneous,
and the correction procedure is:

84 O. Maslennikov

g2 are depended from the selected algorithm. Note, that in this example the input matrix

A = A1 = {aji} is recursively modified during K computation steps to obtain the resulting matrix

AK + 1 .

(12)

As shown from the (12), if at the i-th algorithm step the element aji
i+1 of leading (i-th) column

is wrongly calculated, then errors will appear in all elements ajk
i+1 of j-th row of A i+1.

Analogously, if any element aik
i of the leading (i-th) row was wrongly calculated, then errors

appear in the all elements of j-th column of A i + 1 . In both cases, these errors can not be located

and corrected by WCS method. If the correction of elements ajk is performed during calculations,

then the computational complexity of the original algorithm increases more than twice.

For removing of these defects by means modification of the original WCS method,

the following confirmations were proved for all above-mentioned algorithms (see Ref. [9, 10]

and the next paper section):

- If during i-th step of computations the element ajk
i+1 is wrongly calculated, then errors will

not appear among others elements of matrix A i + 1 whi le j-th row isn't the leading one (i.e.

- If the element ajk
i (j = i, i + 1, ..., N) was wrongly calculated several times q (q < i) before

performing of the i-th step of algorithm (12), then it is possible to correct its using the WCS

method for the row encoded matrix AR (5) at the beginning of the i-th step of the algorithm.

- If an element ajk
i (j = i, i + 1,...,N) was wrongly calculated during executing of the first phase

of the i-th step of algorithm (12), then it is possible to correct it using the WCS method for

the column encoded matrix AC (6) after executing of this phase.

The main consequence of these confirmations is the possibility of performing the detection

and correction procedures during each i-th algorithm step among only elements of the leading

(i-th) row and leading (i-th) column of the matrix Ai. Based on these confirmations,

the modification of the origin WCS method was performed. The main idea of the proposed

unified WCS method (scheme) destined for main linear algebra algorithms is the performing of

its check procedures concurrently with algorithm computations or more exactly, the performing

of the detection and correction procedures:

- at each i-th algorithm step;

- among only elements of the leading (i-th) row and leading (i-th) column of matrix Ai.

while i j).

Modification of the Weighted Checksum Method 85

Note, that proposed modified method may be used to design the fault-tolerant version of an
arbitrary matrix algorithm for which above-mentioned confirmations are corrected. Therefore,
these confirmations may be considered as sufficient conditions for using the modified WCS
method.

As a result, the proposed checksum scheme increases the computational complexity of original
algorithm (12) approximately on 0(N2) operations (such as multiply-add operations). Con-
sequently, the proposed modification of WCS-method does not increase its computational
complexity. However, the proposed uniform scheme enables to correct one error among elements
of an arbitrary column (or row) of an input matrix A(M, N) on any from K steps of algorithm
implementation. Consequently, it is possible to correct up to K (where K = (N - 1) for case
M = N) errors during solving the whole LA task.

In the next section of this paper, we will try to use the proposed modified WCS method to
design the fault tolerant version of Faddeeva and Jordan-Gauss algorithms.

3. DESIGN OF THE FAULT TOLERANT VERSION OF FADDEEVA
AND JORDAN-GAUSS ALGORITHMS

Starting with N x N , Nx K, P x N and P X R input matrices A, B, C and D, respectively,

Faddeeva algorithm is intended [2, 5, 15] for solving matrix equations of the type

X=C·A-1·B+D (13)

(14)

(15)

where U is the upper triangular matrix.

The main practical advantage of Faddeeva algorithm is its versatility. This stems from the fact
that expression (13) allows to solve a set of problems. Some of them are listed below:

were the four input matrices form an (N + P) x (N + R) joint matrix
the following way:

when arranged in

The idea of Faddeeva algorithm consists of reducing the lower left quadrant of the matrix
(i.e. C-matrix) to zero matrix, while in the lower right quadrant of the matrix is formed to
the resultant PxR matrix X. In order to perform above-stated operations with A being a non-
singular matrix, the Gauss elimination algorithm is used. Hence, in the course of computations,

the joint matrix is being transformed into the following matrix:

86 O. Maslennikov

one, without any comparison. The described above version of Faddeeva algorithm can be
expressed by the following Pascal-like form:

- solving a system AX = B of linear algebraic equations with one or more right-hand sides

(depending upon the numbers of columns in B), i.e.

where I is the identity matrix;

- matrix multiplication X = C · B for A = I, D = 0;
- matrix multiply-add operation X = C · B + D for A = I;

- matrix inversion X= A-1 for C = B = I, D = 0;
- adaptive filtering algorithms X= C · A-1 + D for B = I.

