
C O M P U T A T I O N A L M E T H O D S I N SCIENCE A N D T E C H N O L O G Y 6 , 2 5 - 4 0 (2 0 0 0)

SUBOPTIMAL APPROACHES
TO SCHEDULING MALLEABLE TASKS

J. BŁAŻEWICZ 1 , M. M A C H O W I A K 1 , G. MOUNIÉ 2 , D. T R Y S T R A M 2

1 Institute of Computing Science, Poznań University of Technology

ul. Piotrowo 3a, 60-965 Poznań, Poland

2ID-IMAG, antenne de I'ENS IMAG

ZIRST de Montbonnot, 51 rue Jean Kuntzman

38330 Montbonnot Saint Martin, France

A b s t r a c t : In the paper, the problem of scheduling a set of n malleable tasks on m parallel computers is
considered. The tasks may be executed by several processors simultaneously and the processing speed of
a task is a function of the number of processors alloted. The problem is motivated by real-life applications
of parallel computer systems in scientific computing of highly parallelizable tasks. Starting from the
continuous version of the problem (i. e. where the tasks may require a fractional part of the resources), we
propose a general approximation algorithm with a performance guarantee equal to 2. Then, some
improvements are derived that lead to a very good average behavior of the scheduling algorithm.

1 . I N T R O D U C T I O N

Scheduling malleable tasks has been proved to be a promising way for an efficient
implementation of some practical problems on parallel and distributed computers [3,9, 13-16].

The idea of a malleable task (in short MT) results in solving the problem at a different level
of granularity in order to globally take into account communication costs and parallelization
overheads with a simple penalty factor. The dependence of a malleable task processing time on
a number of processors alloted is given as a (non-linear) function.

Most of the applications that have already been parallelized using the MT model have been
decomposed by some expert users using the knowledge they have of the physical problem that
is reflected in the program, and the penalty due to the management of the parallelism inside
the malleable task (communication and synchronization overhead) is usually a monotonie
function: using more processors makes the execution time decreasing while the global overhead
increases. These assumptions are valid for the applications composed of computational kernels
where the penalty can easily be predicted or estimated [3,9],

The above property distinguishes malleable tasks from the multiprocessor tasks, considered
for example in [4] and [12], where the number of processors alloted to each task is known.
The latter model has received a considerable attention in the literature. The problem of scheduling
independent MT without preemption (it means that each task is computed on a constant number
of processors from its start to completion) is NP-hard [10], thus, an approximation algorithm with

user
Tekst maszynowy
CMST 6(1) 25-40 (2000)

user
Tekst maszynowy
DOI:10.12921/cmst.2000.06.01.25-40

user
Tekst maszynowy

26 Suboptimal Approaches to Scheduling Malleable Tasks

performance guarantee has been looked for. While the problem has an approximation scheme for

any fixed value m, no practical polynomial approximation better than 2 is known [13]. The 2-

approximation presented in [13] is based on a clever reduction of MT scheduling to the 2

dimensional bin-packing problem, using the earliest result of [17] that any λ-approximation for

the bin-packing problem can be polynomially transformed into a λ-approximation for the MT

scheduling. It is worth stressing that the algorithm of Ludwig [13] on average behaves similarly

to its worst case behavior.

In this paper starting from the continuous version of the problem (i. e. where the tasks may

require a fractional part of the resources), we propose a different approximation algorithm with

a performance guarantee equal to 2. Then, some improvements are derived that lead to a very

good average behavior of the scheduling algorithm.

The organization of the paper is as follows. In Section 2 the motivation for the scheduling

problem and its formulation are given. Section 3 contains the first approximation algorithm

together with an analysis of its worst case behavior. In Section 4 some improvements of

the algorithm are presented and its mean behavior experimentally evaluated. Section 5 concludes

the paper.

2. MOTIVATION AND FORMULATION OF THE SCHEDULING PROBLEM

2. 1. Motivation for the malleable tasks model

We start our considerations with few real-life applications of highly parallelizable tasks

justifying the model used.

Simulation of molecular dynamics

The simulation of molecular dynamics is one of the most challenging problem in science.

