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Abstract. We present the program MCAnScat which simulates propagation of beams of down-converting 
phonons in anisotropic cubic and isotropic media containing point mass defects. It is assumed that 
the excitation the phonon subsystem is low-level. The program produces time-of-flight spectrograms and 
phonon energy and quasi-momentum focusing patterns for samples having the form of a rectangular 
parallelepiped, as well as for cylindric and spherical specimens. Wave vectors of beam phonons belong to 
body angles ranging from 4π to zero. The axes of corresponding cones are arbitrarily oriented. When 

down-conversion processes are excluded the outcomes of experiments on initial spatially homogeneous 

states and on diffusive propagation of phonons are compared with exact results obtained for isotropic and 

cubic media. As an example of application of MCAnScat we study ballistic and diffusive propagation of 

beams of phonons in GaAs. The obtained results are in excellent agreement with theoretical and 

experimental findings. 

PACS numbers : 05.10.Ln. 63.20.-e, 66.70.+f 

K e y w o r d s : Monte Carlo Methods, heat pulses, elastic scattering, phonon down-conversion 

I . I N T R O D U C T I O N 

D u r i n g the last three decades the spect roscopy of t ime-of-f l ight and of phonon i m a g e s h a s 

b e e n developed. For their purposes b e a m s of phonons at l o w temperatures are used. T h e s e b e a m s 

propagate in genera l ly anisotropic m e d i a and are scattered by de fec t s and other quasi-part icles . 

For t h e s tudy of the p r o b l e m of such complexi ty the traditional approach, i n v o l v i n g expl ic i t 

solut ion of the Bol tzmann equation, represents a formidab le problem, and we h a v e chosen, 

instead, to u s e the M o n t e Carlo method. 

General ly , propagat ing phonons are scattered by defects and undergo the spl i t t ing and 

c o a l e s c e n c e anharmonic p r o c e s s e s (cf. [1-7]). H o w e v e r , f o r the ambient temperature T much 

lower than the D e b y e temperature (i.e. for v e r y small densit ies of the g a s of thermal p h o n o n s 

[7] coa lescence p r o c e s s e s can be neglected in comparison w i t h the spontaneous spl i t t ing 

p r o c e s s e s . Here we consider only the scattering and down-conversion (spontaneous splitting) 
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8 Propagation and Elastic Scattering of Beams of Down-Converting Phonons 

processes of phonons of the beam. As a result of these processes the number of phonons 

in a given state diminishes, and hence they provide the mechanism of decay of phonons. 

In our previous paper we considered the program MCFoc for computer experiments with 

beams of phonons which propagate ballistically (i.e. without collisions and splitting events) 

in anisotropic crystalline media [8], 

Our present program MCAnScat (Monte Carlo simulation of ANisotropic SCATtering) allows 

for performing computer experiments on beams of down-converting, long wavelength acoustic 

phonons (LAPs for short) propagating in anisotropic crystalline media containing point mass 

defects (PDMs). 

Furthermore, we previously obtained a number of exact results for the problem of scattering 

of long wavelength phonons by point mass defects [9-13], Therefore, unlike Lax et al [ 1 ] we do 

not use concepts that arose from other models of kinetics (e.g. the Milne isotropic problem in 

astrophysics) and put the study of the influence of elastic anisotropy on propagation and 

scattering of phonons by PMDs (cf. [14]) on the firm ground. We consider here the situation 

when the down-conversion processes are much less frequent than the processes of elastic 

scattering. Recent experiments on diffusive propagation of phonon beams in yttrium aluminum 

garnets containing rare earth substitutional atoms [15] performed at helium temperatures made 

it evident that physical conditions which correspond to such restricted computer experiments can 

be achieved. 

Since in our previous paper [8] we presented a rather detailed description of the problems of 

generation and detection of phonon pulses as well as the properties of LAPs, in the first part of 

the present paper we confine ourselves mainly to the short description of scattering of phonons 

by point mass defects. We also describe spontaneous splitting processes of phonons. 

The problem of anisotropic propagation and elastic scattering of down-converting phonons 

shares the general features of beams of elementary particles. Therefore, we expect that our 

particular problem is of interest to quite a wide audience. 

II. OBJECT ORIENTED PROGRAMMING 

Experience tells us that at the beginning of a project of a software development 

the programmer does not really understand the full implications and the scope of the project. As 

a rule, up to 40% of maintenance costs (including changes in the product following initial release) 

result from unforeseen changes in user requirements. 

We frequently experienced such changes working with program of Monte Carlo simulation 

of propagation and scattering of beams of particles and quasi-particles [8, 16]. The demands of 

the experimenters grow as a result of improvements in the equipment and, as new scientific 

problems arise, theoreticians have to check new ideas and new situations. The goal of our 

software should not only be correctness, the ability to match the requirements and specifications, 

but also flexibility and expendability, along with the ability to adapt to changes in 

the specifications. Another goal is to develop a software which is reusable because it is not tightly 
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coupled to a particular project. Reusability can lead to significant improvements in overall 
productivity, not necessarily for a single project, but by applying the same software to multiple 
projects. 

All the above demands meet the requirements of object-oriented programming (OOP) and 
C++ programing language as the most familiar implementation of OOP (cf. Sect. VI). 

HI. REAL-LIFE VERSUS COMPUTER EXPERIMENTS 
ON BEAMS OF PHONONS 

A complete description of experiments with beams of phonons can be found in the book by 
Wolfe [17]. Generally one can distinguish two kinds of experiments with the use of phonon 
beams - namely transmission and reflection experiments. In the transmission experiments one 
studies crystalline anisotropy and interaction of injected phonons with defects of ideal crystalline 
structure and with thermal quasi-particles present in the medium as well as the internal dynamics 
of phonons (e.g. the phonon down-conversion processes). The phonon reflection experiments 
allow one to study interaction of phonons with boundaries and interfaces (cf. [18]). 

In our paper we confine ourselves to the low-temperature transmission experiments performed 
on good quality massive specimens which may contain a small amount of isotope or substitutional 
atoms. In such conditions one can neglect the boundary scattering. Non-equilibrium phonons are 
elastically scattered and undergo anharmonic down-conversion processes - mostly splitting of 
phonons into pairs of daughter phonons. In the case of long wavelength acoustic phonons, 
considered here, the dynamics of injected phonons depends on the mass density, linear and 
nonlinear elastic properties of the crystalline media and characteristics of scattering centers. 
The set of these characteristics is attributed to the medium. 

As a rule specimens used in real-life experiments have the form of rectangular parallelepiped 
[17] or discs [19]. In early experiments Hensel and Dynes [20] used the sample in the shape of 
a hemi-cylinder. The typical characteristic length of samples (e.g. the thickness of a disc) ranges 
from 0.1 to 1 cm. The experimenter should select the kind of specimen and properly cut it, i.e. 
choose the orientation of boundaries and axes with respect to crystalline axes. 

The mentioned properties characterize specimens. In our program to the specimen made of 
the chosen medium there corresponds an object s p e c i m e n . This object animates phonons — it 
moves and scatters them and governs the down-conversion processes which they undergo. 

Phonons are injected into the specimen by a source which, as a rule, is placed on one of 
specimen boundaries. In experiments with beams of elementary particles phonons are generated 
also inside specimens. Phonons can be radiated by current-driven metallic films, by photo-excited 
regions of boundaries, by tunnel junctions and by excited 2D gases of carriers. The two former 
types of sources are very efficient and have a broad distribution of energies. The latter type of 
generators give quasi-monochromatic beams characterized by the linear frequency v. 

Electrons of electrically-driven metallic films relax via fast processes of phonon radiation. 
Since the process of transmission of these phonons from metal to crystalline specimen is rather 
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slow, the combined system of electrons and phonons reaches "local" equilibrium state with 

temperature TH different from the ambient temperature T. The frequency distribution function 

F( v, TH) of these phonons depends on phase (cj ( h ) ) and the Debye (cD

(h)) velocities of the heater 

material, namely 

where ƒ0 is the Planck function. The non-equilibrium phonons are transmitted to the specimen. 

Generation of phonons by photo-excitation is also a complicated multi-step physical process 

and the spectral composition of non-equilibrium phonons is, as yet, poorly understood. 

Sources can be fixed (e.g. a Joule-heated metallic films or Josephson junctions deposited onto 

one side of the specimen) or movable (e.g. excited regions of specimen surface or a metallic film). 