There are other important modifications of Faddeeva algorithm. It can be employed, for
example, in fast solving of linear programming problems using Karmarkar algorithm.

To provide a numerical stability of Faddeeva algorithm, Gauss elimination with partial
pivoting within columns [2, 16, 17] is usually used. As a result, at the i-th step (i = 1,..., N) of
the algorithm, the elimination of elements fji

i(j = i + 1, ..., N + P), which belong either to

the original matrix (for i = 1) or to the partially transformed matrix (for i > 1), is

preceded by successive comparisons of fji
i (j = i + 1,..., N) with the pivot element fji

i. If

|fji
i|>|fii

i|,

then the i-th and j-th rows of the matrix are interchanged and a Boolean variable vji is set to
1. In the opposite case, the row interchange doesn't take place, and vji is set to 0. After
completing all comparisons and interchanges for a given step, the pivoting (i-th) row with
the pivoting element fii

iis finally derived. Then the original Gauss elimination of the elements
fji

i (j = i + 1,..., N + P) starts. It is accompanied by calculations of elements mji of the lower

triangular matrix M and transformations of rows of the matrix from the (i + 1) row to the (N
+ P) row.

However, to provide a correct realization of the algorithm, the selection of pivoting elements
as well as corresponding interchanges are limited only to the upper (corresponding to the matrices
A and B) quadrants of matrices Note, that the elimination process is carried out within all
quadrants of Naturally, in the N-th step, the element fN

N
N is immediately taken as a pivoting

Modification of the Weighted Checksum Method 87

(16)

The Jordan-Gauss algorithm [16,17] is an efficient alternative to classical Gauss elimination
for the solution of dense linear systems of the form

(18)

(19)

To provide numerical stability of this algorithm, the Gauss elimination with partial pivoting
may be used. The described above version of Jordan-Gauss algorithm can be expressed in
the following form:

where I is the identity matrix, and 0 is a zero matrix. Then the N steps of Gauss elimination are
performed for transforming the matrix into the matrix F' (15).

(17)

where A is N x N matrix of the system coefficients. The main advantage is that it gathers together
two phases, triangularisation and back substitution [17]. In the case when X and B are N x R
matrices, this algorithm is the particular case of Faddeeva algorithm, in which the two input

matrices A and B form an joint (N + N) x (N + R) matrix of the following form:

88 O. Maslennikov

where

As a result of the execution of this algorithm, the desired elements of the matrix X are determined

as follows:

(20)

It is followed from the constructions (16) and (19), that if during i-th computation step
the element mji is wrongly calculated, then errors will appear in all elements fjk

i+ 1 of j-th row of
Moreover, if any element fik

i of the leading row is wrongly calculated, then errors appear
in all elements of k-th column of In both cases, these errors can not be corrected by
the original WCS-method. Therefore, in order to derive a fault tolerant version of this algorithm,
the proposed modified WCS method should be used. However, the conditions represented in
the previous section should be true. For algorithms (16) and (19) these conditions are transformed
in the theorems 1,2 and 3 respectively.

Theorem 1
If during the i-th step of the algorithms (16) or (19) the element fjk

i+1 was wrongly calcu-
lated, then errors do not appear among other elements of matrix while the j-th row isn't

The proof of this theorem directly follows from the algorithm (16), where each element fjk
i

takes part in calculations only elements fjk
i+1 , fjk

i+2,... , fjk
i+g, where (i + g) j and (i + g) k.

Theorem 2
Assume that the element fjk

i was wrongly calculated q times (q < i) before executing the i-th
step of algorithm (16) or (19). Then it is possible to correct its value only once, using WCS
method for row encoded matrix at the beginning of the i-th step of the corresponding
algorithm.

Proof
Without the loss of a generality, we assume that i < j, i < k and q = 2 for element fjk

i. Let
the element fjk

i was wrongly calculated at the (i - l)-th step of algorithms (16) or (19). Then its
value will be equal to

the pivoting one (i.e. i j).

Modification of the Weighted Checksum Method 89

where zjk
i - is the calculation error. Then, in accordance with (3.16), after performing of next

algorithm step, we obtain:

We assume now, that last expression was also wrongly calculated. In similar way, we obtain

that the value of the element fjk
i+1 will be equal to

where

Thus, the computation errors of the element fjk are accumulated in the variable zjk.

Consequently, the wrongly calculated element fjk may be corrected only at the beginning of

the j-th step of the algorithm (16) or (19), i.e. when the j-th row will become the leading row

(j=i).

