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Abstract. The modified weighted checksum method is proposed, which can be used for deriving fault 
tolerant versions of most linear algebra algorithms. The purpose is the detection and correction of calculation 
errors occurred due to transient hardware faults during algorithm execution. Using the proposed method, 
the fault-tolerant versions of Jordan-Gauss and Faddeeva algorithms are designed. The computational 
complexity of new algorithms is increased approximately on O(N2) multiply-add operations in comparison 
with the original algorithms. However, new algorithms enable to detect and to correct a single error in an 
arbitrary row or column of input data matrices at the each algorithm step. Hence, it is possible to correct up 
to N2 and (N2/2 + N • P) single errors during realization of whole Jordan-Gauss and Faddeeva algorithms 
respectively. Finally, the results of experimental verification of the proposed algorithms are represented. 
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1. INTRODUCTION 

The methods of linear algebra (LA) make a basis for mathematical models in various fields 

of science, engineering and technology such as signal and image processing, system theory, 

statistical and numerical analysis, biomedical researches, physical experiments, etc. For example, 

here are some specific problems to be solved by modem systems of real-time signal processing: 

matrix multiplication for covariance estimation, solving of linear systems in adaptive processing, 

computing eigenvalues/eigenvectors for high-resolution array processing and adaptive beam-

forming [1]. However, most of LA algorithms are characterized by a high computational 

complexity (O(N3) multiply-add operations, where N is the order of input data matrix) and 

regularity [1-5]. Therefore, the application-specific parallel systems (ASPS) destined to 

implementation of several applied algorithms and adapted to their properties are most suitable for 

real time realization of these algorithms. 

Application areas of ASPS demand a large degree of reliability of output results. However, 

the probability of physical failures increases along with increasing of the algorithm and target 

computing system complexity. Since a single temporary or permanent failure in a processor can 

break down an entire computing system, fault tolerance should be provided in these cases on 

hardware or (and) software levels. The most known methods for providing fault tolerance use 

hardware or time redundancy, which increase the cost or degrade the performance of compu-

user
Tekst maszynowy
CMST 8(1) 79-96 (2002)

user
Tekst maszynowy
DOI:10.12921/cmst.2002.08.01.79-96

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy



80 O. Maslennikov 

tational systems. Therefore, they are few suitable for real-time computing systems and parallel 
processors. The algorithm-based fault tolerance (ABFT) methods are more suitable for such 
systems. 

ABFT is an error detection, localization and correction scheme, which uses redundant 
computations within the algorithms to detect and correct errors caused by transient failures in 
the hardware, concurrently with normal operation [6-8], In ABFT, the input data are encoded in 
the form of error detecting or (and) correcting codes. The algorithm is modified to operate on 
encoded data and produce encoded outputs, from which useful information can be recovered veiy 
easily. The modified algorithm will be more complex and therefore, will take more time to operate 
on the encoded data in comparison with the original algorithm. This time overhead should not be 
excessive. Thus, ABFT methods establish the rules of the original applied algorithms and input 
data arrays modification. From this, it is clear that these methods are not a general mechanism as 
some other methods (e.g. the triple modular TMR or triple time redundancy TTR methods), 
because they may be varied from algorithm to algorithm [18]. However, when the modified 
algorithm is actually executed on a target architecture, the overheads are required to be minimum 
in comparison with other known methods. Moreover, in this case, the tolerant to transient fault 
architectures of ASPS's is derived automatically, using known mapping methods for mapping of 
fault tolerant algorithms into corresponding PA architectures [3], 

Module-level faults are assumed [8] in the algorithm-based fault tolerance. A module 
(processor or PE for parallel computers) is allowed to produce arbitrary logical errors under 
physical failure mechanism. This assumption is quite general since it does not assume any 
technology-dependent fault model. Without loss of generality, a single module error is assumed 
in this paper. Also, communication links are supposed to be fault-free. 

The most known ABFT method called weighted checksum (WCS) one, which is specially 
tailored to matrix algorithms and array architectures, has been proposed by Abraham et al. [6, 7]. 
In their scheme, redundancy is encoded at the matrix level by augmenting the original matrix with 

weighted checksums. Since the checksum property is preserved for various matrix operations, 
these checksums are able to detect and correct errors in the resultant matrix. Furthermore, 
the complexity of detection and correction process is much smaller than that of the original 
computations. For example, the computational complexity of the modified fault-tolerant (FT) 
version of the matrix multiplication algorithm A(N,N)*B(N,N) = C(N, N) increases on 2N2 

operations and is equal to (N3 + 2N2) multiply-add operations. However, this version allows to 
detect and to correct the single error among elements of each column of an input matrix A(M, N) 
occurred during algorithm implementation. Consequently, it enables to correct up to N single 
errors during solving the whole matrix multiplication task. 