We see that sources are characterized by their linear dimensions and the spectral composition 

of radiated phonons. If the source is placed on boundaries, it is additionally designated by 

normal to the surface. Sources placed on boundaries radiate phonons into the body 

angle dΩs = 2π. In real experiments, in some restricted way, the angle dΩs can be controlled by 

"slots" in the ciystal [21], which physically block a selected part of the phonon flux. In our 

2π. In MCAnScat program the source of phonons is represented 

by the object s o u r c e . It creates phonons in a probabilistic way attributing them the suitable 

characteristics (frequencies, polarization, wave vectors and coordinates). 

Phonons generated by the source move in the medium towards a detector. It may be a fast 

bolometer, such as a super-conducting thin film at its transition temperature or a Josephson 

junction. Low-dimensional gases of charge carriers are sensitive to the quasi-momenta of 

phonons (cf. [22]). We shall call them phonon anemometers. With a few exceptions (CdS 

detectors and clouds of excitons) detectors are immovable. Therefore, in our computer expe-

riments detectors are fixed and characterized by a set of quantities analogous to those describing 

sources. 

Since the detector position is fixed, the direction of propagation of phonons changes when 

source moves across the surface. Due to the anisotropy of the medium, currents of energy and 

quasi-momentum which fall onto the detector depend on direction of propagation and in our 

experiments they are recorded as functions of source coordinates. In this way one obtains phonon 

images of cubic crystals (patterns of density of energy and of a selected component η of 

quasi-momentum density). In computer experiments the detector is represented by a rectangular 

matrix consisting of n x m cells - elementaiy detectors (each of them corresponds to a detector 

used in real-life experiments). Each elementary detector integrates the incoming fluxes over 

the detector surface area and eventually over time. 

Additionally, for a selected position of both the source and the detector one can study the time 

dependence of the detector signal (time-of-flight spectrograms). In computer experiments 

the device "detector" is represented by the object d e t e c t o r . 

the vector 

computer experiments 0 < dΩs 
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The object p h o n o n represents a "quasi-particle phonon" with the characteristics of a phonon 

provided by the s o u r c e . The s o u r c e establishes the remaining phonon characteristics 

(e.g. the phase and group velocities and polarization vectors). Phonon does not allow propagation 

outside the specimen. 

The role of a laboratory assistant is taken by the object p a r s e r , which is responsible for 

accepting data introduced by the user and for transforming them into the list of jobs. 

The p a r s e r in our program is declared as an automatic object which supplies lists of data used 

for creation the object e x p e r i m e n t in the loop until the list of jobs is exhausted. Additionally, 

the e x p e r i m e n t contains the c o u n t e r of phonons. 

III.1. Relaxation of weakly and strongly excited phonon systems 

Sources of phonons excite the phonon subsystem of the specimen, which initially is in 
the equilibrium state characterized by the temperature T and by the Planck distribution function 
f0(h v/kBT). Consider non-equilibrium phonons characterized by the frequency v* containing 
energy, the density of which is E* [6], The phonon subsystem is weakly excited when 
and E* is small compared to the energy density of thermal phonons E(T). If 

phonons are strongly excited and, in contrast to weakly excited ones, their distribution 
function f is far from Planckian. In this paper we consider only strongly excited phonon gases 
and assume that the ambient temperature is low (i.e. 

The probability density of various phonon processes depend on their frequency v* and 
ambient temperature T, and is characterized by the inverse relaxation times τ - 1 (v*). We shall 

consider here decay and background scattering processes involving three phonons and elastic 

scattering processes by point mass defects. The related relaxation rates were collected by 

Levinson in the form of a table [6], which we reproduce here (Table I). 

Table I. Relaxation rates for various phonon processes 
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IV. PROPERTIES OF ISOTROPIC AND CUBIC MEDIA 

For long wavelength phonons a crystalline medium can be treated as an anisotropic, generally 

nonlinear, elastic medium in which point mass defects are embedded. These media are 

characterized by the mass density ρ and a suitable set of elastic constants (EC); namely by 

the second-order (linear EC) - Cαμ, βv and the third-order (the first of the set of nonlinear EC) 

(1) 

The dominating, second-order ECs define the frequencies of long wavelength acoustic 

phonons. The third-order ECs give the main contribution to the probability densities of various 

three-phonon anharmonic (down-conversion and coalescence) processes of LAPs. We shall 

include here only the spontaneous down-conversion processes. 

IV. 1. Second-order elastic constants for cubic and isotropic media 

IV. 1.1. Cubic media 

In place of pairs of Greek, indices we shall use Latin indices i,j,... = 1, . . . 6 (cf. [24]). For 

isotropic media the set of linear elastic constants contains two elastic constants C11 and C12. Cu-

bic media are additionally characterized by C44. For cubic media the tensor C2 contains three 

terms 

where CJ = (C11 + 2C 1 2 ), CL = 2 C 4 4 , K = (C11 - C12 - 2 C 4 4 ) is the elastic anisotropy parameter 

( K = 0 for isotropic media) and 

where α1, ... , μ3 = 1, 2, 3. The EC are components of tensors of elastic 

constants and When permutations of the tensor indices are taken into account 

the representation to which belongs is [ [V 2 ] 2 ] , and belongs to [ [ V 2 ] 3 ] (cf. [23]). 

Consider a deformed medium characterized by the nonlinear symmetric deformation tensor 

η with components 

where r is the radius vector of a small volume element of the medium. The elements uαμ (r) are 

the strain fields 

The deformation energy of a medium filling the volume V is 

(2) 
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(3) 

The tensor S consists of products of components of three unit vectors directed along 

three fourfold axes of symmetry 

(4) 

The tensor has components The mechanical 
stability conditions impose some restrictions on parameters C11, C12, C44, they obey three 
inequalities [24], 

We are able to study processes in which phonons down convert to pairs of daughter phonons 
only in effective isotropic media corresponding to cubic ones. Therefore we shall find elasticity 
parameters for such effective isotropic media. Averaging components of the tensor S over all 

directions of vectors and using the identity valid for each of three elements of S [24], 

e.g. 

we obtain 

(5) 
where 

(6) 

From mentioned inequalities it follows that the tensor is positive, i.e. effective media are 
mechanically stable (cf. also [25]), i.e. 

In our previous paper [25,26] we applied this method of derivation of the second and third 
order elastic constants for effective isotropic media corresponding to all crystal classes and listed 
them. A different method of obtaining effective elastic constants was proposed by Fedorov [24] 
(cf. also [27]). 

IV.1.2. Isotropic media 

For an isotropic elastic medium the tensor of second order elastic constants has the same 

structure as (5) [28] 

(7) 

where the coefficients CJ, CK can be expressed by C11 and C12 

CJ = (C11 + 2 C 1 2 ) , CK = (C11 - C12). 

An elastic medium is mechanically stable when CJ> 0, CK> 0. 

(8) 
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(9) 

(10) 

(11) 

(12) 

Since elastic constants obey stability conditions these quantities are also real for all cubic 

media. 

IV.2.2. Cubic media 

Apart of a scaling factor C1 = (C11 + 2C 4 4 ), phase velocities and polarization vectors depend 

only on dimensionless parameters s2 = C 2/C 1 and s3 = K/C1 where C2 = (C11 - C44) (cf. [12,19]). 

IV.2. Propagation of acoustic waves in cubic and isotropic media 

IV.2.1. Isotropic and effective isotropic media 

Consider an acoustic wave with the propagation vector where 

For isotropic media (including the effective ones) the propagation matrix with elements 

has a very simple form (cf. [24]) 

where I2 has the elements δα,β and σ= isotr, eff isotr. Therefore, it is obvious that is 

the eigenvector of corresponding to the eigenvalue c0 equal 

Any pair of mutually perpendicular eigenvectors el, e2, which are also perpendicular to 

represents the remaining two eigenvectors. They correspond to the two degenerate eigenvalues 

where λ and μ are the Lamé coefficients 

For effective isotropic elastic media one gets (cf. Tamura [37]) 

As a result of the positivity of the eigenvalues cl and ct (called the phase velocities) are 

real. For effective elastic medium we obtain 

(13) 
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Introduce the velocity The phase and components of the group velocities also can 
be expressed in terms of c and functions of viz. 