Theorem 3

Values of the checksum CSi and the weighted checksum WCSi of the i-th column of the matrix
M are respectively equal to values of the checksum PCSi

 (i+1) and the weighted checksum
QCSi

(i+1) of the i-th column of matrix i.e. equals to values of the checksum and
the weighted checksum of i-th column of matrix
rithms (16) or (19).

after performing the i-th step of the algo-

Proof
At the beginning of the i-th step of algorithm (16) the values PCSi

i and QCSi
i of the matrix

FC in accordance to (9) are equal to the following expressions:

and

respectively.
After performing of the i-th step of the algorithm (3.16) with the column encoded matrix FC,

these values will be equal to

In other side, values of the checksum CSi and the weighted checksum WCS, of the i-th column
of the matrix M in accordance to the expression (9) and algorithm (16) are equal to following
expressions:

90 O. Maslennikov

and

Note that the proof of this theorem for the algorithm (19) performs in a similar way. Thus,
the correctness of conditions represented in the section 2 is proved. Therefore, in order to derive
of a fault tolerant version of this algorithm, the proposed modified WCS method checksum
scheme may be used.

However, we should be certain that the elements of i-th column of matrix F' were calculated
correctly at the (i - 1) step of the algorithms (16) and (19). It is easy proved that correctness of
these elements may be verified using WCS-scheme for i-th column of matrix FC

i (analogously to
proof of the theorem 3). Finally, the fault tolerant version of Faddeeva and Jordan-Gauss
algorithms without pivoting consists of execution of the following stages:

1. The original matrix F is represented in the form of the fully encoded matrix FRC (see
expression (10))

where values of the checksums and weighted checksums are represented by the following
expressions (in the case of using the linear encoded vector (4)):

(21)

2. For i = 1, 2,..., N - 1, stages 3-7 are repeated.
3. At the beginning of the i-th algorithm step, error detection and correction procedure within

elements belong to the i-th column row of the matrix
the expressions (11).

is performed in accordance to

Modification of the Weighted Checksum Method 91

Table 1. Computational complexity of the proposed FT algorithms

4. The error detection and correction procedure within elements which belong to the i-th row
of matrix is performed in accordance to the procedure (11).

5. The elements mji are calculated.
6. The error detection and correction procedure for the elements mji is performed in

accordance to the procedure (11).
7. The elements of matrix are calculated.
Note, that realization of the detection and correction procedures for elements of i-th column

of matrix and elements mji requires to perform 2*N multiply-add operations and 2*N additions
in the case of Jordan-Gauss algorithm, and 2*(N - i + P) multiply-add operations and
2*(N - i + P) additions in the case of Faddeeva algorithm. For realization of the detection and
correction procedure for the elements of i-th (leading) row of the matrix it is necessary to

perform (N - i + R) operations of multiplication with addition and (N - i + R) operations of
addition for both Jordan-Gauss and Faddeeva algorithms. Moreover, for both mentioned
algorithms, the resulting elements xjp are not correct during computations. Therefore, these
elements should be checked and corrected after algorithm implementation by means the original
checking procedure of the WCS method. For realization of this stage, it is necessary to perform
N*R operations of multiplication with addition and N*R operations of addition. This means, that
the computational complexity of the whole FT Faddeeva and Jordan-Gauss algorithms increases
on 0(N2) multiply-add operations and 0(N2) additions. Besides, due to increasing input matrix
sizes, the computational complexity of the proposed algorithms is also increased on O(N2)
multiply-add operations (see Table 1) in comparison with the original algorithms. However, new
algorithms enable to detect and to correct one error in an arbitrary row or column of the matrix

This means, that it is possible to correct up to N errors during whole of Jordan-Gauss or
Faddeeva algorithms.

92 O. Maslennikov

In the Pascal-like form the fault tolerant version of Faddeeva algorithm without pivoting may

be represented by the fol lowing construction (22), were δ is a small value, named a tolerance, so

that a r o w (column) of resulting matrix wi l l be accepted as error-free if the d i f ference between

the computed r o w (column) sum and checksum is less than δ. The variable ε is a machine

depended constant with a small (roundoff) value. Note, that in the case when a s ingle error w a s

occurred during computations, the d i f ference (r o u n d (S2/S1) - S2/S1) is determined by only

r o u n d o f f values and therefore has a very small value. At the same time, if more errors w e r e

occurred within one column (row) computations, this dif ference has not a small value. Therefore,

the var iable ε is used here for searching of multiply errors and halting program execution.

Modification of the Weighted Checksum Method 93

where

Note that the Pascal-like form of the FT Jordan-Gauss algorithm without pivoting may be also
represented by the construction (22), in which the variable i is used instead of the parameter P.