The computation of atom movements is irregular if interactions are spatially limited (cut-off).

An efficient execution requires advanced techniques allowing to overlap communications by

computations like asynchronous buffered communications and multithreading. In the case of

protein behavior, computations may require to calculate interactions between hundreds of

thousands of atoms [8], Needless to say, such an execution needs a large memory. On some of

the top parallel computers, like Cray T3E, in order to simplify hardware and optimize

communications, there is no virtual memory management, thus the available memory is strongly

limited. Hence, when the instance of the problem does not fit into the memory of a processor,

the execution cannot be performed directly. To complete the execution, the virtual memory

management needs to be done "by hand" using out of core computations, that is loading and

storing intermediate computations on a disk. Of course, this increases the time of an execution.

Thus, when the number of processors is sufficient for storing the whole data in the memory of

these processors, a superlinear speed-up will be observed, otherwise, a processing speed function

is concave (see Fig. 1).

J. Błażewicz et al. 27

Operational oceanography

Numerical modeling of the ocean circulation started in the sixties and was continuously
developed since that time for climate study and operational oceanography, i. e. near real-time
forecast of the "oceanic weather", in a way similar to operational meteorology.

A major practical problem to be dealt with in ocean general circulation models (OGCM), is
their large computational cost, which is notably greater than the cost of corresponding at-
mospheric models, due to differences in the typical scales of motion. For example, the order of
magnitude of the size of dynamic structures like fronts or eddies is a few tenths of kilometers in
the ocean, while 5 or 10 times larger in the atmosphere. The horizontal resolution of OGCMs
should allow the explicit representation of such structures, which leads to very important memory
and CPU requirements (OGCMs typically use today a horizontal resolution of 1/6 ° to 1/10 ° - i. e.
approximately 10 to 15 kilometers - and 20 to 50 vertical discretization levels, which represent
more than several million grid points). Moreover the time scales in the ocean are one order of
magnitude larger than in the atmosphere, which implies an integration of numerical models on
longer time periods (from a few weeks to tenths of years, depending on the application), with
a time step of few minutes (typically 1 to 30, depending on the horizontal resolution and the time
integration scheme). The computations involved by these models are run on vector and/or parallel
supercomputers and any simulation requires several hundred or thousand hours of CPU-time.
The objective today is to use the low cost clusters of PC machines for solving these problems.

Fig. 1. Function: a processing speed
vs. a number of processors

The parallelization of ocean models is performed by domain decomposition techniques.
The geographical domain is divided into subdomains, each of them being allocated to a processor.
Most of the existing works usually consider as many subdomains as processors. The computation
of the explicit terms is mainly local; it requires only, at the beginning of each time step, some
communications between processors corresponding to adjacent subdomains, to exchange model
variables along the common interfaces. On the other hand, linear systems for the implicit tenns
are not local, since they correspond to the discretized form of elliptic equations. Solving these
global systems is performed for instance by a preconditioned conjuguate gradient or by domain
decomposition techniques [7]. An important point for the purpose of this work is to emphasize

28 Suboptimal Approaches to Scheduling Malleable Tasks

that ocean models are regular applications, in the sense that the volume of computations can be

estimated quite precisely as a function of the grid size and the number of processors.

In the context of operational oceanography, adaptive meshing could be of great interest for

ocean modelers. The basic principle of adaptive mesh refinement methods (AMR) consists in

locally refining or coarsening the computation mesh, according to some mathematical or physical

criteria (like error estimates or eddy activity). It could reduce the computational cost of models

by taking advantage of the spatial heterogeneity of oceanic flows and thus using a fine mesh only

where and when necessary. Such techniques are widely used with finite element codes, but rather

rarely with finite differences because such refinements lead to non-homogeneous grids and thus

complicate the handling of the code. However, Berger and Oliger [6] proposed an AMR

algorithm which avoids this drawback, by considering a locally multigrid approach. In their

method, the refinement is not performed on a unique non-homogeneous grid, but on a hierarchy

of grids, i.e. a set of homogeneous embedded grids of increasing resolutions, and interacting

among themselves (see the principle explained in Fig. 2). Without entering into details,

the principle of the algorithm is as follows. Consider a hierarchy of grids, like the one depicted

in Fig. 2: it consists in a root (or level-0) grid covering the entire domain of computations with

coarse resolution Δh0 and coarse time step Δt0, and a number of subgrids (or level-1 grids) with

a finer resolution Δh1, = Δh0/r and a finer time step Δt1 = Δt0/r focused only on some subdomains

