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Abstract : In the paper, the problem of a secondary structure prediction, has been considered. The Logical 
Analys is of Data has been used as a method for this prediction. The approach has led to relatively high 
prediction accuracy for certain protein structures, as indicated by the experiments constructed. 

1. INTRODUCTION 

Although it is possibly true in theory that given a protein sequence one can infer its properties, 
current state of the art in biology falls far short of being able to implement this in practice. 
Current sequence analysis is a painful compromise between what is desired and what is possible. 
To help to solve this problem, biologists have divided the structural features of proteins into 
levels. The first level of the protein structure, termed primary structure, refers just to the sequence 
of amino acids in the protein. Decades ago it was found that polypeptide chains can sometimes 
fold into regular structures; that is, structures which are the same in shape for different 
polypeptides. These structures create the second level of protein structure. The secondary 
structures are very simple and regular (e.g. the loop of an alpha helix structure or the back and 
forth of a beta sheet structure). When one looks at an actual polypeptide chain, the final shape 
is made up of secondary structures, perhaps super-secondary structural features, and some 
apparently random conformations. This overall structure is referred to as the tertiary structure. 
Finally, many biological proteins are constructed of multiple polypeptide chains. The way these 
chains fit together is referred to as the quaternary structure of the protein. The reason that this 
complex nomenclature for protein structure has been developed, is that, the problem of 
understanding protein structure is so important and so difficult. The importance of understanding 
protein structure comes from two factors working together. The first of these is that the function 
of the protein is absolutely dependent on its structure. In fact, one of the most common ways for 
proteins to loose their function is to have their structure disrupted, for example by heat or 
mechanical stress. Only completely and properly folded proteins "work". The second factor is 
that it is extremely difficult to determine the structure of a protein experimentally. To date, the 
primary structures of many sequences have been determined (about 30 000). In contrast, the 
tertiary structures of many fewer (about 1000) have been determined. Obviously, it would be of 
a great value to determine a tertiary structure from the primary protein structure. It is not 
an exaggeration to say that the ability to exactly predict protein structures and, from that, protein 
functions would revolutionize medicine, pharmacology, chemistry and ecology. 
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8 Prediction of Protein Secondary Structure using Logical Analysis of Data Algorithm 

The first and probably the most important step to predict tertiary structure from its primary 

structure is to predict as many as possible secondary structures. Secondary structure prediction 

has been around for almost a quarter of century. The early methods suffered from a lack of data. 

Predictions were performed on single sequences rather than families of homologous sequences, 

and there were relatively few known 3D structures from which to derive parameters. Probably 

the most famous early methods are those of Chou and Fasman [7], Garnier, Osguthrobe & 

Robson (GOR) [11] and Lim. Although the authors originally claimed quite high accuracies (70-

80%), under careful examination, the method were shown to be only between 56 and 60% 

accurate [14]. An early problem in secondary structure prediction had been the inclusion of 

structures used to derive parameters in the set of structures used to access the accuracy of 

the method. 

Nowadays, the best method for protein secondary prediction is a method based on the neural 

networks and evolutionary information [21, 22]. It gives prediction accuracy over 70% for 

the three state prediction. Unfortunately, it requires the existence of similar proteins with known 

structures - a feature which is not always available. The other popular solution is Monte Carlo 

method [16,23] trying to determine the structure which minimizes free energy. 

Trying to solve protein structure prediction problem, scientists use many methods and 

algorithms [6,10,12,17,19,24]. The most important of them is machine learning approach [15, 

20] giving prediction accuracy about 65%. It is interesting because differs from the methods 

described above in that it emphasizes both: acquiring humanly comprehensible prediction rules 

and maximizing prediction accuracy. 

Such tools as machine learning are needed because it is often difficult for humans to perceive 

patterns in data, even though strong patterns exist. The idea to create a tool to aid working 

molecular biologists was the main reason to choose new rule-based method - Logical Analysis 

of Data [4] with its high accuracy [1]. It generates simple and strong rules which could be easy 

interpreted by the domain expert. Logical Analysis of Data gives impressive results in many fields 

of science, so it seemed possible that the same accuracy for the problem in question, is obtained. 