It is assumed in the construction (22), that no error occurs during calculation of the checksum
and weighted checksums PCSi, QCSi, CSi and WCSi, i.e. these values should be calculated by
fault-tolerant hardware of a system. In the opposite case, the fault-tolerant version of an algorithm
must provide the double recomputation of the erroneous checksum or weighted checksum value
in accordance to the following construction (23):

Remark
Faddeeva (16) and Jordan-Gauss (19) algorithms with partial pivoting differ from the original

ones only in the extra procedures for leading row selection. Because the procedures of elements
comparing and row interchanges don't influence on the checksum and weighted checksum values,
the theorems 1-3 and all stages of the fault tolerant versions of the mentioned algorithms without

(23)

Note, that in the case when the construction (23) is used in the proposed algorithms,
the computational complexity of whole FT Faddeeva and Jordan-Gauss algorithms do not
increase (in comparison to the construction (22)) when no errors is occurred in the checksums or
weighted checksums. However, 2 · (N - i) extra multiply-add operations for each error, which was
occurred in the checksums or weighted checksums at the i-th algorithm step arc needed. However,
such versions of FT algorithms enable to detect and to correct a single error in an arbitrary row or

and N2 + N · P errors during whole of FT Jordan-Gauss and Faddeeva algorithms implementation
respectively. The computational complexity of the proposed algorithms is represented in
the Table 1.

column of the matrix „ •
at each algorithm step. This means, that it is possible to correct up to N2

94 O. Maslennikov

pivoting will also true when the strategy of partial pivoting is used. However, for partial pivoting

version, after performing the stage 3, the selection of the pivoting element and corresponding row

exchanges should be executed first. Then the stage 4 of the proposed algorithms may be carried

out.

4. EXPERIMENTAL VERIFICATION OF THE PROPOSED FT ALGORITHMS

In order to estimate a tolerance of the proposed algorithms to transient faults (i.e. calculation

errors) and for evaluation of the numerical error for different matrix sizes and types and different

encoder vectors, the program environment "ABFT" was designed in Borland Delphi environment.

This program allows:

- to control the process of execution fault tolerant algorithms for different input data and

checksum types: Single, Real, Double;

- to select the type of the encoded vector: Linear or Average;

- to select the numerical accuracy of computations;

- to select the breakpoints: step over or after error finding;

- to inject the single errors and to select the error values: for each algorithm, in an arbitrary

algorithm step, into an arbitrary matrix element;

- to type the results of the algorithm implementation and detected errors;

- to read of input data from files and to write of the results to output files;

The main testing results of the proposed algorithms with different encoder vectors and input

matrices are following (see also Table 2):

- the proposed fault tolerant versions of Faddeeva and Jordan-Gauss algorithms permit to detect

and to correct a single error in each column of input matrix at each algorithm step;

- the advantage of use of the average encoder vector in comparison with the linear one is that

it will not cause any overflow error unless there is an overflow error in the computation of

the information matrix [13]. However, the drawback of these encoder vectors as well as the linear

checksum encoder vectors is that they can be used only for well conditional input matrices.

Moreover, the average encoder vector can be used only for matrices, which elements have values

of approximately the same order as the size N of input matrices. An experimental evaluation

shows that even for matrices with ratio S of the average value E of elements to the matrix size N

less then |S| < 0.05, the linear encoder vector is better in comparison with the average one (i.e.

allows to detect and to correct the smaller error). Thus, in a case of using both mentioned encoder

vectors, the minimal detected and corrected error depends on values of the input matrix elements.

Therefore, the best choice is the normalized encoder vector, which allows automatically to adapt

the checksum coefficients to values of the input matrix elements. Mathematical details of

numerical properties of the proposed encoder vectors are not the object of this paper and may be

a base of separate investigations.

- for different input matrix elements and checksum data types (Single, Real or Double), i.e. for

different input data precision, the minimal error value or the value of a tolerance δ in

Modification of the Weighted Checksum Method 95

Table 2. Experimental verification of proposed FT Jordan-Gauss algorithm

5. CONCLUSIONS

The modification of the original WCS method, which operates with a wider set of LA

algorithms and allows to design the effective fault-tolerant versions of algorithms has been

described, as well as the sufficient conditions for using of the proposed method have been

formed. The fault tolerant versions of Faddeeva and Jordan-Gauss algorithms were designed

using modified WCS method. The computational complexity of new algorithms increase

approximately on 0(N2) multiply-add operations in comparison with the original algorithms.