(r is an integer called the refinement ratio). This structure is recursive, in the sense that any level-l

grid can contain finer Ievel-(l + 1) subgrids, with Δ h l + 1 = Δh l/r and Δtl + 1 = Δt1/r (of course, until

a maximum level l m a x) .

Time integration is performed recursively starting from the root grid. Any level-l grid is

advanced forward one time step Δtl. The solutions at time t and t + Δtl are used to provide initial

and boundary conditions for the integration of the level-(l + 1) subgrids. These subgrids can then

be advanced forward r time steps Δtl+ 1 to provide a more precise solution at time t + r Δtl +1 =

t + Δtl on the regions covered by the subgrids. These solutions at level (l + 1) are then used to

improve the solution at level l, via an update procedure.

The relevance of the grid hierarchy is checked regularly every N coarse time steps Δt0.

A criterion is evaluated at every grid point to determine whether the local accuracy of the solution

seems sufficient or not. Subgrids can then be created, resized or removed.

Fig. 2. Example of grid hierarchy

J. Błażewicz et al. 29

Since the different grids at a given level l can be run simultaneously, they will be alloted to
different groups of processors. The problem is then to determine, for a given hierarchy, which
is the best grid-to-processor allocation (from the viewpoint of the computational efficiency).
These assignments must be determined at every regridding step, because of the evolution of
the grid hierarchy during the simulation.

The first simplified version of the approach discussed has been imlemented on a IBM-SP
parallel system with 16 nodes [1], The ocean model used for this study was a simple quasi-
geostrophic box model, since the intention was to validate the malleable task approach and to
design a good scheduling heuristic before running the simulation on the operational models. This
type of model has been widely used in the ocean modeling community, and is known as a simple
prototype of eddy-active large scale circulation in the mid-latitudes. Blayo and Debreu [7] already
implemented the AMR method in such a multi-layered model. They demonstrated that the use of
this method results in a very significant gain in CPU time (by a factor of 3) while conserving,
within a 10 to 20% range, the main statistical features of the solution obtained with an uniformly
high resolution. Moreover, it appears that one only simulation with the AMR method leads to
better local predictions than classical nested grid techniques on regions of particular interest,
wherever the region of interest is located, and for a comparable amount of computation. A more
sophisticated scheduling algorithm derived from the analysis we developed in the present paper
should allow to solve larger and more complex instances.

Yet another example of the computations which can be modeled by malleable tasks are big
matrix calculations used e. g. in Cholesky factorization. The speed of computations depends in
this case on the fact whether or not a matrix fits into the cache memory [9].

The model of Malleable Tasks is an efficient tool for solving such problems. Typically,
the total number of malleable tasks remains very small.

2. 2. Problem formulation

We consider a set of m identical processors P = {P1, P2,.. Pm } used for executing the set
T = {T1, T2 , . . . , Tn } of n independent, nonpreemptable malleable tasks (MT). Each MT needs
for its execution at least 1 processor but less than m. The number of processors alloted to a task
is unknown in advance. The processing speed of a task depends on the number of processors
alloted to it: namely, function ƒi relates processing speed of task Ti, to a number of processors

alloted. The criterion assumed is schedule length. Let us note that processing times of MT's are

sometimes represented by some factor μ which determines the loss of time during a task

processing using more than one processor, caused by communication delays or by

synchronization needs. This factor, called inefficiency factor, is a discrete function of a number

of processors and a type of a task and its geometrical interpretation is given in Fig. 3.

