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has eigenvalues {±i} corresponding to oscillation about the fixed-point origin {q,p} = {0, 0}. 

For more complicated systems - a pendulum is the usual example - it is usual to define stable and 

unstable "manifolds", unions of those phase-space directions which correspond to exponential 

decay and to exponential growth, respectively [1]. In even more complicated situations, including 

ones indicate decay, toward the fixed point. Complex eigenvalues can also occur. For example, 

the undamped harmonic oscillator, with its phase-space flow velocity 

Positive eigenvalues of this matrix correspond to exponential growth. Negative matrix" 

oscillator. We find that it breaks down at a dense set of singular points, where the four eigenvectors span 

only a three-dimensional subspace. We believe that the concepts of stable and unstable global manifolds are 

problematic for this simple nonequilibrium system. 

PACS numbers: 05.45.A, 05.10, 07.05.T 

I . I N T R O D U C T I O N - C H A R A C T E R I Z I N G C H A O S 

The stability of a phase-space "flow" v(r) with one or more "fixed points" - points where the 

phase-space velocity v vanishes - is most naturally expressed in terms of the flow's "dynamical 

derivatives of the equations of motion We pursue this eigenvalue-eigenvector description for the 

by the local eigenvalues and eigenvectors of the "dynamical matr ix" D is the matrix of 

Abstract. We consider an harmonic oscillator in a thermal gradient far from equilibrium. The motion is 

made ergodic and fully time-reversible through the use of two thermostat variables. The equations of motion 

contain both linear and quadratic terms. The dynamics is chaotic. The resulting phase-space distribution is 

not only complex and multifiactal, but also ergodic, due to the time-reversibility property. We analyze 

dynamical time series in two ways. We describe local, but comoving, singularities in terms of the "local 

Lyapunov spectrum" {λ} . Local singularities at a particular phase-space point can alternatively be described 
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the thermally-driven oscillator which we consider in the present work, there may be no stable 

fixed points. Even so, it is still possible to evaluate the eigenvalues of Here we follow this 

approach for an oscillator, bound to the origin at q = 0, but moving in a nonuniform thermal bath, 

with Tq 1 + ε tanh q. The temperature Tq varies from 1 - ε to 1 + ε, with a maximum tempera-

ture gradient of ε at q = 0. The corresponding dynamics includes both quadratic and linear forces, 

as is described in Section II. As a result, the dynamical matrix D varies from point to point. 

Because the eigenvalues of D are typically complex, the eigenvectors are seldom orthogonal. 

Lyapunov-unstable systems, like the nonequilibrium oscillator, are characterized by trajectory 

perturbations which grow as eλt. The growth can be described by the "global Lyapunov 

spectrum". This spectrum of exponents gives the long-time-averaged rates of growth and decay 

governing.nearby trajectories. The local, or instantaneous, Lyapunov spectrum {λ} gives more 

details. It describes the linearized deformation of an infinitesimal phase-space ball, or hyper-

sphere [2-4] centered on a comoving origin which tracks a phase-space trajectory. The individual 

local Lyapunov exponents, at a particular phase-space location along the trajectory, give the 

orthogonal growth rates of the ball, in the comoving and corotating coordinate system. The 

long-time-averaged values of these local exponents comprise the conventional (time-independent, 

or "global") Lyapunov spectrum In a four-dimensional phase-space, for example, the long-

time-averaged spectrum has four exponents: 

Spectra, both local and global, have been computed for a wide variety of few-body and 

many-body problems [2-6], Evidently these local exponents differ from Gaspard's "local expan-

sion rates". At present there is no robust algorithm available for computing the latter [7]. 

Quite generally, as follows from their definition, the summed-up local Lyapunov spectrum 

gives the instantaneous rate with which an infinitesimal phase volume 

ponse to the equations of motion: Gibbs called such a comoving volume an "extension 

in phase". For particular nonequilibrium forms of dynamics (Nosé-Hoover dynamics is the best 

example), the local and global spectra can additionally be related to the dissipative entropy 

production: 

where k is Boltzmann's constant. An overall positive entropy production corresponds to a 

long-time-averaged collapse of the phase volume to a "strange attractor", an object with 

(information) dimensionality strictly less than that of the full phase space. A persistent negative 

entropy production is not possible. It would lead to a diverging extension in phase, and to 

a violation of the second law of thermodynamics [2,3], Both the macroscopic entropy production 

and the dimensionality of the microscopic phase space distribution have been analyzed for a 

variety of diffusive, viscous, and heat-conducting flows [2-4]. 