However, the original WCS method is not suitable for most LA algorithms, since a single 
transient fault in a processor or a processor element of an array during computation might cause 
multiple output errors, which can not be located and corrected. Therefore, in the papers [9-11], 
we propose the modified WCS method and FT versions of Gauss elimination, Cholesky, 
Householder reflections and Givens rotations algorithms. In this paper, we establish the sufficient 
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conditions to use modified WSC-method and then apply its for designing fault-tolerant versions 
of Jordan-Gauss and Faddeeva algorithms. Finally, the verification results of the proposed 
algorithms are represented. 

2. WEIGHTED CHECKSUM (WCS) METHOD AND ITS MODIFICATION 
FOR DESIGNING OF FAULT TOLERANT VERSIONS 

OF MAIN LA ALGORITHMS 

The WCS code has been adopted by Jou and Abraham [7] in matrix arithmetic operations 
for algorithm-based fault tolerance. The idea is to compress the information contained in 
the row/column elements of matrix into a single element, which is named as a check element. 
Information is compressed in such a way that it is preserved during algorithm implementation. 
For example, a WCS encoded data vector v(N) with Hamming distance equals three, which can 
correct a single error (SEC) can be expressed as 

(1) 

(2) 

(3) 

(4) 

The difficulty with the first choice is a loss of the numerical accuracy due to large weights, 
while the second choice leads to larger extra computations necessary to correct an error. 

Moreover, the following more advanced encoder vector pares were proposed in the Ref. [13]: 
1) average and weighted average encoder vectors: 

(5) 

2) normalized encoder vectors: 

where vi is a element of a data vector v(N), 

PCS = p T x [v1 v2 ... vN] , 

QCS = q T x [ v 1 v 2 . . . v N ] , 

and p(N), q(N) - are encoder vectors. 
Possible choices for vector pares p and q are, for example, [7] 
(were q is named the exponential weighted encoder vector), or [12] 

p T = [1 1 ... 1] and q T = [20 21 ... 2 N - 1 ] 

(were q is named the linear weighted encoder vector). 

p T = [1 1 ... 1] and q T = [1 2 ... N] 

pT = [ l/N l/N ... l/N ] and qT = [ l/N 2/N ... N/N ]; 
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a) for vector a(N) 

pT = [c/ |a |2 c/|a |2 ... c/ |a |2] (6) 

b) for matrix A(N,N) 

pT = [ c/|a |2 c/|a |2 ... c/ |a |2] and qT = [1 • c/|A | 2 • c/|A | ... N-c/ |A|] , (7) 

where | A | is the average value of matrix column (or row) Euclidean norms and c is a constant 
fixed by user. 

Experimental evaluation of numerical error for proposed encoder vectors also were researched 
in [13] for the set of random generated matrices. The main results are as follows: when round 
errors are the larger problem, one should use normalized encoder vectors; for overflow problems, 
one should use average encoder vectors. 

Based on the linear encoding vector (4), for example, a matrix A(M,N) can be encoded as 
either a row encoded matrix AR given by 

AR=[A A x p ( N ) Axq (N ) ] = [a PRS QRS], (8) 

where 

PRS i = ai1 + a i 2 + ... + a i N , 

QRS i = 1 x ai1 + 2 x a i 2 + ... + N x a i N 

a column encoded matrix AC 

where 

PCSj = a1j + a2 j + ... + a M j , 

QRSj = 1 x ajj + 2 x a2j + ... + M x aMj, 

or a full encoded matrix ARC [12, 14] given by 

(10) 

(9) 
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when round (S2/S1) is the nearest integer number to the value S2/S1. Note, that the value of S2/S1 

may be not integer number due to roundoff errors occurred during computations. 
Thus, the computational complexity of the modified version of the matrix multiplication 

algorithm increases only on the 2N2 operations and is equal to (N3 + 2N2) multiply-add opera-
tions. This version allows to detect and to correct the single error among elements of each column 
of an input matrix A(M,N) occurred during algorithm implementation. Consequently, it is 
possible to correct up to N single errors during solving the whole task. 