The dimensionless quantities depend on the components of and 

s2, s3 via several functions introduced by Every [29] 

(14) 

(15) 

(16) 

(17) 

and 

where 

(18) and 

The remaining (vectorial) functions have the components 

(19) 

(20) 

(21) 

(22) 

and 

The explicit expressions for and read 

where 

and 

(23) 

(24) 
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For each j, the ratio of components of un-normalized polarization vectors 

depends only on C3 = s3 /s2 (cf. [29]) 

(25) 

(26) 

where 

Equations (14-26) are used for the calculation of the phase velocity and components of group 

velocity as well as the components of polarization vectors. The Every formulae should be used 

with caution for directed along high symmetry axes and for elastic constants obeying 

the conditions s3 = 0 (isotropic media) and s2 = s3 (auxetics). 

IV.3. Third-order elastic constants for isotropic and cubic media 

For isotropic media tensor depends on three parameters α, ß and γ [27] 

(27) 

For cubic media the following components of do not vanish (cf. [23]): C111= C 222= C 3 3 3 

C 1 1 2 =C1 1 3 = C1 2 2 = C133 = C223 = C 2 3 3 ; C 1 2 3 ; C 1 4 4 = C255 = C366; C155 = C 1 6 6 = C244 = C266 = 

C 3 4 4 = C 3 5 5 and C 4 5 6 . Thus, there are six independent components of , which depend on α, 

ß and γ. 

Using Fedorov's method mentioned in Sect. IV.1.1, Tamura introduced the third order elastic 

constants for the effective isotropic system. Using a different method we calculated them for all 

crystal classes [25], 

IV.4. Characteristics of long wavelength acoustic phonons 

Consider an anisotropic crystalline medium. For small wave vectors where 

a is the lattice constant, i.e. for long wave-length acoustic phonons, the frequency is linear in 

the magnitude k of the wave vector k 
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V. SCATTERING OF LONG W A V E L E N G T H ACOUSTIC PHONONS 
BY POINT MASS DEFECTS 

In this section we assume that the down-conversion processes are very rare, so the elastic 
scattering processes dominate. Consider a crystalline dielectric or semiconducting specimen of 
volume V with fluctuations in the mass distribution. Suppose that these fluctuations arise from 

The phase velocity depends only on the polarization j (j = 0 for quasi-longitudinal, j = 1 
for fast quasi-transverse and j = 2 for slow quasi-transverse phonons) and on the direction of 

the wave vector k (or on polar and azimuthal angles). Thus phonons are characterized by 

the set or by 
Consider the mean value of a function A of 

(28) 

The Debye velocity cD is defined in terms of mean value of 

(29) 

Isotropic media are characterized by two constant velocities cl and ct hence Eq. (29) gives 

(30) 

In [8] (cf. also [17]) we considered the slowness surface of phonons It is defined by 
the vector equation 

(31) 

where the slowness 
Generally we shall study spatially inhomogeneous non-equilibrium states of phonon gases, 

so a phonon is a wave packet carrying the energy and the quasi-momentum It 
moves with the group velocity 

(32) 

For long wave-length acoustic phonons the group velocity depends only on and s2, s3 via 

functions introduced in Sect. IV.2.2. As a rale, the group velocity vector is not parallel 
to the wave vector, so it is an anisotropic quantity. Only for isotropic media 
(σ = l, t). For anisotropic media and for each direction of k phase velocity does not exceed group 

velocity [24] 

(33) 
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the presence of PMDs and that the crystalline lattice contains no other lattice defects. We assume 

that the specimen contains N elementary cells and that the volume of each is υ0. 

where cimp is the concentration of isotope (substitutional) atoms. 

V. l . The Boltzmann kinetic equation 

Consider a rarefied gas of LAPs. A non-equilibrium state of this gas is characterized by 

the distribution function f. This function depends on time t, spatial variables r = (x, y, z), phonon 

frequency ω, the direction of the wave vector and on the polarization j. Since in the case of 

scattering of phonons by PMDs only may change, we will further restrict ourselves to phonons 

of a given frequency and omit the dummy parameter ω. 

Assume that the unit cell of our crystal contains r atoms which are enumerated by the index 

σ. Suppose further that a σ-th atom can be substituted by isotope atoms enumerated by the index 

i (i = 1,2, ...,p) of the masses Mi

σ = Ai

σMamu, where Ai

σ is the mass number and Mamu is 

the atomic mass unit. The corresponding abundance is fi

σ. Thus, the average mass of the σ-type 

atom is 

(34) 

The simplest characteristics of the scattering processes is the mean free time τ- the average 

time elapsing between successive collisions (here - the Rayleigh time). The inverse of this 

quantity is proportional to the factor [30,31] 

(35) 

where v is the linear frequency and 

(36) 

The coefficient gσ is defined as 

(37) 

For Bravais lattices containing one (host) atom in the elementary cell and one kind of isotope 

(substitutional) atoms (σ= 1, i = 1) with the atomic mass numbers respectively Ah, Ai 

(38) 
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Generally, scattering and anharmonic processes are characterized by a non-vanishing rate of 
change [dƒ/dt]coll. The contribution [df/dt]PMD of elastic scattering to the [dƒ/dt]coll term contains 

one term which is a linear functional of the distribution function, namely 

In the kinetic regime phonon distribution function obeys the Boltzmann equation 

(39) 

(40) 

The kernel of this integral functional is the probability density of transitions per unit time 

(transition rates), which for Bravais lattices is equal to 

(41) 

For LAPs the collision integral [df /d t ] P M D can be written in a different form 

(42) 

where 

and is an element of the dyad 

(43) 

Further we shall employ abbreviated notation etc. 

As we know, for long wavelength acoustic phonons a crystalline solid can be considered as 

an anisotropic continuous elastic medium. Therefore, the problem of calculating the polarization 

vectors and frequencies is relatively simple and model independent (cf. [24,29]). Knowing them 

one can establish the spectrum of relaxation rates (i.e. the spectrum of the operator B) (cf. [13]). 

One can show that the solution of the Boltzmann equation (39), without the collision term and 

supplemented with a quite general term describing the phonon generation, yields strongly 
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anisotropic densities of currents of energy and quasi-momentum and allows to account for 

the phenomenon of focusing (cf. [13, 32]). Therefore, generally, the kinetic equation provides 

the general method of accounting for generation, propagation, scattering and decay processes of 

phonons. However, even in the simplest case of scattering by point mass defects embedded in 

an isotropic medium in the absence of down-conversion processes the explicit formulae for time 

and space dependent densities are not known. Therefore, one ought to relay on the results of 

computer experiments. 

where 

With the help of Eq. (4.46) of [33] we obtain 

Relative orientation of pairs (et1, et2) and (et1', et2') depends only on the angle Since all 

different relative orientations of them are of the same importance, we should account for all of 

them, i.e. average the probability densities over the angle By calculating scalar products ej, ej'. 

(j,.j' = l, t1, t2) and averaging them, we obtain the normalized transition rates 

(44) 

V.l.l. Scattering rates for isotropic media 

For isotropic media any pair of mutually orthogonal unit vectors which are pexpendicular to 

the wave vector k provides the polarization vectors of transverse modes (j = 1,2). Therefore, 

the calculation of scattering rates needs some accuracy. 

Consider a triple of polarization vectors of incoming phonons A triple of 

outgoing polarization vectors , can be obtained by rotation by the Euler angles 
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(45) 

For each j the transition probabilities obey the identity 

(46) 

Adding Eqs. (45) we obtain 

(47) 

Fig. 1. The dependence on angles of probabilities of 
scattering of phonons by point mass defects embedded 
in isotropic medium as a function of outgoing phonon 
direction. The direction of incoming phonon is fixed. 

Plots of angular dependencies of the transition probabilities (47) are shown in Figs. la-d. 
The expressions (47) are used in our simulations of propagation and scattering of down-
converting phonons in isotropic media. 



22 Propagation and Elastic Scattering of Beams of Down-Converting Phonons 

V.2. Long-time asymptotics of the distribution function 

Suppose that an injected pulse of phonons propagate in an elastic medium and scatters on 

point mass defects. After lapses of time much longer than the Rayleigh time τ(ω) phonons 

are registered by a detector which absorbs them. Studying the long-time asymptotics of 

the Fourier-Laplace transform of the distribution function or using the Chap-

man-Enskog approach, we derived the diffusion equation (cf. [13]) from the Boltzmann equation. 