The fractal nature of the nonequilibrium distributions, even for time-reversible flows, was 

controversial as recently as 1990 [8], The fractals are widely accepted now. They have motivated 

changes with time in res-
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The dependence of temperature on the coordinate q,Tq = 1 + ε tanh q, has to be sufficiently weak, 

with 0 < ε < 0.2632. For stronger temperature gradients the motion collapses to a limit cycle and 

has no interesting chaotic properties. For a series of example motions, projected into the qp plane, 

see Figure 1. There are two unstable fixed points, (0, 0, ±1, 

The motion equations just given have a concealed dissipative character, despite their time 

reversibility. This causes the occupied phase volume to collapse to a strange attractor, 

rate of collapse is described exactly by Liouville's expression for the time-rate-of-change of the 

phase-space probability density f ( q , p , ζ , ξ): 

The 

attempts to link the distribution to the local Lyapunov spectrum, usually smoothed over a time 

interval of the order of the Green-Kubo relaxation time [9], The fractal nature of the distribution 

functions seems to us particularly difficult to reconcile with the notion of stable and unstable 

manifolds so familiar from studies of systems with stable fixed points [1], We believe that the 

particular model detailed in the following section is specially useful for understanding and 

interpreting topological ideas. Though it would be very useful to do so, we have so far not suc-

ceeded in formulating the Green-Kubo linear-response theory for the present model. 

The equilibrium properties of this chaotic oscillator model were studied recently and revealed 

that the variation of the local Lyapunov exponents in phase space has an interesting fractal 

character [6], Though the local Lyapunov exponents are indeed well-defined "point functions", 

with definite values at any given phase-space location, they are singular everywhere. These 

ubiquitous singularities reflect the exponentially-large differences between the past histories of 

any two neighboring trajectories. In the present work we examine the local dynamical matrix D 

as well as the local Lyapunov spectrum for a nonequilibrium oscillator model. The dynamical 

matrix is itself a point function in phase space, with the forward and backward time directions 

simply related, as is detailed in Section V. By contrast, the local Lyapunov spectrum, which 

reflects the trajectory's past history in selecting the directions along which growth and decay are 

measured, reveals a time-symmetry breaking which makes a straightforward analysis difficult. 

By emphasizing the time-symmetry properties of the dynamical matrix D and the breaking of 

symmetry in the Lyapunov spectrum - by comparing local spectra in the two time directions - we 

investigate the usefulness of the spectrum to the task of describing nonequilibrium distribution 

functions. Our conclusions make up the final section. 

II. N O N E Q U I L I B R I U M O S C I L L A T O R M O D E L 

Our nonequilibrium oscillator, with coordinate q and momentum p = is controlled by two 

thermostat variables ζ and ξ [10], The dynamics takes place in a four-dimensional phase space 

{q, p, ζ, ξ}. The equations of motion are as follows: 
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Fig. 1. 50,000 qp projections of chaotic orbits for ε values ranging 

from the equilibrium case, 0.00, to the limit cycle with ε = 0.30. 

The corresponding Kaplan-Yorke estimates of the information 

dimensions are all given in Table I 

In the simpler equilibrium case, with the temperature constant, ε 

The form of this stationary distribution suggests an effective "Hamiltonian" 

58 

the stationary 

solution for ƒ is given by Gibbs' canonical distribution: 
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Fig. 2. Time variation of the real and imaginary components of the four Jacobian local eigenvalues for 

typical trajectory segments with ε = 0.00 and ε = 0.25. The imaginary components sometimes vanish, 

corresponding to the segments of the horizontal axis. At the ends of these segments two of the imaginary 

components appeal', or disappear. At the same times two of the eigenvalues, along with their eigenvectors, 

become exactly degenerate, so that a manifold description does not apply. Note that all the real components 

of the eigenvalues can have the same sign, either positive or negative 

The strong mixing properties induced by the quadratic forces in the equations of motion cause 

changes in the numerical value of as time goes on, - ζ - ξ so that all the "energy shells" 

of constant with 0 < < are included in the resulting distribution. In the nonequilibrium 

case, the change of this "energy" with respect to time depends upon the local temperature: 

so that the control variables (ζ + ξ) = play the rôle of an external entropy production, 