The relation between the speed function and the inefficiency factor is as follows:

(1)

30 Suboptimal Approaches to Scheduling Malleable Tasks

Thus,

where: r - a number of processors used, r (0, m); ti(r) - processing time of task Ti on r

processors; ti-(l) - processing time of Ti on one processor; μi - inefficiency factor (a discrete

function of r) for task Ti·, ƒi - processing speed function for Ti.

Fig. 3. Inefficiency factor

Now, the problem may be stated as the one of finding a schedule (a processor allocation to

tasks) of minimum length ω, provided that the processing speed functions of the tasks are all

concave. (Let us note, that this is a realistic case, more often appearing in practice. The case of

only convex functions has been considered in [5]). We will denote this minimum value for m

processors as ω*m.

As far as computer applications are concerned, functions ƒi are discrete, i. e. they take values

in discrete points only, which correspond to processor assignments to tasks. However, in general,

it would be also possible that these functions are continuous (and they are concerned with

continuous resources). Since in what follows we will use the results of optimal continuous

resource allocation to construct good processor schedules, we will recall some basic results from

the optimal continuous resource allocation theory [18], To distinguish it from a discrete case, an

optimal schedule length of a continuous case will be denoted by C*cont.

Assume that a processing of task Ti is described by the following equation:

• xi(t) - the state of Ti at moment t,

• ri(t) - a real number of resource units alloted to Ti at time t,

•ƒi - a continuous, non-decreasing function,ƒi(0) = 0, ƒi (r i) > 0,

• Ci - unknown in advance, finishing time of Ti,

• pi - the final state or processing demand of Ti.

(2)

J. Błażewicz et al. 31

The total available resource amount is equal to m, i. e.

Fig. 4. Set U and the optimal solution of the continuous
resource allocation problem in case of two tasks and
concave functions

From (2) we have:

(3)

and thus pi = Ciƒi(ri) or Ci = pi/ƒi(ri)

Denote by R the set of feasible resource allocations. Further, denote by U the set defined in

the following way: u = (u h u2, . . . , un) U if r R, where ui =ƒi(ri). Elements of U will be

called transformed resource allocations.

Following [18] it may be proved that the minimum schedule length for a set of n independent

tasks described by (2) can always be expressed by the formula:

(4)

where p = {p l , p2,..., pn} is the vector of processing demands of tasks, and conv U denotes

the convex hull of U, i. e. the set of all convex combinations of elements of U.

Now, we describe geometrical interpretation of the problem (see Fig. 4). From the above

Theorem we know that the minimum schedule length is determined by the intersection point of

straight line ui = pi/Cmax, i = 1, 2, . . . , n and the boundary of set conv U. This means that

the shape of boundary of conv U is of basic importance for the form of an optimal schedule. For

the concave functions ƒi one gets a convex set U equal to conv U (cf. Fig. 4). Using some algebraic

calculations, a minimal length of a continuous schedule C*cont, can be calculated [18], In

the following sections we will show how to use it to construct approximation algorithms for

a discrete, computer scheduling problem.

Suboptimal Approaches to Scheduling Malleable Tasks

3. AN APPROXIMATION ALGORITHM AND ITS WORST CASE BEHAVIOR

In this section we will propose a way to transform a schedule obtained from the continuous

version into a feasible schedule for the discrete MT model. We will prove that this transformation

has a performance guarantee of 2 (as compared with C*cont).

3.1. Rounding scheme

To transform a continuous allotment greater than 1 for any task into a discrete one, it is

sufficient to round off the quantities of processors used to the largest integer values smaller than

the continuous ones. Then, the execution time of any task is not increased more than by a factor

of 2. Moreover, the makespan of the discrete version is at most twice as long as the optimal

continuous one.

When the number of processors assigned in the continuous solution is between 0 and 1,

the speed function is super linear, and then, the continuous algorithm can produce schedules

which are arbitrary far from the discrete optimal schedules. See for instance the following

example: A set of n > m independent tasks of unit length t i (l) = 1, to be executed on m processors

with the same speed function rα, 0 < α < 1. Each task should be executed on m/n processors,

leading to a schedule length equal to

In the MT model, each task will be executed on at least one (integer) processor. The total work

cannot be less than the work of such an allotment. The n tasks will be scheduled in time at least

Fig. 5. Continuous and discrete schedules for independent

malleable tasks

The ratio between the execution times of the continuous and the discrete versions is larger

than n/m (m/n)α, namely

(Cf. Fig. 5).