The density of phonons of a given frequency 

fulfills the diffusion equation 

(48) 

(49) 

We obtained a general formula for the elements of the matrix of diffusion coefficients Dαβ 

valid for a medium of arbitrary symmetry [13]. For isotropic and cubic media the matrix is 

proportional to the unit matrix 

(50) 

(51) 

For both isotropic and cubic media we have obtained (cf. [9, 12]) 

The coefficient τ(35) depends on the experimental conditions, but the last factor of Eq. (51) 

is universal. Its values, for different cubic materials, are collected in a table enclosed within our 

paper [12]. 

Each computer experiment on the diffusive propagation of phonons should be performed for 

a given geometry. Therefore, we should obtain solutions of the diffusion equation for the cor-

responding choice of the geometrical form of specimen and of the boundary as well as the initial 

conditions. We consider here diffusion in a sphere. 

V.3. Dif fusion in a sphere 

Suppose that phonons propagate diffusively in a sphere of the radius R. The solution of 

the diffusion equation (49) obeying the following boundary and initial conditions 

(52) 

(53) 

depends only on the length r of the vector r and can be obtained from the solution derived in [34] 

(54) 
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The flux density of phonons at frequency ω through the unit sphere at time t looks like (cf. [34]) 

(55) 

This quantity is measured in our computer experiments on the diffusive propagation of 

phonon beams (cf. Sect. VIII.3.2). 

The function j(t) depends only on, and attains the maximum value j m a x = 0.300015 

at xmax = 0.30291, and has two inflection points: one on the front part of the diffusive pulse at 

xfi = 0.21275 (jfi = 0.118931) and the second on the tail part at xti = 0.37427 (jti = 0.235123). 

These three points are used by Ivanov et al for characterizing the diffusive pulses [35], 

The normalization condition for j(t) reads 

where Nυ is the initial number of phonons injected to the specimen by the source. From 

the normalization condition it follows that the flux density scales with whereas 

x2

m a x, x f i

2, x t i

2 scales with 

V.4. Down-conversion processes in isotropic media 

According to Eq. (20) of [8] (cf. also [17]) the tensor of second order elastic constants with 

components Cαμ, βv defines the dispersion-less frequencies In the frame of 

elasticity theory the tensor of third order elastic constants with elements Cα1μ1, α2μ2, α3μ3 

together with elements of defines the probability density of three-phonon anharmonic 

processes [36], 

Consider an acoustic phonon K = (k, j) with the energy 

in an isotropic nonlinear elastic medium. The degenerate transverse acoustic phonons (TA) with 

the phase velocity ct

(eƒ) (13) are stable against spontaneous down-conversion processes. However, 

in agreement with the conservation of energy and quasi-momentum laws only longitudinal 

acoustic phonons with the phase velocity cl

(ef) (13) can split. Polarizations of the daughter 

phonons obey some selection rules [37, 38], There are three possible splitting processes of LA 

phonons, namely: [361. The second 

process dominates, whereas the third one gives the smallest contribution to the relaxation rate of 

LA phonons. Tamura [37] a calculated the suitable matrix elements and relaxation rates. 

For isotropic media matrix elements M(K ; K', K" )corresponding to processes (I)-(III) depend 

only on Lamé's parameters λ and μ (cf. Sect. IV. 1.1) and on β and γ - t w o of three parameters 

which characterize the third order elastic constants (cf. Sect. IV.3). The above matrix elements 

depend also on the angle between k and k ' . In the process (I) a daughter TA phonon is 

polarized perpendicularly to the plane II spanned by vectors and 

(56) 

and quasi-momentum 
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(64) 

and 

The coefficients λ and μ present in formulae (61) are the Lamé coefficients (12). Similarly 

(63) 

(62) 

(61) 

where 

Because the wave number k is very small we can omit the Umklapp processes. For process 

(III) from the conservation laws it follows that the vectors k, k ' , k" are collinear, so 

the corresponding volume of the k-space is very small, and thus the related relaxation rate is 

negligible. 

Having calculated the matrix elements we can find the relaxation rates for anharmonic phonon 

processes [37] 

k = k ' + k". (60) 

(59) 

In our calculations we use formulae (56-58) and account for the conservation laws 

(58) 

(57) 

For process (II) the final TA phonons can be IIa) simultaneously polarized in II, or (IIb) 

simultaneously polarized perpendicularly to II. The corresponding matrix elements are 
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where 

while 

and 

(65) 

(66) 

(67) 

(68) 

Formulae (61-68) are used in the program for calculation of the probabilities of 
down-conversion processes in the effective isotropic medium corresponding to the chosen cubic 
medium. 

VI. THE SIMULATION ALGORITHM 

VI. 1. General remarks 

We may divide each step of simulation of the propagation a phonon in a non-ideal crystalline 
medium into several steps which are processed in the loop. Each step consists of: 

- The choice of the duration of a free flight interval between successive scattering or down 
conversion events. If a phonon leaves the sample the propagation is interrupted. 

- The choice of the kind of event which terminates the pending step of free flight. 
- Determination of the characteristics of an outgoing phonon (phonons). 

To derive explicit expressions for third order elastic constants for an equivalent isotropic 
medium Tamura [37] a used Fedorov's approach [24] (which was proposed for second order 
elastic constants). The method used in Sect. IV. 1.1 yields the same results [25] 



Between the successive scattering or conversion events a phonon moves along a straight line 

with the corresponding group velocity The duration of the free flight for each step of 

propagation is chosen at random. 

Next, one should choose the kind of the act terminating an event of free motion - it can be 

a scattering or a down conversion event. In the former case characteristics of an outgoing phonon, 

in the latter one - characteristics of two daughter phonons should be randomly chosen. 

The suitable probability densities should account for: (i) characteristics of an incoming phonon, 

(ii) the conservation laws of energy and quasi-momentum, and (iii) density of final phonon states. 

If a down conversion event is drown up one should choose a particular realization of it. 

Since we are using Monte Carlo method the important problem in our simulations is random 

selection of the numbers from a finite interval with a given density of probability. 

VI.2. Generation of random numbers 

A typical random number generator produces the numbers from the interval [0, 1) with 

a uniform density. In fact one frequently needs random numbers which belong to other intervals 

(or even to subspaces of greater dimensionality than 1) and distributed with other densities than 

the uniform one. The change of the interval [0, 1) to [a, b) can be done with a simple linear 

transformation y' = a + (b - a)y, where y [0, 1). The methods of obtaining the desired 

distribution are more complicated. 

We used two methods for the generation of random numbers, namely the direct and 

the rejection techniques. Since they were described by Jacoboni and Reggiani [39], we describe 

them very briefly. Both techniques can be used for bounded probability density function p(y) and 

a finite interval [a, b). 

VI.2.1. The direct technique 

Assume that function p(y) is defined on the interval [a, b). Introduce the recalculating function 

f(u) defined as 

(69) 

The formula y =f(a + (b - a) u) allows one to generate random numbers y distributed between 

a and b with distribution p(y), when x [0,1) has uniform distribution. We used this method for 

the random choice of directions of phonon wave vectors of in both this and previous program [8], 

Namely for the polar angle (0, 2π) we use the uniform distribution, the azimuthal angle 

(- π/2, π/2) is calculated with 
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VI.2.2. The rejection technique 

When for given function p(y) the function ƒ(u) (defined by Eq. (69)) does not exist, one 

should use a more time consuming techniques. The most simple method is called rejection 

technique. 

(70) 

(71) 

Let C be a positive number such that in the whole [a, b) and yi, yi' are two 

random numbers obtained with a flat distribution function in [a, b) and [0, C), respectively. 

In the process of generation of random numbers we reject all pairs yi, yi'- if the condition 

is violated. When this condition is satisfied, the returned number yi- is one of random 

numbers distributed with density p(y). 

VI.3. R a n d o m choice of the interval of ballistic motion and of an event terminating it 

The expressions for the probability densities per unit time interval of elastic scattering 

(Eq. (41)) and of down conversion processes (Eqs. (56-59)) are used for making the random 

choice of the duration time of a free flight event. For this purpose we use in the interval 

such exponential distribution function which for the mean value of the inverse of free flight 

duration <t - 1> gives 

for FT and ST, 

for L . 

Since the durations of free flights is distributed exponentially 

one can use the direct method of generation with recalculating function of the following form 

where y is a pseudo-random number belonging to the interval [0, 1). 

In fact according to Eqs. (35, 56-58) and Table I the only phonon characteristic entering 

expressions for characteristic times is the frequency v, thus 

in agreement with Eqs. (35), (61) and (65). 