This paper is devoted to a preliminary study of the above approach to the protein structure 

prediction problem. 

An organization of the paper is as follows. Section 2 formulates the problem to be solved. 

Section 3 describes the basic ideas of the Logical Analysis of Data method and elaborates on 

the details of its implementation in the context of the protein structure prediction. Finally section 

4 describes the results of a computational experiment showing high accuracy of the approach 

considered. 

2. PROBLEM FORMULATION 

The goal of the analysis described in this paper is to create a system which allows to receive 

as the output the protein secondary structure, based on its primary structure being an input, and 

to find rules responsible for this effect. 
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Proteins are chains in the three dimensional space built from smaller chemical molecules 
called amino acids. There are 20 different amino acids. Each of them is denoted by a different 
letter in the Latin alphabet as shown below. 

Table 1. The codes of 20 amino acids 

Based on the protein chain it is easy to create its relevant sequence of amino acids replacing 
an amino acid in chain by its code in Latin alphabet. As a result a word on the amino acids' 
alphabet is received. This word can be called a protein primary structure on the condition that 
letters in this word are in the same order as amino acids in the protein chain are. 

A secondary structure of a protein is a subsequence of amino acids coming from the relevant 
protein. These subchains form in the three dimensional space regular structures which are 
the same in shape for different polypeptides (proteins). In the analysis, a similar representation 
for the secondary structures as for the primary ones, has been used. A secondary structure is 
represented by a word on the relevant alphabet of secondary structures - each kind of a secondary 
structure has its own unique letter. An alphabet of secondary structures consisting of three 
different secondary structures has been considered in the analysis. 

The Logical Analysis of Data is the one of machine learning algorithms. For this reason some 
examples of a primary and the corresponding secondary structure as a training set are needed to 
generate rules used for a prediction. These examples were obtained from the Dictionary of 
Secondary Structures of Proteins (DSSP) [14], DSSP contains a description of secondary 
structures for entries from the Brookhaven Protein Data Base [2], Moreover, it contains data 
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calculated from protein tertiary structures obtained by NMR or X-ray experiments and maintained 

in PDB. 

Data gained from DSSP set consist of eight types of protein secondary structures. Usually one 

can reduce them into three main secondary structures and the same assumption has been made 

in this study. The following sets of secondary structures have been created: 

- helix (H) consisting of: α-helix (structure denoted by H in DSSP), 31 0-helix (G) and π-

helix (I); 

- β-strand (E) consisting of E structure in DSSP; 

the rest (X) consisting of structures belonging neither to set H nor to set E. 

3. THE METHOD 

As it has been already said Logical Analysis of Data [13] has been widely applied to 

the analysis of a variety of real life data sets. Making this paper more understandable it is 

necessary to recall some terms and definitions relevant to LAD approach. 

Observation is a n-dimensional vector having as components the values of n attributes. 

Each observation is accompanied by its "classification", i.e. by the indication of the particular 

class (e.g. positive or negative) this observation belongs to. 

Cut point is a critical value along non binary attributes needed for a binarization stage to 

binarize this attribute. 

Pattern can be treated as a m-dimensional vector consisting of m binarized attributes. 

A pattern generated for a particular class is a vector having as components only these attributes 

of observations for which their values are the same as for at least one observation belonging to 

the relevant class. One can say that such an observation is covered by a pattern. On the other hand 

there is not possible to find any observation belonging to the other class for which the value of 

any relevant attribute is the same as for the considered pattern. 

Degree of a pattern is a number of dimensions the pattern consists of. 

It is not possible to use the original method [3, 5, 8, 13, 18] directly for this experiment. 

The first problem lies in input data representation. Here one has a sequence of amino acids but 

to use the logical analysis of data approach one should have a set of observations. Each 

observation has to consist of a set of attributes and all of them should be in a number format. If 

all of them are written in binary one can resign from the binarization stage but this is not the case 

here. The next question is connected with a number of decision classes. The original method is 

designed only for two classes. In this experiment three sets of protein secondary structures have 

been designed. 