However, the original WCS method is not suitable for such LA algorithms as, for example, 
Gauss elimination, Jordan-Gauss, Faddeeva and Cholesky algorithms, Householder reflections 
and Givens rotations algorithms, etc., since a single transient fault in a processor or a processor 
element of an array might cause multiple output errors, which can not be located. In fact, 
the common property of all above mentioned algorithms is the computation on the any i-th 
algorithm step (may be not one time) the elements of leading (i-th) row or/and column of matrix 
Ai = {aji

i} and then modification of other matrix rows (columns) by means of leading ones. 
The example of corresponding fragment of such algorithms with leading column computations 
is represented by means construction (12), were values of variables K, K1, K2 and functions g1, 

cij:
 = cij - S1, (11) 

and 

For example, for matrix multiplication A(M,N) * B(N,K) = C(M,K), the column encoded matrix 

AC of a form (9) is exploited [12]. Then, the following expression is computed: 

AC x B = CC . 

To verify the computation, syndromes S1 and S2 for the j-th column of matrix C should be 

calculated (j = 1,..., K): 

In order to correct a single error, the following procedure (11) is used: 

if S1 = S2 = 0 then no error has been detected; 

if S1 

if S2 

if S1 

0 and S2 = 0 then PCSj is inconsistent; 

0 and S1 = 0 then QCSj is inconsistent; 

0 and S2 0 then i = round(S2/S1) and element cij is erroneous, 
and the correction procedure is: 
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g2 are depended from the selected algorithm. Note, that in this example the input matrix 

A = A1 = {aji} is recursively modified during K computation steps to obtain the resulting matrix 

AK + 1 . 

(12) 

As shown from the (12), if at the i-th algorithm step the element aji
i+1 of leading (i-th) column 

is wrongly calculated, then errors will appear in all elements ajk
i+1 of j-th row of A i+1. 

Analogously, if any element aik
i of the leading (i-th) row was wrongly calculated, then errors 

appear in the all elements of j-th column of A i + 1 . In both cases, these errors can not be located 

and corrected by WCS method. If the correction of elements ajk is performed during calculations, 

then the computational complexity of the original algorithm increases more than twice. 

For removing of these defects by means modification of the original WCS method, 

the following confirmations were proved for all above-mentioned algorithms (see Ref. [9, 10] 

and the next paper section): 

- If during i-th step of computations the element ajk
i+1 is wrongly calculated, then errors will 

not appear among others elements of matrix A i + 1 whi le j-th row isn't the leading one (i.e. 

- If the element ajk
i (j = i, i + 1, ..., N) was wrongly calculated several times q (q < i) before 

performing of the i-th step of algorithm (12), then it is possible to correct its using the WCS 

method for the row encoded matrix AR (5) at the beginning of the i-th step of the algorithm. 

- If an element ajk
i (j = i, i + 1,...,N) was wrongly calculated during executing of the first phase 

of the i-th step of algorithm (12), then it is possible to correct it using the WCS method for 

the column encoded matrix AC (6) after executing of this phase. 

The main consequence of these confirmations is the possibility of performing the detection 

and correction procedures during each i-th algorithm step among only elements of the leading 

(i-th) row and leading (i-th) column of the matrix Ai. Based on these confirmations, 

the modification of the origin WCS method was performed. The main idea of the proposed 

unified WCS method (scheme) destined for main linear algebra algorithms is the performing of 

its check procedures concurrently with algorithm computations or more exactly, the performing 

of the detection and correction procedures: 

- at each i-th algorithm step; 

- among only elements of the leading (i-th) row and leading (i-th) column of matrix Ai. 

while i j ). 
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Note, that proposed modified method may be used to design the fault-tolerant version of an 
arbitrary matrix algorithm for which above-mentioned confirmations are corrected. Therefore, 
these confirmations may be considered as sufficient conditions for using the modified WCS 
method. 

As a result, the proposed checksum scheme increases the computational complexity of original 
algorithm (12) approximately on 0(N2) operations (such as multiply-add operations). Con-
sequently, the proposed modification of WCS-method does not increase its computational 
complexity. However, the proposed uniform scheme enables to correct one error among elements 
of an arbitrary column (or row) of an input matrix A(M, N) on any from K steps of algorithm 
implementation. Consequently, it is possible to correct up to K (where K = (N - 1) for case 
M = N) errors during solving the whole LA task. 