(72) 

Coefficients depend on elastic characteristics of media, αscat 

depends additionally on characteristics of scatterers. 
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For longitudinal phonons we define the probability of the event of the type s as the ratio 

(73) 

where cmax is the maximal value of phase velocity 

In isotropic media down conversion of transverse phonons is 

forbidden. 

V I A Scattering on point mass defects 

In agreement with Eq. (41) we introduce pdir - the un-normalized probability density of 

scattering transforming an incoming phonon into a phonon 

Since this probability distribution can be directly used for generation of random 

numbers using the rejection technique. This method is rather slow (approximately 20 rejection 

events per one random point), but we are not able to find recalculation function for this problem. 

According Sect. V. 1. in the case of an isotropic medium the scattering probability densities 

depend only on one angle υ between the polarization vectors of the incoming and outgoing 

phonon. Here we can use the direct method. 

VI.5. Phonon down-conversion processes 

VI. 5.1. Anisotropic media 

Generally the density probability of down-conversion processes depends on three wave 

vectors, i.e. on nine parameters. Since the wave vector of an incoming phonon is given, one has 

to operate with the set 

where P is the discrete set of all pairs of polarization indices. Using the quasi-momentum 

conservation law we can eliminate three parameters. Unfortunately, because the phase velocities 

are rather complicated functions of directions of wave vectors the energy conservation law cannot 

be used for further reduction of the number of independent parameters. 

Since phonons involved in down conversion processes have finite life-time τph their energies 

are defined with the accuracy 

law ωi - ωƒ

(1) - ωƒ

(2) = 0 should be modified 

Hence, the energy conservation 
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However, in such case the time cost of random selection (the number of rejection per one 
accepted random point) of a pair of outgoing phonons is rather high, being proportional to 

VI.5.2. Down-conversion processes in an isotropic medium 

In an isotropic medium all three wave vectors of phonons taking part in a down-conversion 

symmetry of isotropic media all reaction planes are equivalent, so one can consider all 
down-conversion processes in a plane using as the only free parameter of process the angle υ 

between wave vectors of the outgoing phonons. The angle φ defining the orientation of 

event, namely the vectors lay in a plane called the reaction plane. Due to 

the particular reaction plane is selected at random with the uniform distribution function. 

The probability distribution function of υ as well as the interval of allowed angles (υ1, υ2) depend 

on the type of down-conversion process described in Sect. V.4. To choose the angle υ we are 

using in the program the rejection technique. 

For the reaction channel one can use the direct method of generation of random 

numbers, and for process the recalculating function is unknown, so we used 

the rejection method. The generating procedures have been adapted from the Monte Carlo 

program of Kiev group [34], 

VI. 5.3. The compromise: anisotropic propagation and scattering, isotropic down-conversion 

processes 

Suppose that an incoming phonon propagating in a cubic medium down-converts 

to a pair- of daughter (outgoing) phonons The characteristic 

of the incoming phonon are calculated with the help of formulae valid for cubic media. Since in 

our computer experiments processes of down-conversion happen in an equivalent isotropic 

medium the characteristic of outgoing phonons are calculated using equations valid for isotropic 

media. The angles φ and with are randomly chosen. Knowing the angle φ for this value of 

the help of the quasi-momentum conservation law one can calculate wave vectors of outgoing 

phonons. Their phase velocities are calculated with the help of formulae valid for cubic media. 

The lengths of wave vectors are scaled until the energy conservation law is fulfilled. 

Since we discard colinear processes at last one of two outgoing phonons 

ought to be polarized transversely. According to the conservation laws it should be a FT phonon. 

So the ambiguity with the choice of kind of outgoing transverse phonons arises only for 

process. For them we choose the kind of outgoing transverse phonons using 

following probability densities 

They are related to the corresponding densities of states 
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VI. 5.4. Random choice of energies of phonons compatible with the Planckian distribution 

function 

Consider the distribution function of energies of radiated phonons for the Planckian source 

of the temperature T 

Fig. 2. The upper panel: the recalculation function 
fpl(u) corresponding to the Planckian distribution 
function of energies of radiated phonons. The lower 
panel: distribution of energies of phonons obtained 
with the help of fpl . Over ten millions of phonons were 
generated 

In our program, we decide to use the direct recalculation, with the recalculation function fpl(u) 

approximated by a table of numbers. Our recalculation function fpl(u) is depicted in Fig. 2. 

(74) 

In Monte Carlo experiments the random choice of energies of generated phonons should 

reproduce p'(v). 

Since for any integration interval the integral of p'(v) cannot be expressed in 

terms of known functions, the direct technique (cf. Sect. VT.2.1)) cannot be applied. On the other 

hand, this function is defined on the interval hence, the rejection technique also cannot be 

used. 

For our purposes it will be useful to change the variable v to y = βh v and consider the function 

p(y) =y2/(ey - 1). As we are interested in the distribution function normalized to unity, we omit 

the coefficient (βh)-2 Notice that the definite integral is very small, hence we may 

consider p(y) on the interval [0, 20). 

To apply the rejection technique to p(y) one should divide the interval [0, 20) into several 

subintervals selecting for each of them a positive number C (cf. Sect. VI.2.2). Unfortunately such 

modified rejection technique yields rather complicated code, and is still slower than the direct 

recalculation of random numbers. 
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The energy distribution function obtained with the help of ƒpl(u) is also shown in Fig. 2. We check 

that within numerical accuracy the plot of obtained distribution function is identical with the plot 

of function (74). 

VII. PROGRAM DESCRIPTION 

VII. 1. The architecture of the program 

The program is written in C++ using OOP methods using the standard libraries. So it can be 

compiled and ran on any platform in the batch mode. 

The program consists of two main objects - p a r s e r and e x p e r i m e n t (Fig. 3). 

The p a r s e r object processes the input data and creates the queue of simulation 

scripts. The e x p e r i m e n t encapsulates all the necessary elements of a simulated 

experiment (cf. Sect. Ill) as well as the simulation loop in which the phonons are sequentially 

processed. 

Fig. 3. The architecture of the program MCAnScat 

The main l o o p of the program creates a phonon in the s o u r c e , propagates it through 

the s p e c i m e n and detects it at the boundaries of the sample. 

The initialization of s o u r c e , s p e c i m e n and d e t e c t o r sub-objects is processed during 

creation of the e x p e r i m e n t object. The constructor of the e x p e r i m e n t forwards a set of 

the initialization data to the constructors of sub-objects. Errors detected during construction 

produce messages on standard output and set error flags which are tested at the beginning of 

the main loop. 

An e x p e r i m e n t can be assembled using different s o u r c e s , s p e c i m e n s and d e -

t e c t o r s , depending on input data. Classes of the sub-objects are ordered using the inheritance 

relation. For creating a source, specimen or a detector as static objects with dynamically chosen 

type (class) we use handle-objects. A handle-object contains: 

- a pointer to the object of base type of all allowed classes, 

- the interface used in the main loop of the experiment, 

- the constructor which creates the pointed object as the object of a proper class depending 

on some keywords in the initialization data. 

The s p e c i m e n propagates a p h o n o n in a crystalline medium and contains the method of 

recalculating the p h o n o n internal characteristics. The object s p e c i m e n contains its own 
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propagation loop which propagates the phonon beginning with the injection of it by the source 

up to reaching the boundary by it. 

Inside this loop a phonon is propagated step by step. Each step is terminated by an elastic 

collision, a down-conversion process, or when the phonon reaches boundaries. During each 

propagation step the phonon moves ballistically. 

The time elapsing between successive collisions as well as the type of terminating event of 

a step is chosen randomly. When the type of event is determined, the characteristics of a finite 

phonon (or phonons) are chosen at random with the suitable probability densities (cf. Sect. V). 

Now we shall describe the most important classes and the inheritance structure of objects. We 

shall not describe here the handle-classes as they have self-explaining structures. 

VII.2. The program requirements 

The program MCAnScat does not need any special computer and operating system 

capabilities. Even PC-AT 286 suffices to compile and run it, but then one can declare only output 

data arrays the size of which does not exceed 100 x 100. Since all internal calculations are 

performed using the double precision float numbers, a co-processor is recommended. 

The co-processor option should be set during the compilation. Processors i486 and PENTIUM 

contain the mathematical co-processor "on board". For PENTIUM based computers the cache 

memory speeds up simulations, provided the size of the output array does not exceed the cache 

size (each point on the detector array contains 4 bytes) and that no other processes are pending. 