Because of a complexity of the algorithm of Logical Analysis of Data [9] it is hard to present 

all aspects of this method. All important phases one can see in Fig. 1. Below only the main stages 

of this algorithm and here the most important changes that have been necessary for the use of the 

logical analysis of data for the protein prediction problem, are described. 
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Fig. 1. Modified Logical Analysis of Data method's stages and phases 

3.1. Preparation of data 

As we mentioned above the first step one has to do, is to prepare a set of observations (based 
on a protein sequence) to be acceptable by the logical analysis of data algorithm. Making 
a transformation from a protein sequence to the set of observations one has to assume that 
the main influence on the secondary structure have amino acids situated in the neighbourhood of 
the observed amino acid. To fulfill this assumption a concept of windows [15,21] of length equal 
to 6 (from the (i - 1st) to (i + 4th) amino acid, where the considered secondary structure is 
relevant to the z'-th amino acid), is used. This is the smallest number of attributes to be used to 
change protein chain (assumed in experiments) into a unique set of observations without loosing 
more than 1% of observations from the considered data set. While by unique, we mean here the 
fact, that there are no two identical observations belonging to different sets of secondary 
structures. 

Below an example is presented, that illustrates the way a protein chain is changed into a set 
of observations. Let us consider a protein chain called 4pƒ (in PDB). The first and the last fifteen 

amino acids in the sequence are shown below: 

MKRIGVLTSGGDSPG . . . TIDQRMYALSKELSI 

For every amino acid the corresponding secondary structure in DSSP is given as follows; 

EEEEEEESS TT . . . HHHHHHHHHHT_ 
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One may change this structure into secondary structures involving three main secondary 

structures only in the way depicted below: 

XXEEEEEEEXXXXXX . . . XXXHHHHHHHHHHXX 

At the end of a chain consisting of n amino acids one obtains a set consisting of n 

observations as illustrated in Table 2 

Table 2. An example transformation from a sequence to a set of observations 

A window of length 6 generates an observation with 6 attributes (a-1 a0, a+1 a+2, a+3, a+4) 

representing a secondary structure corresponding to the amino acid located in place a0. Of course, 

at this moment all values of attributes are symbols of amino acids. 

All observations are used to create a learning subset or a testing subset. During a creation of 

a learning subset one has to exclude the first observation and the last four ones (one has not 

enough information to learn anything). In the testing set, this exclusion is not important because 

in a such a situation one can get a decision for an observation without a complete set of attributes, 

treating missing values as values playing against him. 

The last step of the preprocessing is to replace in each observation symbols of amino acids 

(treated as attributes) with numbers representing relevant properties of amino acids. All properties 

are received from ProtScale service at http://expasy.hcuge.ch/cgi-bin/protscale.pl. During 

experiment only the physical and chemical properties of the amino acids offered by ProtScale 

have been taken into account. Originally we considered 54 properties, but after a discussion with 

domain experts 28 of them have been chosen for the experiment. All of them are listed below. 

The first 28 properties were used in this study. 

http://expasy.hcuge.ch/cgi-bin/protscale.pl


Table 3. Properties of amino acids used in the approach 



Table 3. Continued 



Table 3. Continued 
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3. 2. Binarization stage 

A data binarization stage is needed only if data are in numerical or nominal formats (e.g. 

color, shape, etc.). To make such problems useful for LAD one has to transform all data into 

a binary format. The simplest non-binary attributes are the so-called nominal (or descriptive) 

ones. The binarization of such an attribute is accomplished by associating with each value vs of 

the attribute x a Boolean variable b(x, vs) such that: 

In case all variables are numerical, one can distinguish two types of Boolean variables. 

The first type called the level variable, b(x, t) is introduced for every attribute x and cut-point t 

in the following way: 

The second type, called the interval variable, b(x,t',t'') is introduced for every attribute x and 

each pair of cut-points t', t" (t' < t") in the following way: 

Since the number of observation points in the training set is finite, each ordered attribute x 

takes only a finite number of different values in the training set. Let this values be 

produce identical Boolean variables (on the training set), it is not necessary to consider any cut-

points outside the set {vi, v2,..., vq}. It is sufficient to use in the binarization procedure only cut-

points for which there exist both a true and a false observation points in the training set, such that 

one of them has x = vs while the other has x = vs -1. 