In the next section of this paper, we will try to use the proposed modified WCS method to 
design the fault tolerant version of Faddeeva and Jordan-Gauss algorithms. 

3. DESIGN OF THE FAULT TOLERANT VERSION OF FADDEEVA 
AND JORDAN-GAUSS ALGORITHMS 

Starting with N x N , Nx K, P x N and P X R input matrices A, B, C and D, respectively, 

Faddeeva algorithm is intended [2, 5, 15] for solving matrix equations of the type 

X=C·A-1·B+D (13) 

(14) 

(15) 

where U is the upper triangular matrix. 

The main practical advantage of Faddeeva algorithm is its versatility. This stems from the fact 
that expression (13) allows to solve a set of problems. Some of them are listed below: 

were the four input matrices form an (N + P) x (N + R) joint matrix 
the following way: 

when arranged in 

The idea of Faddeeva algorithm consists of reducing the lower left quadrant of the matrix 
(i.e. C-matrix) to zero matrix, while in the lower right quadrant of the matrix is formed to 
the resultant PxR matrix X. In order to perform above-stated operations with A being a non-
singular matrix, the Gauss elimination algorithm is used. Hence, in the course of computations, 

the joint matrix is being transformed into the following matrix: 
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one, without any comparison. The described above version of Faddeeva algorithm can be 
expressed by the following Pascal-like form: 

- solving a system AX = B of linear algebraic equations with one or more right-hand sides 

(depending upon the numbers of columns in B), i.e. 

where I is the identity matrix; 

- matrix multiplication X = C · B for A = I, D = 0; 
- matrix multiply-add operation X = C · B + D for A = I; 

- matrix inversion X= A-1 for C = B = I, D = 0; 
- adaptive filtering algorithms X= C · A-1 + D for B = I. 

There are other important modifications of Faddeeva algorithm. It can be employed, for 
example, in fast solving of linear programming problems using Karmarkar algorithm. 

To provide a numerical stability of Faddeeva algorithm, Gauss elimination with partial 
pivoting within columns [2, 16, 17] is usually used. As a result, at the i-th step (i = 1,..., N) of 
the algorithm, the elimination of elements fji

i(j = i + 1, ..., N + P), which belong either to 

the original matrix (for i = 1) or to the partially transformed matrix (for i > 1), is 

preceded by successive comparisons of fji
i (j = i + 1,..., N) with the pivot element fji

i. If 

|fji
i|>|fii

i|, 

then the i-th and j-th rows of the matrix are interchanged and a Boolean variable vji is set to 
1. In the opposite case, the row interchange doesn't take place, and vji is set to 0. After 
completing all comparisons and interchanges for a given step, the pivoting (i-th) row with 
the pivoting element fii

iis finally derived. Then the original Gauss elimination of the elements 
fji

i (j = i + 1,..., N + P) starts. It is accompanied by calculations of elements mji of the lower 

triangular matrix M and transformations of rows of the matrix from the (i + 1) row to the (N 
+ P) row. 

However, to provide a correct realization of the algorithm, the selection of pivoting elements 
as well as corresponding interchanges are limited only to the upper (corresponding to the matrices 
A and B) quadrants of matrices Note, that the elimination process is carried out within all 
quadrants of Naturally, in the N-th step, the element fN

N
N is immediately taken as a pivoting 
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(16) 

The Jordan-Gauss algorithm [16,17] is an efficient alternative to classical Gauss elimination 
for the solution of dense linear systems of the form 

(18) 

(19) 

To provide numerical stability of this algorithm, the Gauss elimination with partial pivoting 
may be used. The described above version of Jordan-Gauss algorithm can be expressed in 
the following form: 

where I is the identity matrix, and 0 is a zero matrix. Then the N steps of Gauss elimination are 
performed for transforming the matrix into the matrix F' (15). 