While the program is executed, it needs the memory for itself (its size depends on the compiler 

and compilation options), the output array (the declared size multiplied by the size of float data 

type) as well as approximately 50 KB for stack frame and temporary data structures. The amount 

of necessary memory depends also on the average number of phonon generations produced by 

down-conversion processes. 

For UNIX workstations there are no specific requirements. Of course a large cache memory 

can speed up simulations. On DEC OSF (DEC3000,48MB RAM, 512KB CACHE, 2 GB HD, 

200MB SWAP) we have found that simulations performed sequentially are much faster than 

many (more than eight) processes simultaneously. The program uses the floating point arithmetic, 

so it prefers processors optimized in this respect, for example the Alpha processor. 

The program does not need graphic communication devices, and can be started using an 

alphanumeric terminal (e.g. using telnet). 

VII. 2.1. Compilers 

The program was compiled and tested on the PC386/486/PENTIUM (DOS 6.22 and 

DOS4GW DOS extender) and on the DEC3000 (DEC OSF 2.0). Using the Borland C 3.1, 

Watcom C/C++32 9.5b and Watcom C/C++ 10.6 compilers, we created Intel based application, 

and CXX compiler for DEC3000 Alpha application. The program does not use the graphic user 

interface (GUI), so the libraries dependent on system are not needed. 
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We also tried to compile and use this program on Silicon Graphics IRIS workstation, but 
the available compiler does not support some of the features used in the code. The program can 
be modified by the user to the version which can be compiled, but it may lose the compact and 
elegant form. 

The complete set of source files contains the makefile for DEC CXX compiler (makefile, dec) 
and for Watcom 9.5b (makefile.wat). 

VII. 2.2. Interface 

An included additional interface allows the user to define in the interactive way the input data 
of experiments. This interface is written in the Visual BASIC programing language for 
WINDOWS platform. 

VIII. P R O G R A M USAGE 

V l i l . i . Input data format 

The input data are introduced in the command line while the MCAnScat is invoked. Each 
parameter corresponds to the name of the file which contains the data definitions. If some of 
the data should be changed, the user can overwrite it in the command line using the variables 
definition syntax. Such definitions must start with "-" sign and must not contain empty spaces. 
The overwriting is valid for all data files in the command line. This feature is useful, when 
the user wishes to prepare several experiments with the common values of variables (e.g. 
the number of phonons, geometry etc.). 

The input data are introduced in the form of a set of definitions of variables as an ASCII 
file. The definition has the form variablename = value, where value can be a number 
(e.g. cl 1 = 12.26); a vector (e.g. sourcepos = 0.03, 0.02, 0.05), a position on the plane or sphere 
(e.g. detpos = 0.12, -0.3; a size (e.g. array = 20 x 20); a crystallographic direction (e.g. xaxis = 

<3, 1, 1>) and a type (e.g. detector = energy). 

A variable definition must not contain any white characters (empty spaces, tabulators, new 
lines, etc.). 

VIII. 1,1. Units of measurements 

VIII. 1.1.1. Ballistic motion 

The elastic constants are expressed in 10 1 1 x dyn/cm2, hence 

(75) 

where (here and later on) numerical dimensionless coefficients are indicated by the square 
brackets. The mass density ρ is expressed in g/cm3 



34 Propagation and Elastic Scattering of Beams of Down-Converting Phonons 

(76) 

All introduced velocities - the phase velocity, components of the group velocity and 

the Debye velocity are in given in cm/s and are proportional to the coefficient 105. According to 

Sect. IV. 1.1. for isotropic media 

where 

In agreement with Eq. 14 for cubic media we introduce the coefficient 

(77) 

(78) 

(79) 

VIII. 1.1.2. Elastic scattering 

Consider the mean collision frequency τ-1 (ω) (35). It is proportional to the volume of the unit 

cell υ0 = [ υ0] x 1 0 - 2 4 cm3, to the linear frequency v= [ v ] x 102 GHz and to the Debye velocity 

where 

(80) 

(81) 

and 

This means that and 

A phonon travels across a distance d = [ d ] cm during the time interval [ t d] μs, where 

cD= [cD] x 105 cm/s. Since the coefficient (36) is dimensionless this means that 
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Chosen units of measurements are collected in Table II. 

VIII.2. Types of the samples 

The user can define several types of samples. The value of variable crystal contains the shape 

of the sample and the type of medium symmetry separated by commas. For the shape one can 

declare sphere, parallelepiped, cylinder or infinite (a medium without boundaries). For 

the medium symmetry one can declare isotropic or cubic. The list of shapes and symmetries can 

be extended by the user. 

VIII.2.1. Laboratory versus crystallographic coordinate systems 

The three fourfold crystalline axes of a cubic medium define the coordinate system. 
Orientation of x (xaxis) and z (zaxis) axes of laboratory coordinate system with respect to 

This means the are measured in μs. 

(84) 

(83) 

(82) 

and 

where 

VIII. 1.1.3. Down-conversion processes 

Using Eqs. (61) and (64) we obtain 
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the medium are characterized by the Miller indices. The Miller indices of the remaining axis are 

calculated automatically. In the case of a perpendicular parallelepiped or a cylindric sample 

the related sample planes are perpendicular to the laboratory coordinate system axes (axis). 

The orientation of an isotropic medium is arbitrary. 

VIII.2.2. The source 

- Spectral composition of radiated phonons: 

(1) Monochromatic (source = monochromatic). The user defines the energy w = hv 

(variable w). 

(2) Planckian (source = planckian). One should set the temperature T (temp). 

(3) For all types of sources the user can define the amount of phonons of different 

polarizations using the variables l, t f , ts. The probability of choosing a phonon of 

the given polarization j is j/(1 + tf+ ts), where j - l, tf, ts. 

- Geometry of the source: 

Several types of source geometries are allowed, namely 

(1) Point-like, located at the point rυ (src) inside the specimen, while the wave vectors of 

radiated phonons belong to the body angle 4π. 

(2) Rectangular, located on the bottom plane (this can be used for parallelepiped and 

cylinder samples only), with the center at rb (src) and the size (ssize). Phonon wave 

vectors belong to 2π. 

(3) Point-like, wave vectors that belong to a cone dΩs (sangle) directed along axis 

in the reciprocal space. 

(4) The extended source is treated as a continuous set of partial point sources. The pro-

bability of the generation of a phonon at the given point is assumed to be uniform. 

The program checks the introduced data and determines the type of source. 

VIII. 2.3. The size of the sample 

- For parallelepiped one defines sizes along x, y, z axes of laboratory coordinate system. 

The size can be defined by setting: 

(1) minimum and maximum coordinates values (xmin, xmax; ymin, ymax; zmin, zmax), 

(2) sizes (xsize, ysize, zsize) - the origin of Cartesian coordinate system is located in 

the center of parallelepiped, 

(3) sizes and minimum (or maximum) values. 

One can combine the above methods. 

- For sphere one defines the radius (r) and the center coordinates (center). 

- For cylinder one defines the height in the same way as z size of the parallelepiped, the radius 

r and the x, y coordinates (rxy) of the cylinder axis. 

- For an infinite medium there are no size variables to be defined. 

(sdir) 
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VIII.2.4. The set of medium characteristics 

- For reasons described previously [8] we restrict ourselves here to the case of cubic crystals 
and isotropic media. So according to Sect. IV. 1.1 the set of the second order elastic constants 
consists of C11, C 1 2 , C44 or C11, C12 respectively (the variables c l l , cl2, c44). The crystalline 
density is ρ (rho). 

- If one wishes to include phonon down-conversion processes, one should define the third order 

elastic constants. They can be defined in two ways: 

(1) by the set of two — α, γ of three parameters - α, β, γ (variables ra, rb, rg) 

(cf. Sect. V.4); 

(2) by the set of third order elastic constants C111, C112, C123, C144, C166, C456 (variables 

cl11, c112, cl23, cl44, cl66, c456) (cf. [37,25]) 

Internally the program uses parameters rb, rg. 

- If one wishes to include phonon scattering by point mass defects one should define: 

(1) Volume of the unit cell υ0 (variable υ0). 