The next main problem in the binarization stage is to reduce the size of a binary archive by 

eliminating as many redundant attributes as possible. One can introduce a term the support set 

to name a set of binary attributes in case the archive obtained by the elimination of all the other 

attributes will not contain simultaneously true and false observations. A support set is called 

irredundant if it contains no support set as its proper subset. One associates a Boolean variable 

yi with attribute bi in such a way that yi = 1 means that the attribute bi is retained in a support set, 

and yi = 0 means that it is removed from it. Given the archive with Boolean attributes b1, ...bq 

and variables y1,.. , ,yq associated with them as above, one can define for every pair of true and 

Since two cut-points t ' and t ' ' such that 
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As a result of this stage, all attributes for each observation are changed into binary attributes. 

Each property gives 20 real numbers usually unique for every amino acid. An example of these 

values for the property called bulkiness is shown below. 

ProtScale Tool 
Amino acid scale: Bulkiness 
Author(s): J. M. Zimmerman, N. Eliezer, R. Simha 
Reference: J. Theor. Biol. 21: 170-201(1968). 
Amino acid scale values: 
Ala: 11.500 
Arg: 14.280 
Asn: 12.820 
Asp: 11.680 
Cys: 13.460 
Gin: 14.450 
Glu: 13.570 
Gly: 3.400 
His: 13.690 
He: 21.400 
Leu: 21.400 
Lys: 15.710 
Met: 16.250 
Phe: 19.800 
Pro: 17.430 
Ser: 9.470 
Thr: 15.770 
Trp: 21.670 
Tyr: 18.030 
Val: 21.570 

There are 19 cut points that are generated for each attribute. This gives 114 possible cut points 

used for binarization. They have been used to extract a minimal set of cut points which allowed 

to binarize all attributes without loosing any observation. It means that after the binarization phase 

false vectors p' and p'', the subset I ( p ' , p ' ' ) of those indices where p' and p'' differ. It is easy to 

see that (y1, . . ., yq) is the characteristic vector of a support set if and only if it satisfies 

the following system of inequalities: 

where S + and S - are the sets of positive and negative observations respectively. 

A smallest support set can be obtained by solving the set covering problem. 



18 Prediction of Protein Secondary Structure using Logical Analysis of Data Algorithm 

all of observations that belonged to different classes are still different when binary attributes are 

taken into account. On average, 17 cut points were enough to make classes still unique. 

3. 3. Pattern generation stage 

A symmetric definition of positive and of negative patterns leads to symmetric generation 

procedures. Based on this assumption only a procedure for generating positive patterns is 

described here. The generation of negative patterns proceeds in a similar way. 

For the pattern generation stage it is important not to miss any of the "best" patterns. Pattern 

generation procedure is based on the use of combinatorial enumeration techniques which can 

follow a "top-down" or a "bottom-up" approach. 

The top-down approach starts by associating to every positive observation its characteristic 

term. Such a term is obviously a pattern, and it is possible that even after the removal of some 

literals the resulting term will remain a pattern. The top-down procedure systematically removes 

literals one-by-one until arriving to a prime pattern. 

The bottom-up approach starts with the term that covers some positive observations. If such 

a term does not cover any negative observations, it is a pattern. Otherwise, literals are added to 

the term one by one as long as necessary, i.e. until generating a pattern. 

Pattern generation used in the experiment described in this paper is achieved by a hybrid 

bottom-up - top-down approach. This strategy uses the bottom-up approach to generate all the 

patterns of very small degrees, and then uses a top-down approach to cover those positive 

observations that remained uncovered after the bottom-up step. 

a moderate value, this is a very rapidly growing function of d. Therefore, the term enumeration 

method used for pattern generation must be extremaly selective. 