III . E I G E N V A L U E S A N D E I G E N V E C T O R S O F T H E D Y N A M I C A L M A T R I X 

The dynamical matrix D governs the time development of a small trajectory perturbation δ: 

For our flow, D follows from the equations of motion: 
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Fig. 3. Projections of singularity distributions in the {q, p, ζ, ξ} phase space, for ε = 0.00 (top half) and 

ε = 0.25 (bottom half). The correlation-dimensions for these same data are analyzed in-Figure 4 
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Because the dynamical matrix is neither symmetric nor Hermitian we cannot expect that the 

matrix has real eigenvalues. In fact, numerical investigation promptly reveals complex eigen-

values. The number of these complex eigenvalues jumps repeatedly between four (with two 

complex conjugate pairs) and two (with two exactly degenerate real roots at the time of the 

jumps). A typical case is illustrated in Figure 2. The complex roots reflect the tendency, locally 

only, of nearby points to follow a spiral track, toward or away from the trajectory, as is deter-

mined by the real parts of the complex roots. This spriraling tendency is only transient because 

there are no stable fixed points. D, together with its eigenvalues, changes according to the motion 

along the trajectory. 

The jumps in complex eigenvalue numbers correspond to phase-space singularities. At these 

singularities two of the four eigenvalues, and also their eigenvectors, become degenerate. There 

can be only three independent eigenvectors at such singular points. At these points the three 

vectors can accordingly span only three of the four phase-space dimensions. The distribution of 

such singular points is evidently "dense" in a three-dimensional subspace of the four-dimensional 

embedding space. One-dimensional trajectories in the (four-dimensional) space cannot long avoid 

them. To visualize the distribution of the singularities, we generated the six projections shown 

in Figure 3. Their appearance suggests a fractal distribution. 

In the equilibrium case, we carried out a quantitative investigation by computing the cor-

relation dimension of the singularities. A plot of In N(r), the (logarithm of the) number of pairs 

of singular points within a distance r, as a function of In r is given in Figure 4. The steepest part 

of the plot has a slope statistically indistinguishable from 3, suggesting that the equilibrium 

distribution of singularities is confined to a three-dimensional volume in the four-dimensional 

space. In the nonequilibrium case, the dimensionality is reduced, just as is that of the underlying 

attractor. Figure 4 shows the dependence of In N(r) on In r for ε = 0.25. The correlation 

dimension in that case is approximately 2. 

Fig. 4. Variation of the relative number of sin-

gularity pairs N within a distance r for ε = 0.00, 

and ε = 0.25. The data represent 20,000,000 

timesteps, yielding 18,989 and 18,059 singular 

points in the two cases. The maximum slopes 

indicate correlation dimensions of about 3 and 

2, respectively 
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It is specially interesting to note that the real parts of all four eigenvalues can simultaneously 

all have the same sign. Whenever this happens the point at which the dynamical matrix is eva-

luated attracts or repels all nearby points. But because the attracting or repelling point is never 

fixed, this tendency is transient - otherwise the motion would have to stop or diverge! Thus a 

moving trajectory undergoes successive transient attractions and repulsions, resulting in a strange 

attractor, with no definite stable and unstable manifolds. 

I V . C O M P U T A T I O N O F L O C A L L Y A P U N O V S P E C T R A 

The individual local Lyapunov exponents, at a particular phase-space location, give the 

orthogonal growth rates of a small phase-space hyperball 

nate system. The principal axes of the hyperball are parallel to the set of "offset vectors" {δ}, 

which change with time. For an infinitesimal set of vectors {δ} the motion is determined by 

following the linearized equations of the underlying flow, 

augmented to include the repeated orthogonalization and normalization of the "offset vectors" 

linking a central "reference trajectory" to nearby "satellite" trajectories [11], The orthogonalization 

can be carried out continuously, using Lagrange multipliers, or by discrete rescaling steps. Both 

approaches have been applied successfully [2-6]. 