(2) For lattices with basis: 

(a) Number s of atoms in the unit cell (variable s). These atoms are enumerated by 

the index σ(σ= 1, . . . , s) (cf. Sect. V . l ) 

(b) Number i of atoms substituting the σ-th atom of the unit cell and their atomic 

numbers Ai

σ as well as their abundances f i

σ (isigma, aisigma,flsigma). 

(3) For Bravais lattices containing substitutional (isotope) atoms of one kind: 

(a) the mass of host Mh and of substitutional (isotope) atom Mi- {mh, mi), 

(b) the concentration c of substitutional atoms (variable c). 

In place of above data, one can use gimp (impurity). 

VIII. 2.5. Detection devices 

Our detectors integrate signals. Detectors giving phonon patterns integrate over time. Detec-

tors giving time-of-flight spectrograms integrate signals over the area of the detector surface. 

- Resolution — For all kinds of detectors, one defines the resolution as the number of points 

comprising a pattern (e.g. patternsize = 256 x 256 for phonon patterns or patternsize = 1000 for 

time-of-flight spectrograms). 

- Sensitivity - Due to the phonon focussing effect (cf. [8]) the strength of signals can differ by 

orders of magnitude. Generally, the interval of integrated signal amplitudes I ranges from the 

lowest Imin to the largest Imax detected values. To reveal the weak signal structures one should 

define the range (Id

dmin,I
d

dmax) of the signals to store them as the output data. All values outside of 

this range will be stored as Imin

d (if I < Id

min) or as Id

max (if I > Id

max). This can be achieved by 

defining: 

(1) The variable overdrive (Idmax = overdrive Imax. If Idmin is negative Idmin = 

overdrive Imin, otherwise Idmin = 0). 
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(2) Variables absolutemin, absolutemax (they define the minimal and maximal detected signal 

directly). 

(3) Variables relativemin, relativemax 

(they define the ratio Idmin = relativemin Imin; Idmax = relativemax Imax). 

VIII. 2.5.1. Types of detectors for limited specimen 

There arc two different kinds of phonon beams spectroscopics - the time-of-flight and phonon 

images spectroscopy. So generally, for limited specimens the user has two types of detectors at 

their disposal giving respectively 

- time spectrograms (detector = time) 

- energy (detector = energy) and quasi-momentum (detector = quasimomentum) focussing 

patterns. 

Similarly as for the source, the user should define the position and the size of the square 

detector (the center of the detector - dpos; the side length - dsize). Namely: 

(1) For parallelepiped these data are in suitable units of length and the detector is placed at 

the top side of the parallelepiped. 

(2) For the sphere of radius r (in cm) one uses spherical coordinates 

(3) For cylinder of radius r (cm) one uses cylindrical coordinates 

If those values are not defined, the detector covers the whole: 

(1) top side of a parallelepiped, 

(2) surface of a sphere, 

(3) surface of revolution of a cylinder. 

When detector = time the user defines the time gate [0, tg] (tgate), tgate is in μs. 

When detector = quasimomentum the user defines the, direction 

quasi-momenta. 

VIII. 2.5.2. Detectors for infinite media 

To simulate the motion of phonons in an infinite medium we have prepared the special 

detector (detector = tracer) which allows for following, during the selected finite time interval 

([0, tgate]), the track left by each radiated phonon. Two ready-to-use detectors produce 

the number (trace = number) and the energy (trace = energy) of phonons integrated over 

a selected body angle (the variables dangle and ddir) as a function of time. 

VIII. 2.5.3. The count of phonons 

The number of generated phonons in simulation experiments is defined by the user 

(the variable count). 

VIII. 2.5.4. The output file 

Setting the variable fileformat the user specifies the type of the output file. Its name may be 

defined using the variable outfile. If the output file name is not defined, the names of the output 

of components of 

(both in radians). 

(in radians), z (in cm). 
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and input file have merely different extensions. The default extension depends on the output file 
format, namely 

*.ps - for file is in Adobe 1.0 PostScript format ( f i l e fo rmat = postscript), 

*.byt - for the array of one-byte values [0,255] ( f i l e fo rmat = byte_array), 

*.txt - for the ASCII text format ( f i l e fo rmat = ascii). 

The header in ( f i l e fo rmat = byte_array) and ( f i l e format = float_array) contains the size 
of the pattern (or number of points in line) written as an ASCII text. 

VIII. 2.5.5. Output data file format 

The user can select one of four output data file formats: PostScript, byte array, float array, and 
text. 

The PostScript output file format is the proper PostScript Adobe 1.0 format, and contains 
the bitmap representing the detector response (energy and quasi-momentum detectors) or 
the signal plot (detector for time-of-flight spectroscopy). 

The byte and float arrays include a 16-byte header, which contains the data size (i.e. the size 
of the array representing data) written as ASCIIZ text (e.g. "256 x 256"). If an output file 
includes the plot data, the last byte in the header contains "l" (line). The data succeeding 
the header are sequentially stored as chunks of bytes (byte pattern) or 3 + 1 float values (float 
pattern) with no end-of-line separators. The values are normalized to the range [0,255] for byte 
array and [0, 1) for floats. 

An ASCII output file contains the header with the size description (first line of the text), and 
the detector response values - on separate lines. There are no special separators for the end lines 
of the data. 

One can import the PostScript files directly into text editors and (or) graphic presentation 
packages. The binary file formats are designed for future use of the data in applications written 
by the user. The text file format can be used by any spreadsheet as import data. 

VIII.3. Test runs 

VIII. 3.1. Propagation of ballistic pulses in GaAs 

In computer experiments on ballistic propagation of phonons in GaAs described here 
(cf. Fig. 4), phonons are sequentially generated by the source placed on the (001) crystalline plane 
of a GaAs specimen (for which we have chosen the thickness d= 0.2 cm which is characteristic 
for GaAs substrates used in MBE technology). We also assumed that the source is placed in 
the center of the Cartesian coordinate system. Its z-axis is perpendicular to (001) plane in 
which lie the x- and y-axes. We chosen the typical frequency of phonons v = 1.5 THz. A small 
detector of phonons is placed on the opposite side of the platelet. In our computer experiments 
it has the form of the square of size l = 0.2 cm, therefore it subtends angles 
used in our computer experiments are collected in Table III. 

5.7°. The data 



40 Propagation and Elastic Scattering of Beams of Down-Converting Phonons 

Fig. 4. Schematic illustration of the experiment on 
phonon beams, and (b) the map of the quasi-momentum 
density on the (001) lattice plane of GaAs obtained in 
computer experiments. White lines denote positive and 
black - negative, whereas the gray regions corresponds 
to the vanishing x-component of quasimomentum 
density. Phonon anemometers are represented by 
shaded squares. One of them is placed in the center of 
ST-box structure (STB) opposite to the source and 
the other one covers one of corners of STB 

The point like-pulsed source generating monochromatic phonons is located in the centre of 

the of the base and it radiates wave packets of phonons with the frequency v, which we have 

taken 1.5 THz, into the body angle 2π. We assume that the initial distribution of directions of 

phonon wave vectors is isotropic. For simplicity we assume also that the probabilities to radiate 

a phonon LA, FTA and STA do not differ. Fig. 5 depicts the typical response of a bolometer to 

a pulsed beam of phonons. 

Fig. 5. Time-of-flight spectrograms for GaAs obtained 
in computer experiments. Detector placed (i) in STB 
center (upper panel), (ii) at STB corner (lower panel). 
Upper curves - energy, lower curves - quasi-momentum 

In the ballistic regime of propagation of phonons we obtained the map of total energy density 

falling onto specimen surface. In agreement with results of real life [17] and computer 
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experiments [18] in Fig. 6 one sees the caustic lines with slow transverse box (STB) structure 
encircling the pattern center (cf. also Fig. 4). This energy density map serves us as the reference 
pattern used in the computer experiments on the quasi-momentum transport. 