During the experiment a breadth-first search technique was used. It produces at each stage d 

all the positive prime patterns of degree d, as well as the list of the so-called "candidate" terms 

to be examined at stage d+ 1 of the algorithm. A candidate term is any term that covers at least 

one negative and at least one positive observation. The terms of degree d examined by 

the algorithm at stage d are all those from which one gets a candidate term of degree d - 1 

(generated at stage d - 1) by eliminating any of its literals. The terms of degree d examined by 

algorithm are then partitioned into following three sets: 

Pd, consisting of those terms which cover at least one positive and no negative observations; 

Cd, consisting of those terms which cover at least one positive and at least one negative 

observations; 

Gd, consisting of all the remaining terms. 

Set Pd consists of all positive patterns of degree d, and set Cd consists of all candidate terms 

of degree d. Set Gd is eliminated from any further considerations. 

Additional reductions are obtained by examining terms Cd in the lexicographic order induced 

by the linear order 

The number of terms of degree d over n Boolean variables is Even for n fixed at 
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Finally, the variable xi is called monotone in f if it is either positive or negative in f. 

A priori knowledge of the monotone character of some variables immediately disqualifies 
certain patterns from the consideration. 

In the original method this stage has been called twice. The first time for positive patterns 
generated for observations belonging to class A, and the second time for negative patterns 
generated for observations belonging to class B. 

In the discussed experiments, one has three sets of secondary structures, thus, this stage had 
to be modified and patterns have been generated six times. Each time an observation from one 
set of secondary structures played a role of positive examples, the other sets played roles of 
negative ones. A call for positive observations is repeated three times, each time a different set 
of secondary structures playing a role of a positive observation. A call for negative observations 
is also repeated three times but now negative observations consist of the other two sets, 
respectively. The reason for calling this stage for a class consisting of two sets of secondary 
structures was to check whether better accuracy for the secondary structure prediction could be 
obtained if one knew where the relevant secondary structure cannot appear. 

During the experiments it was not allowed to cover an observation belonging to an opposite 
class. Patterns have been generated until the whole set of all observations has been covered by 
at least one pattern. 

All patterns have been generated using breadth first search strategy (for the patterns of up to 
degree 4) and depth first search strategy (for other patterns). 

Similarly, the variable xi is called negative in f if for any Boolean vector p {0, 1 } n , 

because M'' is lexicographically smaller than M. 

Other important property of datasets, that has to be taken into account in pattern generation 
stage, consists in the presence of some so-called monotone variables. Given Boolean function f, 

the variable xi is called positive in f if for any Boolean vector p {0, 1 } n , 

of the literals. Since it is sufficient to generate each term only once, the term of degree d + 1 are 
generated from Cd by adding in all possible ways to term a literal which is larger (in this 

order) than any literal in M. Indeed, let the indices of the literals in M be i1< i2 < ... < id . 

Suppose that term M' is obtained by adding to M a literal of index i < id . Let M'' be the term 
whose literals have the indices i1, i 2 , . . . , i , . . . , id-1 . Clearly M' can also be obtained by adding 
to M'' the literal of index does not have to be examined, because term M' is 

then neither a prime pattern, nor a candidate term. If then M' was already considered, 



20 Prediction of Protein Secondary Structure using Logical Analysis of Data Algorithm 

3. 4. Classifier construction stage 
Before this stage is performed every positive (negative) observation point is covered by at 

least one positive (negative) pattern, and is not covered by any negative (positive) patterns that 

have been generated. Based on that it can be expected that an adequately chosen collection of 

patterns can be used for a construction of a general classification rule. This rule is an extension 

of a partially defined Boolean function, and will be called below a theory. 

A good classification rule should capture all the significant aspects of the phenomenon. 

The simplest method of building a theory consists of defining a weighted sum of positive and 

negative patterns and classifying new observations according to the value of the following 

weighted sum: 

To increase the discriminating power of the selected subset of patterns each positive point 

should be covered by several patterns. In order to give preferences to patterns possessing some 

special properties, the objective function 

for all positive pj . 

In order to distinguish all the positive points from all the negative ones, the vector 

(y1, y2, ..., yr) characterizing the selected subset will have to satisfy the covering constraints (*) 

for all positive observation points pj In order to produce a small subset of patterns satisfying 

these requirements we shall solve the following set covering problem: 

Such a weighted sum will be called a discriminant. The weights of the patterns are chosen in 

such a way that large positive (negative) values of the discriminant will be indicative of 

the positive (negative) character of the new observation. 