However, new algorithms enable to detect and to correct a single error in an arbitrary row or

column of the input matrix at the each algorithm step. Hence, it is possible to correct up to N2 and

(N2/2 + N · P) single errors during realization of whole Jordan-Gauss and Faddeeva algorithms

respectively (see Table 1). The verification of the proposed algorithms proved that they are

correct and they enable to detect and to correct a single error in an arbitrary row or column of

the proposed algorithms must be equal the data precision value for small size well conditioned

(cond < 100) input matrices and more value for larger matrices and/or matrices with a higher

condition number. For example, for input data of Real format (accuracy is equal 10E-11), input

corrected in the case of Jordan-Gauss algorithm with partial pivoting and with the linear weighted

encoded vector. Thus, the increasing both input matrix sizes and/or cond value require an increase

of the tolerance value δ.

matrix size equal 40 and condition number cond = 134, the error δ 10E-10 may be detected and

96 O. Maslennikov

the well conditioned input matrix at the each algorithm step. It has been established, that

the drawback of using the average and the linear encoder vectors is that the minimal detected and

corrected error depends on values of the input matrix elements. Therefore, the best choice is

the use of the normalized encoder vector, which allows automatically to adapt the checksum

coefficients to values of the input matrix elements. Moreover, the minimal error value or the value

of a tolerance δ in the proposed algorithms can be equal the data precision value for small size

well conditioned (cond < 100) input matrices and must be more value for larger matrices and/or

matrices with a higher conditional number.

References

[1] S. Y. Kung, H. J. Whitehouse, T. Kailath, VLSI and Modern Signal Processing, Prentice-Hall,

Englewood Cliffs, New Jersey (1988).

[2] G. H. Golub, C. F. V. Loan, Matrix Computations, Baltimore: John Hopkins Univ. Press (1983).

[3] S. Y. Kung, VLSI Array Processors. Englewood Cliffs, N.J. Prentice Hall (1988).

[4] M. Cosnard, D. Trystram, Parallel Algorithms and Architectures, International Thomson Computer

Press, Boston (1995).

[5] D. K. Faddeev, V. N. Faddeeva, Computational methods of linear algebra, W. H. Freeman and

Company (1963).

[6] K. H. Huang, J. A. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE Trans.

Comput., C-33, 518 (1984).

[7] J. Y. Jou, J. A. Abraham, Fault-tolerant matrix arithmetic and signal processing on highly con-

current computing structures, Proc. IEEE, 5(74), 732 (1986).

[8] L. Hammond, B. Nayfeh, K. Olukotun, A Single-Chip Multiprocessor, Computer, 30(9), 79 (1997)

[9] R. Wyrzykowski, J. Kanevski, N. Maslennikova, O. Maslennikov, Fault-Tolerant Matrix Decom-

position and its Implementation on Processor Arrays, Engineering Simulation, 15(6), 779 (1998),

Gordon&Breach Science Publishers, England.

[10] O. Maslennikov, A. Guzinski, J. Kanevski, R. Wyrzykowski, Fault tolerant QR-Decomposition

Algorithm Based on Householder Reflections and its Parallel Implementation, Proc.4-th Int.

Workshop Parallel Numerics'97, Zakopane (Poland), 177 (1997).

[11] O. Maslennikov, J. Kanevski, R. Wyrzykowski, Fault tolerant QR-decomposition algorithm and its

parallel implementation, Lecture Notes in Computer Science, D. Pritchardand, J. Reeve (Eds.),

Springer, 1470, 798 (1998).

[12] D. E. Schimmel, F. T. Luk, A practical real time SVD machine with multi-level faidt tolerance, SPIE

Real time signal processing IX, 698, 142 (1986).

[13] V. S. S. Nair, J. A. Abraham, Real-number codes for faidt-tolerant matrix operations on processor

arrays, IEEE Trans.on Comp., 39(4), 426 (1990).

[14] F. T. Luk, H. Park, An analysis of algorithm- based tolerance techniques, SPIE Vol.696, Advanced

algorithms and architectures for signal processing, pp. 222-227 (1986).

[15] R. Wyrzykowski, J. Kanevski, O. Maslennikov, Systolic-type implementation of matrix compu-

tations based on the Faddeeva algorithm, Proc. IEEE Int. Conf. Massively Parallel Computing

Systems, Ischia (Italy), pp. 31-42 (1994).

[16] A. Jennings, J. J. McKeown, Matrix computations, Willey&Sons, Chichester (1992).

[17] J. M. Ortega, Introduction to parallel and vector solution of linear systems, Plenum Press,

New York (1988).

[18] M. Vijay, R. Mittal, Algorithm-based fault tolerance: a review, Microprocessors and Microsystems,

21, 151 (1997).