(17) 

where A is N x N matrix of the system coefficients. The main advantage is that it gathers together 
two phases, triangularisation and back substitution [17]. In the case when X and B are N x R 
matrices, this algorithm is the particular case of Faddeeva algorithm, in which the two input 

matrices A and B form an joint (N + N) x (N + R) matrix of the following form: 
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where 

As a result of the execution of this algorithm, the desired elements of the matrix X are determined 

as follows: 

(20) 

It is followed from the constructions (16) and (19), that if during i-th computation step 
the element mji is wrongly calculated, then errors will appear in all elements fjk

i+ 1 of j-th row of 
Moreover, if any element fik

i of the leading row is wrongly calculated, then errors appear 
in all elements of k-th column of In both cases, these errors can not be corrected by 
the original WCS-method. Therefore, in order to derive a fault tolerant version of this algorithm, 
the proposed modified WCS method should be used. However, the conditions represented in 
the previous section should be true. For algorithms (16) and (19) these conditions are transformed 
in the theorems 1,2 and 3 respectively. 

Theorem 1 
If during the i-th step of the algorithms (16) or (19) the element fjk

i+1 was wrongly calcu-
lated, then errors do not appear among other elements of matrix while the j-th row isn't 

The proof of this theorem directly follows from the algorithm (16), where each element fjk
i 

takes part in calculations only elements fjk
i+1 , fjk

i+2,... , fjk
i+g, where (i + g) j and (i + g) k. 

Theorem 2 
Assume that the element fjk

i was wrongly calculated q times (q < i) before executing the i-th 
step of algorithm (16) or (19). Then it is possible to correct its value only once, using WCS 
method for row encoded matrix at the beginning of the i-th step of the corresponding 
algorithm. 

Proof 
Without the loss of a generality, we assume that i < j, i < k and q = 2 for element fjk

i. Let 
the element fjk

i was wrongly calculated at the (i - l)-th step of algorithms (16) or (19). Then its 
value will be equal to 

the pivoting one (i.e. i j). 
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where zjk
i - is the calculation error. Then, in accordance with (3.16), after performing of next 

algorithm step, we obtain: 

We assume now, that last expression was also wrongly calculated. In similar way, we obtain 

that the value of the element fjk
i+1 will be equal to 

where 

Thus, the computation errors of the element fjk are accumulated in the variable zjk. 

Consequently, the wrongly calculated element fjk may be corrected only at the beginning of 

the j-th step of the algorithm (16) or (19), i.e. when the j-th row will become the leading row 

(j=i). 

Theorem 3 

Values of the checksum CSi and the weighted checksum WCSi of the i-th column of the matrix 
M are respectively equal to values of the checksum PCSi

 (i+1) and the weighted checksum 
QCSi

(i+1) of the i-th column of matrix i.e. equals to values of the checksum and 
the weighted checksum of i-th column of matrix 
rithms (16) or (19). 

after performing the i-th step of the algo-

Proof 
At the beginning of the i-th step of algorithm (16) the values PCSi

i and QCSi
i of the matrix 

FC in accordance to (9) are equal to the following expressions: 

and 

respectively. 
After performing of the i-th step of the algorithm (3.16) with the column encoded matrix FC, 

these values will be equal to 

In other side, values of the checksum CSi and the weighted checksum WCS, of the i-th column 
of the matrix M in accordance to the expression (9) and algorithm (16) are equal to following 
expressions: 
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and 

Note that the proof of this theorem for the algorithm (19) performs in a similar way. Thus, 
the correctness of conditions represented in the section 2 is proved. Therefore, in order to derive 
of a fault tolerant version of this algorithm, the proposed modified WCS method checksum 
scheme may be used. 

However, we should be certain that the elements of i-th column of matrix F' were calculated 
correctly at the (i - 1) step of the algorithms (16) and (19). It is easy proved that correctness of 
these elements may be verified using WCS-scheme for i-th column of matrix FC

i (analogously to 
proof of the theorem 3). Finally, the fault tolerant version of Faddeeva and Jordan-Gauss 
algorithms without pivoting consists of execution of the following stages: 

1. The original matrix F is represented in the form of the fully encoded matrix FRC (see 
expression (10)) 

where values of the checksums and weighted checksums are represented by the following 
expressions (in the case of using the linear encoded vector (4)): 

(21) 

2. For i = 1, 2,..., N - 1, stages 3-7 are repeated. 
3. At the beginning of the i-th algorithm step, error detection and correction procedure within 

elements belong to the i-th column row of the matrix 
the expressions (11). 

is performed in accordance to 
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Table 1. Computational complexity of the proposed FT algorithms 

4. The error detection and correction procedure within elements which belong to the i-th row 
of matrix is performed in accordance to the procedure (11). 