The selection process of the subset of the patterns generated for the case of positive patterns 

is described below. 

One can assign to each of the generated positive patterns P1, P2, ..., Pr binary (0-1) variables 

y1, y 2 , . . y r with the convention that yk =1(0) means that Pk is (is not) in the selected subset. Let 

us define ajk = 1 if the positive observation point pj is covered by pattern Pk and ajk= 0 

otherwise. In order to distinguish pj from the negative points, at least one of the positive patterns 

covering it must be selected, i.e. 



J. Błażewicz et al. 21 

can be replaced by the weighted sum 

where Pk(p)(Nl(p)) is 1 if Pk(Nl) covers p, and is 0 otherwise. 
Technical parameters for this stage remain unchanged during the experiment as compared 

with the original approach [13], but one had to call this stage three times (each time for a different 
set of secondary structures). In every call one tried to construct the best classifier for a particular 
structure. 

The same rule as in the original method: winner takes all, is applied to calculate weights of 
the three functions describing a structure, each observation belongs to. 

An interested reader is referred to [3, 13], for a more detailed description of the Logical 
Analysis of Data method. 

4. Experiments and results 

For experiments the data set of protein chains received from the Dictionary of Secondary 
Structures of Proteins (DSSP) has been used. Properties of amino acids were taken from 

with appropriately chosen weights ck. 

Weights can be chosen in different ways. The simplest way is to define all | ωk|=1, assigning 

thus equal importance to all the patterns. On the other hand, the number of observation points qk 

covered by pattern Pk can be viewed as an indication of its relative importance justifying 

the choice | ωk|= qk. It can be emphasized even stronger by chosing | ωk|= qk

2, or qk

3, or 2 q k . 

A more sophisticated approach to weight selection aiming at the increase the separating power 

of the discriminant as much as possible, is based on the use of linear programming. The weights 

are then determined by solving the following linear programming problem: 
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the ProtScale (as described in Table 4). First four characters denote PDB entry identifier, the fifth 

character describes a part of the protein chain. For experiments all protein chains from a given 

PDB entry have been used. 

Table 4. PDB identifiers of chains used for experiments 

During experiments about 20 000 observations have been created. Unfortunately, it has not 

been possible to generate rules based at the same time on the whole set of observations. One had 

to create some numbers of smaller sets of observations and rules have been generated for these 

subsets separately. Output results shown below, present an average accuracy for the secondary 

structure prediction for all observations. Building observation subsets one wanted to find 

the strongest rules, thus, one didn't care whether or not observations collected in one subset were 

derived from one protein chain. Results of the experiments for all three secondary structures and 

for the sets simultaneously consisting of two classes are shown in Fig. 2 through 4. Numbers on 

horizontal axis correspond to the property number as given in Table 3. 
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Fig. 2. Prediction accuracy for structure H 

Fig. 3. Prediction accuracy for structure E 

Fig. 4. Prediction accuracy for structure X 
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Prediction accuracy for structure H is between 18 and 57%, for structure E between 7 and 

74% and for structure X between 15 and 69%. Average accuracy for the best property for all three 

structures is about 55%. Better results have been obtained when patterns have been generated for 

a class consisting of two secondary structures. In this case the accuracy of prediction exceeded 

80%. 

5. CONCLUSIONS 

The obtained results are average as compared with other methods for the protein prediction. 

A comparision has been made with the algorithm based on the Rough Set theory. Results obtained 

using this method were similar to the results obtained using logical analysis of data and none of 

the two methods could prove its superiority. The difficulty in getting better results can be situated 

in a construction of training and testing data sets. Observations used for experiments in one data 

set should belong to one organism or be responsible for the same function. On the other hand, 

a positive aspect of the experiment has been an extraction of the set of the most promising amino 

acids properties. From the set of 54 properties, 5 of them have been extracted which had the most 

important influence on the created secondary structures. This is a good standpoint for 

a continuation of the research in this field. 
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