For the present model, as the maximum temperature gradient e increases, the character of the 

spectrum, 

changes from symmetric, with 

to highly antisymmetric, as is shown in Table I. It is interesting that, within the statistical accuracy 

of the data, an approximate "pairing rule" [12] is satisfied, even away from equilibrium: 

Even at equilibrium the time variation of the local exponents is quite wild, with frequent crossings 

and reorderings, as is shown in Figures 5 and 6. The information dimensions corresponding to 

the long-time-averaged spectra, calculated as suggested by Kaplan and Yorke, are also given in 

the Table. They indicate a decrease in dimensionality from 4 (at ε = 0.00) to near 3 

(at ε = 0.2631), followed by collapse to 1 for larger values of the temperature gradient. 

in a comoving and corotating coordi-
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Fig. 5. Variation with time of the local (instantaneous) Lyapunov exponents with time for the same trajectory 

segments illustrated in Figure 2. Note the repeated crossings of the various exponents and the wide range 

of values which they cover. All 16 sign combinations and all 24 possible orderings of the local exponents 

occur in a longer segment. 

Fig. 6. Variation of the local (instantaneous) Lyapunov exponents and their sums with time for forward and 

backward trajectory segments. Notice that although there is no simple relation between the individual 

exponents in the forward and backward directions the simple sum rule, 

(open circles in the plot) in the forward and backward directions simply change sign. The time symmetry 

of the motion is broken by Lyapunov instability, which reflects the past history, but not the future 

ζ+ ξ requires that the sums 
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Table I. The long-time-averaged Lyapunov exponents, the corresponding information dimensions DKY, and 

V . T I M E R E V E R S I B I L I T Y 

The thermally-driven oscillator's motion equations are precisely time-reversible. That is, any 

sequence of values {+q, +p, +ζ, +ξ} generated at the times {0, dt, 2dt, 3dt,... t} corresponds to 

a reversed solution, {+q, -p, -ζ, -ξ} of the same motion equations, provided that the 

time-ordering of the sequence is reversed too. This formal time reversibility extends to the local 

and global Lyapunov exponents. Any time history of the offset vectors {δ} corresponds also to 

a solution of the same equations, {δ = D · δ} provided that the p, ζ and ξ components of the 

offset vectors are changed in sign and the time ordering of their histories is reversed. In this 

formal implementation of time reversibility the entire spectrum of coefficients changes sign: {+λ} 

{ - λ } . 

This time-symmetry property is readily confirmed numerically in the case of Hamiltonian 

flows. After a relatively short time an arbitrary initial choice for the vectors {δ} is rotated so as 

to agree with the principal axes of the flow. Once this alignment has occured, the symmetry of 

the Lyapunov spectrum is also achieved, with each positive local exponent paired with its nega-

tive counterpart. Away from equilibrium this symmetry is typically broken, as is demonstrated 

in Figure 6. To show this we consider the local Lyapunov exponents near the middle of a million 

timestep simulation. With the complete {+q, +p, +ζ, +ξ} trajectory stored, it is possible to reverse 

the time ordering of the reversed points {+q, -p, -ζ, -ξ} to study the Lyapunov spectrum of the 

time-reversed trajectory. The result is shown in Figure 6. The summed spectrum reverses 

perfectly while the individual exponents do not. 

V I . C O N C L U S I O N S 

We believe that the oscillator studied here is the simplest conceivable representative of 

smooth time-reversible nonequilibrium systems. The behavior of this simple system is complex. 

Both the stationary analysis of the dynamical matrix D and the comoving analysis of the local 

Lyapunov exponents {λ} indicate expanding and contracting regions quite inconsistent with the 

simpler fixed-point notions of unstable and stable manifolds. Further, the matrix approach indi-

cates an intricate distribution of phase-space singularities frustrating the usual approaches. The 

the external entropy production rate are given as functions of the maximum temperature gradient ε. 

Fourth-order Runge-Kutta integration, with one billion timesteps of 0.001, was used for these simulations 
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local Lyapunov spectrum has promise. It quantifies the difference between the forward and back-

ward time directions described by the Second Law of Thermodynamics. At the same time the 

local Lyapunov exponents are themselves highly singular functions in space, despite their smooth 

variation in time along individual trajectories. 
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