Fig. 6. (a) The map of the energy density obtained in 
computer experiments with a set of bolometers lying in 
(001) lattice plane of GaAs. (b) Caustic lines form 
the "ST-box" structure 

In Fig. 7 we show the dependence of the arrival times of various phonon modes on 
the detector placement for the bolometer scanned along two selected directions. The arrival time 
of LA mode is a continuous and increasing function of time in agreement with geometrical 
conditions. Since for LA mode the slowness surface is almost spherical, experimental points 
for both directions lie on the same curve. TA modes behave quite differently. For both directions 
the arrival time of the leading front of corresponding pulses decreases with the growing distance 
from the center of the top surface of the parallelepiped (cf. Fig. 7). These findings are in excellent 
agreement with our real experiments and numerical calculations [40], 

Fig. 7. Calculated dependence of TA modes arrival 
times on detector shift along [100] (left panel) and 
[110] axes (right panel). Solid lines - STA, dashed 
lines FTA modes. Thick lines indicate several modes 
moving with the same group velocities. Detector placed 
in the STB center registers all modes arriving at various 
time instants within the shaded stripe. Daggers and 
circles denote results of computer experiments. Signs 
ahead of the mode indices mark the sign of x 
component of quasi-momentum 

VIII.3.2. Computer experiments on the diffusion of phonons in a sphere 

Suppose that one deals with a solid with crystalline lattice having one atom in each unit cell 
and that the specimen has the form of the unit sphere. The source of phonons is located at 
the center of this sphere. Consider computer experiments on the phonon diffusion related to then-
scattering by point mass defects. The parameter which distinguishes different experiments is 

α-factor defined by Eq. (35), which is proportional to the defects concentration cimp (cf. Eq. (38)). 

According to Eqs. (35), (51) the diffusion constant D is inversely proportional to 

computer experiment we used the same initial number of phonons Nυ. The computer counts 

In each 
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the number of scattering events s u f f e r e d by each injected phonon. In this w a y one obtains 

Fig. 8. The dependence of mean number of 
scattering events as a function of the parameter 
α (cf. Eq.(35)) for diffusive motion of phonons 
in the unit sphere 

Fig. 10. The dependence of the position and 
height of the maxima of phonon pulses for 
the different values of the parameter α (cf. (35)) 
for diffusive motion of phonons in the unit 
sphere. For small values of α one deals with 
crossover between ballistic and diffusive motion 

Fig. 9. Shapes of phonon pulses for different values 
of the parameter α (cf. Eq. (35)) for the diffusive 
motion of phonons in the unit sphere. Each maximum 
is normalized to its maximal value. The smooth lines 
correspond to theoretical curves (Eq. (55)). Erratic 
lines represent results of computer experiment for 
cubic elastic media (α1<α2< α3) 

Fig. 11. The dependence of positions of 
the inflection points of the phonon pulses on 
the value of the parameter α (cf. Eq. (35)) for 
diffusive motion of phonons in the unit sphere. For 
small values of α one deals with crossover between 
ballistic and diffusive motion 

Suppose that an erratically moving phonon passed the distance L during the time interval tL. 

The mean free path l~ υτ. In the fu l ly developed d i f f u s i v e regime the mean number of collision 

ng — the average number of collision events for a given 
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We considered the diffusion with the boundary condition given by Eq. (53). 
In agreement with Sect. V.3. we assume that at the sphere boundary the value of number of 

phonons N (r = R = 1, t) vanishes for any instant of time and only the flux density of phonons 
(Eq. (55) contains useful information. In Fig. (9) we show the flux j(r = R= 1, t) normalized to 
its maximal value 

Fig. 12. Phonon down-conversion processes transform 
the diffusive pulse (dashed line). In the front of the 
pulse one sees a weak maximum related to longitudinal 
phonons and a strong one due to transverse phonons 

events n g = t L / τ is proportional to (L/l)2 ~ , hence ng ~ g2. In Fig. 8 we show the dependence 

of ng on obtained in our computer experiments. 

as a function of time for different values of We see that for small values of curves have 

the form of narrow peaks and are smooth, while for large values of curves are broad and 

erratic. This effect can be easily explained. Simply, the same amount of phonons is concentrated 

on time intervals of different lengths and the normalization magnifies the fluctuations. We see 

that experimental and theoretical curves fit very well. 

According to Sect. V.3. the arrival times of pulse maxima and positions of the inflection 

points are proportional to Indeed, such and then- maxima are inversely proportional to 

dependencies are observed in computer experiments depicted in Figs. 10 and 11. 

Thus, we conclude that when phonons of the beam suffer a large enough number of collision 

events, the propagation of beam becomes purely diffusive. In our experiments that happened 

approximately after 20 collisions (ng 20). 

VIII.4. Inclusion of inelastic processes 

Assume that besides the elastic scattering processes one allows also the phonon down 

conversion processes (cf. V.4). We performed suitable simulation for GaAs with about 106 

phonons. In the absence of down-conversion processes one observes the typical diffusive pulse 

related to strong elastic scattering (Fig. 12, broken line). In result of the three phonon processes, 

on the front of the broad pulse one notices a strong maximum (Fig. 12, full line). It is related to 

low energy transverse phonons, which are weakly scattered by point mass defects. The tail of the 

diffusive pulse is also distorted. Danilchenko et al [34] performed similar experiments on 

isotropic elastic medium corresponding to GaAs. 
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Program summary 

Title of program: MCAnScat 

Program obtained from: CPC Program Library. Queen's University of Belfast, N. Ireland (see 

application form in this issue). 

Licensing provisions: Person requesting the program must sign the standard CPC non profit use 

license (see license agreement printed in every issue). 

Computers: IBM PC/AT 386 with numeric co-processor, IBM PC/AT486, PENTIUM, DEC 300 

Alpha AXP. 

Operating systems or monitors under which the program has been tested: Unix, Windows NT, 

DOS with DOS4GW extender 

Programing language used: C++ 

Memory required to execute with typical data: 0.2 Mwords + 0.1 - 2 M words for data storage 

No. of bits in a word: 32. 

No. of processors used: 1 

Has the code been vectorized: No. 

Keywords: heat pulses, ballistic and diffusive transport of phonons, phonon down-conversion 

processes, cubic crystals, Monte Carlo computer experiments. 

Nature of physical problem: Phonon beams are used for studies of various characteristics and 

properties of crystalline solids such as surfaces of constant energy or interaction of phonons with 

low dimensional gases of charge earners (1D and 2D gases of electrons and holes) [42], Their 

introduction greatly expanded the study of thermal transport in crystal by permitting 

the experimentalist to isolate particular phonon modes. Such studies provide a deeper 

understanding of properties of condensed matter. Simultaneously their results are of importance 

for development of modem technologies. 

Usually ballistic phonons which propagate in crystalline media freely (without scattering) are 

considered. With such beams one investigates mainly the strong anisotropy of phonon currents 

being the result of phonon focussing. This interesting phenomenon can be studied by means of 

our program MCFoc [8]. 

However, phonons of beams can split and merge with thermal phonons and interact with 

quasi-particles of different kinds, defects and wells of specimens [7]. Using the massive 

dislocation-less, mono-crystalline, good-quality specimens of dielectrics and semiconductors at 

temperatures T much lower than the Debye temperature one can eliminate most of scattering 

mechanisms. Nevertheless, even in lowest temperatures phonons can spontaneously decay and 

as a rule the specimens are not isotopically pure and contain other point mass defects (e.g. 

substitutional atoms) which scatter phonons (for review cf. [13]). So generally, propagating 

phonon beams contain both ballistic and scattered components. The quantitative comprehension 

of this latter component is important for the understanding of experimentally obtained 
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the spontaneous down-conversion of phonons belonging to the beam to pah s of daughter phonons 
of lower energies. This means that beams propagating in media gradually change then- spectral 
composition [44]. The time-of-flight spectrograms and phonon images allow for studying such 
changes [17] 

Method of solution: Because no analytic solutions exist to the problem of transport of beams of 
decaying phonons which propagate in an anisotropic medium containing scattering centers, one 
has to resort to Monte Carlo calculations to obtain the insight. Hence, rather than solving problem 
using postulates and analytic methods we model the environment of the problem and simulate 
the evolution of the distribution function of phonons and their currents in a manner described by 
a set of random numbers. 

Since for anisotropic media down-conversion processes are rather complex, we include them 
into our program in the simplest approximation. Namely, we assume that they occur in 
an equivalent isotropic medium [25,26], However, differently than in [34, 44] the propagation 
of phonons between successive phonon interaction acts is anisotropic. The elastic scattering 
events are anisotropic too. 

In order to detect and remove possible errors in the Monte Carlo code we need special cases 
to check, in which theoretical estimates would be available. The check calculations experiments 

were performed on ballistic gases of phonons and on systems in which down-conversion 

processes were prevented and elastic scattering is all that is permitted. In contrast to Lax et al 
[1] we previously obtained some exact results for diffusive propagation of phonon beams in these 
media. We also study the diffusive motion of down-converting phonons. 
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