32

J. Błażewicz et al. 33

The value of the ratio is arbitrary large as n increases. Thus, there exists no transformation
from a continuous solution with a rα speed function to a malleable task solution with a constant

approximation ratio between continuous and discrete solutions.

Below, we present an algorithm using the information provided by the continuous solution

to schedule the malleable tasks with a constant performance ratio to the optimal malleable

scheduling.

3. 2. Transformation algorithm

Even if the continuous solution does not provide a time bound to the malleable task

scheduling makespan, a transformation of the continuous solution with concave speed functions,

provides a solution with constant ratio to the optimal malleable solution. In the malleable task

model, the processor resource cannot be used at a rate smaller than 1. The minimum area of work

used by a task is thus its execution time on one processor - ti(1).

parallel tasks (allotment strictly larger than 1) start at time 0. Other tasks, for which a continuous

allotment ri< 1, receive one processor and are scheduled in free time slots. The details are

specified below in Algorithm 1.

Algori thm 1. Generic transformation algorithm

Note, that the complexity of the above algorithm is O(n).

3. 3. Worst case analysis of Algor i thm 1

Theorem 1 analyzes the worst case behavior of Algorithm 1.

Theorem 1. Algorithm 1 has a performance guarantee of 3.

Proof. The continuous solution consists in executing simultaneously all the tasks on a fractional

number of processors so that they finish at the same time. This solution realizes the trade-off

between the total work and the length of the tasks. Thus, the makespan of this solution is a lower

bound on ωm* (a makespan of the optimal malleable solution).

The transformation algorithm is simple. Every task Ti with an allocation ri- 1 in

the continuous solution is scheduled on processors in the malleable scheduling. All

34 Suboptimal Approaches to Scheduling Malleable Tasks

For all the tasks which continuous allotment ri 1, a malleable (discrete) allotment decreases

with a ratio lower than 1/2. Using the concavity assumption, their duration does not increase more

than twice. But their surface (work, defined as a product of a task duration and a number of

processors allocated to it) decreases. Moreover, the sum of the processors alloted to these tasks

after the transformation is lower than m.

The tasks which continuous allotment ri < 1 are assigned one processor. Their execution times

decrease but their work increases. This surface is the minimal one that these tasks can have in any

malleable schedule.

The tasks which duration is between C*cont and 2C* c o n t can be executed on less than m

processors starting at time 0. Each of the other tasks has a duration lower than C*cont and their

total surface is less than mωm*.

The sum of the surfaces of the tasks is lower than m C*cont + m ωm*. An analysis similar to

Graham's one can be now applied [11], The last task that is alloted starts at a time when all the

processors are busy (otherwise, it could have been started earlier). Thus, the schedule length of

the malleable (discrete) schedule,ωm is lower than

Since C*cont

This first bound can be improved by some refinement of the algorithm. The idea here is to

start from the relation

and to refine it. If ωm* >2C* c o n t , we obtain directly a guarantee of 2.

The difficult point is when ω* < 2 C*cont. For this case, we propose to modify the previous

algorithm as follows: decrease the number of processors alloted to the tasks which initial allot-

ment was greater than 1, until reaching an execution time of 2 C*cont. As 2 C*cont is greater than

ωm* the allotment chosen for these tasks is lower than the allotment in the optimal malleable

schedule. It means that the work surface of these tasks is lower than m ωm*. The sum of the sur-

faces of these tasks is then lower than the optimal surface. Thus, we obtain the following bound

After this modification, we again obtain:

We see that the refined version of Algorithm 1 has the worst case behavior bounded by 2.

The cost of the rounding algorithm is linear. To schedule the tasks we need also a good mapping

ωm*, we obtain

J. Błażewicz et al.

algorithm which can be in this case Largest Processing Time First (LPTF) [2], It requires to sort
the tasks and to maintain a sorted list of the processor load. Thus, a reasonnable implementation
has a complexity of O(n log(n) log (m)).