5. The elements mji are calculated. 
6. The error detection and correction procedure for the elements mji is performed in 

accordance to the procedure (11). 
7. The elements of matrix are calculated. 
Note, that realization of the detection and correction procedures for elements of i-th column 

of matrix and elements mji requires to perform 2*N multiply-add operations and 2*N additions 
in the case of Jordan-Gauss algorithm, and 2*(N - i + P) multiply-add operations and 
2*(N - i + P) additions in the case of Faddeeva algorithm. For realization of the detection and 
correction procedure for the elements of i-th (leading) row of the matrix it is necessary to 

perform (N - i + R) operations of multiplication with addition and (N - i + R) operations of 
addition for both Jordan-Gauss and Faddeeva algorithms. Moreover, for both mentioned 
algorithms, the resulting elements xjp are not correct during computations. Therefore, these 
elements should be checked and corrected after algorithm implementation by means the original 
checking procedure of the WCS method. For realization of this stage, it is necessary to perform 
N*R operations of multiplication with addition and N*R operations of addition. This means, that 
the computational complexity of the whole FT Faddeeva and Jordan-Gauss algorithms increases 
on 0(N2) multiply-add operations and 0(N2) additions. Besides, due to increasing input matrix 
sizes, the computational complexity of the proposed algorithms is also increased on O(N2) 
multiply-add operations (see Table 1) in comparison with the original algorithms. However, new 
algorithms enable to detect and to correct one error in an arbitrary row or column of the matrix 

This means, that it is possible to correct up to N errors during whole of Jordan-Gauss or 
Faddeeva algorithms. 
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In the Pascal-like form the fault tolerant version of Faddeeva algorithm without pivoting may 

be represented by the fol lowing construction (22), were δ is a small value, named a tolerance, so 

that a r o w (column) of resulting matrix wi l l be accepted as error-free if the d i f ference between 

the computed r o w (column) sum and checksum is less than δ. The variable ε is a machine 

depended constant with a small ( roundoff) value. Note, that in the case when a s ingle error w a s 

occurred during computations, the d i f ference ( r o u n d (S2/S1) - S2/S1) is determined by only 

r o u n d o f f values and therefore has a very small value. At the same time, if more errors w e r e 

occurred within one column (row) computations, this dif ference has not a small value. Therefore, 

the var iable ε is used here for searching of multiply errors and halting program execution. 
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where 

Note that the Pascal-like form of the FT Jordan-Gauss algorithm without pivoting may be also 
represented by the construction (22), in which the variable i is used instead of the parameter P. 

It is assumed in the construction (22), that no error occurs during calculation of the checksum 
and weighted checksums PCSi, QCSi, CSi and WCSi, i.e. these values should be calculated by 
fault-tolerant hardware of a system. In the opposite case, the fault-tolerant version of an algorithm 
must provide the double recomputation of the erroneous checksum or weighted checksum value 
in accordance to the following construction (23): 

Remark 
Faddeeva (16) and Jordan-Gauss (19) algorithms with partial pivoting differ from the original 

ones only in the extra procedures for leading row selection. Because the procedures of elements 
comparing and row interchanges don't influence on the checksum and weighted checksum values, 
the theorems 1-3 and all stages of the fault tolerant versions of the mentioned algorithms without 

(23) 

Note, that in the case when the construction (23) is used in the proposed algorithms, 
the computational complexity of whole FT Faddeeva and Jordan-Gauss algorithms do not 
increase (in comparison to the construction (22)) when no errors is occurred in the checksums or 
weighted checksums. However, 2 · (N - i) extra multiply-add operations for each error, which was 
occurred in the checksums or weighted checksums at the i-th algorithm step arc needed. However, 
such versions of FT algorithms enable to detect and to correct a single error in an arbitrary row or 

and N2 + N · P errors during whole of FT Jordan-Gauss and Faddeeva algorithms implementation 
respectively. The computational complexity of the proposed algorithms is represented in 
the Table 1. 

column of the matrix „ • 
at each algorithm step. This means, that it is possible to correct up to N2 
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pivoting will also true when the strategy of partial pivoting is used. However, for partial pivoting 

version, after performing the stage 3, the selection of the pivoting element and corresponding row 

exchanges should be executed first. Then the stage 4 of the proposed algorithms may be carried 

out. 