4. AN IMPROVED ALGORITHM WITH BETTER A V E R A G E BEHAVIOR
Algorithm 1 in the last section has the worst case bound equal to 2. It appears that on

the average it will behave similarly, most often approaching this bound. For this reason we
propose a slightly more sophisticated algorithm. Its main idea for refinement is to pack more
cautiously small tasks (requiring one processor only) and to use several steps of rounding off.
These changes do not lengthen the discrete (malleable) schedule in the worst case, while allowing
for a good average behavior (as will be demonstrated in the computational experiment).

Algorithm 2

• calculate C*cont and the optimal continuous processor allocation ri for all tasks.
• round the continuous allocation of processors to the integer values.

Let us consider the following example of the application of Algorithm 2.

• calculate the new processing times of the tasks.
• calculate a discrete number of processors used
• find a task with the biggest completion time Ci and assign C: = max { C i }

= m then Go To End

< m then allocate an excess of processors to the longest task - Go To End

> m then assign the remaining tasks after the tasks already scheduled till
the max

= in then Go To End

else take the schedule of minimum length constructed by either A or B

- A the remaining tasks schedule after the tasks already scheduled treating them as new
instance.

- B while in reduce a number of processors assigned to the task (group of tasks) with
the biggest number of processors alloted and assign the tasks on the freed processor and
on the other processors till the finishing time of the longest task.

END ωm: = max{C i }.

36 Suboplimal Approaches to Scheduling Malleable Tasks

Example 1

Let us consider the following data: n = 10, m = 5 , set of tasks T = {T1, T2, ... ,T 1 0 } with

vector ti(1) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 20] of processing times. Processing speed function f(r) =

r1/5, the same for each task. The solution of the continuous problem is C*cont = 14.60.

Continuous processor allocations r*cont = [1.5*10 - 6 , 4.8 * 10 - 5 , 3.6 * 10 - 4 , 1.5 * 10 - 3 ,

4 .7* 10 - 2 , 0.011, 0.025, 0.049, 0.088, 4.82], From this solution we proceed according to

the rounding algorithm. The consecutive partial schedules are depicted in Fig. 6.

Fig. 6. Consecutive partial schedules generated

according to Algorithm 2 for the set of tasks given

in Example 1

As we mentioned, Algorithm 2 will not have worse behavior than Algorithm 1, however, its

mean behavior seems to be better as demonstrated by the following set of experiments.

To evaluate the mean behavior of Algorithm 2 we use the following measure:

where

• ωm- a schedule length obtained by Algorithm 2,

• C*cont - an optimal schedule length of the continuous solution,

- a schedule length for the uniprocessor allocation for all the tasks.

J. Błażewicz et al. 37

Clearly, the maximum of the two values C*cont and Carea is the lower bound on the optimal
schedule length ωm* for malleable tasks (discrete case), thus, S A l g 2 indicates properly a behavior

of Algorithm 2.

Table 1. Average behavior of Algorithm 2 for different numbers of processors and the shapes

of speed function (n = 100)

Table 2. Average behavior of Algorithm 2 for varying number of tasks and the shape

of speed function (m = 64)

38 Suboptimal Approaches to Scheduling Malleable Tasks

Table 3. An influence of the speed function on an average behavior of Algorithm 2 (m = 32)

To test mean behavior of Algori thm 2 an extensive computational experiment has been

conducted in the fol lowing way.

Task process ing times t i ; (l) have been generated f rom a uni form distribution in interval

[1..100].

Processing speed func t ions have been chosen as

Fig. 7. An impact of a number of tasks on behavior
of Algorithm 2

F igure 7 illustrates an impact on the behavior of Algorithm 2 by a number of tasks with

varying speed functions.

From the experiments conducted we see that the mean behavior of the algorithm (as obtained

in the above computational experiments) does not exceed value 1.54 of the assumed lower bound

of the optimal schedule length for the discrete case.