4. EXPERIMENTAL VERIFICATION OF THE PROPOSED FT ALGORITHMS 

In order to estimate a tolerance of the proposed algorithms to transient faults (i.e. calculation 

errors) and for evaluation of the numerical error for different matrix sizes and types and different 

encoder vectors, the program environment "ABFT" was designed in Borland Delphi environment. 

This program allows: 

- to control the process of execution fault tolerant algorithms for different input data and 

checksum types: Single, Real, Double; 

- to select the type of the encoded vector: Linear or Average; 

- to select the numerical accuracy of computations; 

- to select the breakpoints: step over or after error finding; 

- to inject the single errors and to select the error values: for each algorithm, in an arbitrary 

algorithm step, into an arbitrary matrix element; 

- to type the results of the algorithm implementation and detected errors; 

- to read of input data from files and to write of the results to output files; 

The main testing results of the proposed algorithms with different encoder vectors and input 

matrices are following (see also Table 2): 

- the proposed fault tolerant versions of Faddeeva and Jordan-Gauss algorithms permit to detect 

and to correct a single error in each column of input matrix at each algorithm step; 

- the advantage of use of the average encoder vector in comparison with the linear one is that 

it will not cause any overflow error unless there is an overflow error in the computation of 

the information matrix [13]. However, the drawback of these encoder vectors as well as the linear 

checksum encoder vectors is that they can be used only for well conditional input matrices. 

Moreover, the average encoder vector can be used only for matrices, which elements have values 

of approximately the same order as the size N of input matrices. An experimental evaluation 

shows that even for matrices with ratio S of the average value E of elements to the matrix size N 

less then |S| < 0.05, the linear encoder vector is better in comparison with the average one (i.e. 

allows to detect and to correct the smaller error). Thus, in a case of using both mentioned encoder 

vectors, the minimal detected and corrected error depends on values of the input matrix elements. 

Therefore, the best choice is the normalized encoder vector, which allows automatically to adapt 

the checksum coefficients to values of the input matrix elements. Mathematical details of 

numerical properties of the proposed encoder vectors are not the object of this paper and may be 

a base of separate investigations. 

- for different input matrix elements and checksum data types (Single, Real or Double), i.e. for 

different input data precision, the minimal error value or the value of a tolerance δ in 
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Table 2. Experimental verification of proposed FT Jordan-Gauss algorithm 

5. CONCLUSIONS 

The modification of the original WCS method, which operates with a wider set of LA 

algorithms and allows to design the effective fault-tolerant versions of algorithms has been 

described, as well as the sufficient conditions for using of the proposed method have been 

formed. The fault tolerant versions of Faddeeva and Jordan-Gauss algorithms were designed 

using modified WCS method. The computational complexity of new algorithms increase 

approximately on 0(N2) multiply-add operations in comparison with the original algorithms. 

However, new algorithms enable to detect and to correct a single error in an arbitrary row or 

column of the input matrix at the each algorithm step. Hence, it is possible to correct up to N2 and 

(N2/2 + N · P) single errors during realization of whole Jordan-Gauss and Faddeeva algorithms 

respectively (see Table 1). The verification of the proposed algorithms proved that they are 

correct and they enable to detect and to correct a single error in an arbitrary row or column of 

the proposed algorithms must be equal the data precision value for small size well conditioned 

(cond < 100) input matrices and more value for larger matrices and/or matrices with a higher 

condition number. For example, for input data of Real format (accuracy is equal 10E-11), input 

corrected in the case of Jordan-Gauss algorithm with partial pivoting and with the linear weighted 

encoded vector. Thus, the increasing both input matrix sizes and/or cond value require an increase 

of the tolerance value δ. 

matrix size equal 40 and condition number cond = 134, the error δ 10E-10 may be detected and 
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the well conditioned input matrix at the each algorithm step. It has been established, that 

the drawback of using the average and the linear encoder vectors is that the minimal detected and 

corrected error depends on values of the input matrix elements. Therefore, the best choice is 

the use of the normalized encoder vector, which allows automatically to adapt the checksum 

coefficients to values of the input matrix elements. Moreover, the minimal error value or the value 

of a tolerance δ in the proposed algorithms can be equal the data precision value for small size 

well conditioned (cond < 100) input matrices and must be more value for larger matrices and/or 

matrices with a higher conditional number. 
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