Values of parameter a have been generated from a uni form distribution in interval [1..10],

The results of the experiment are gathered in Tables 1 through 3. Each entry in these tables

is a mean value for 10 instances randomly generated. Table 1 illustrates an influence of a number

of processors on the average behevior of Algori thm 2. Table 2 shows an impact of a number of

tasks, whi le Table 3 illustrates an influence of the speed function, respectively, on the per-

formance of Algori thm 2.

J. Błażewicz et al. 39

The algorithm behaves well for a wide range of task and processor parameters. The ex-
periments show also that when a number of tasks greatly exceeds a number of processors,
the optimal continuous solution does not approximate well the discrete malleable one. In
the latter, each task must receive at least one processor. On the other hand, for a number of tasks
being close to a number of processors, the continuous solution may be a good starting point for
a construction of an optimal malleable schedule. Since the first is constructed in polynomial time,
the second (of a good quality) may be also constructed in a short time.

5. CONCLUSION

In the paper, the problem of scheduling malleable tasks has been considered. Starting from
the continuous version of the problem (i. e. where the tasks may require a fractional part of
the resources), we proposed a general approximation algorithm with a performance guarantee
equal to 2. Then, some improvements were derived that led to a very good average behavior of
the scheduling algorithm. Further investigations could take into account a construction of
the algorithm with a better worst case performance guarantee, as well as, an analysis of some
special (but practically important) cases, involving few parallel tasks in the system only, each
requiring many processors at the same time.

References

[1] E. Blayo, L. Debreu, G. Mounié. D. Trystram, Engineering Simulation, 22, 8 (2000).
[2] A. Barak, and O. La'adan, Journal ofFuture Generation Computer Systems, 1998.
[3] P. E. Bernard, Parallelisation et multiprogrammation pour line application irreguliere de

dynamique moleculaire operationnelle, Mathematiques appliques, Institut National Polytechnique
de Grenoble, 1997.

[4] J. Błażewicz, M. Drabowski, J. Węglarz, IEEE Transactions on Computers 35, 389 (1986).
[5] J. Błażewicz, M. Machowiak, G. Mounié, D. Trystram, J. Węglarz, Revista Iberoamericana de

Computación, 2000, to appear.
[6] M. Berger and J. Oliger, J. Comp. Phys. 53, 484 (1984).
[7] E. Blayo and L. Debreu, J. Phys. Oceanogr. 29, 1239 (1998).
[8] P. E. Bernard, T. Gautier, D. Trystram, Proceedings of Second Merged Symposium IPPS/SPDP 13th

International Parallel Processing Symposium and 10th Symposium on Parallel and Distributed
Processing, San Juan, Puerto Rico, 1999.

[9] J. Dongarra, L. Duff, D. Danny, G. Sorensen, H. van der Vorst, Society for Industrial & Applied
Mathematics, 1999.

[10] J. Du, J.Y-T. Leung, SIAM Journal on Discrete Mathematics, 2, 473 (1989).
[11] R. L. Graham, Bell System Tech. J. 45, 1563 (1966).
[12] E. Lloyd, Journal of the ACM, 29, 781 (1982).
[13] W. T. Ludwig, Algorithms for scheduling malleable and nonmalleable parallel tasks, PhD thesis,

University of Wisconsin-Madison, Department of Computer Sciences, 1995.
[14] G. Mounié, C. Rapine, D. Trystram, Efficient approximation algorithms for scheduling malleable

tasks, In: Eleventh ACM Symposium on Parallel Algorithms and Architectures (SPAA'99), ACM,
23 (1999).

[15] G. N. S. Prasanna and B. R. Musicus, Algorithmica (1995).

40 Suboptimal Approaches to Scheduling Malleable Tasks

[16] U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek, P. Yu, SIAM Journal on Computing 28, 237
(1999).

[17] J. Turek, J. Wolf, P. Yu, Approximate algorithms for scheduling parallelizable tasks, In: 4th Annual
A CM Symposium on Parallel Algorithms and Architectures, 323 (1992).

[18] J. Węglarz, Modelling and control of dynamic resource allocation project scheduling systems, In:
S. G. Tzafestas (ed.), Optimization and Control of Dynamic Operational Research Models, North-
Holland, Amsterdam, 1982.

