
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 6, 7 - 1 3 ( 2 0 0 0 ) 

ON PARALLEL CALCULATION 
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Abst rac t : We propose a parallel method for calculating the energy band structure. Our method can be easily 
implemented and does not require high speed of communication between the processors. In practical 
application our method allows for linear increase of the speed of calculations with the number of processors. 
We also analyse the optimization algorithms for energy band structure. We conclude that the most suitable 
optimization methods for nonlocal empirical pseudopotential method (NEPM) is adaptive simulated 
annealing (ASA). 

1 . I N T R O D U C T I O N 

The determination of the electronic structure and related properties of condensed matter is an 
important field in modem solid state physics, and the progress made in it during the last two 
decades is truly impressive. The progress is in part due to the breathtaking development in com-
puter hardware and software technologies. 

There are two kinds of methods of calculation - the empirical one and the first principle band 
structure methods. Up to recently, first principle theories, even as sophisticated as they can be [1], 
could not accurately predict the band structure of semiconductors. Most of the understanding 
of these materials was obtained from less accurate descriptions [2]. Among these, empirical 
theories have played (and still play) very important role since they allow us to simulate the true 
energy bands in terms of restricted number of adjustable parameters. There is at least one essen-
tially distinct method of achieving this goal - the empirical pseudopotential method. 

2 . N O N L O C A L E M P I R I C A L P S E U D O P O T E N T I A L M E T H O D ( N E P M ) 

The basic concepts of pseudopotential formalism in crystals were formulated by Philips and 
Kleinman [3]. The fundamental concept involved in a pseudopopotential calculation is that the 
ion core can be omitted. The pseudopotential approximation can be seen from different perspec-
tives. Pseudopotentials can be constructed either theoretically, using Hartree-Fock atomic cal-
culations, or semi-empirically, by means of spectroscopically known excited states of valence 
electrons [4], They can show an angular momentum and an eigenvalue dependence. Typically 
used pseudopotentials are nonlocal ones. 

Our program is written in FORTRAN77 and it is based on the theory described elsewhere [2, 
4, 5]. Here, we only want to outline the most essential features. 
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For the plane-wave representation the solutions of Schrödinger equation are given by secular 

equation 

(1) 

where k is wave vector, G is reciprocal-lattice vector and E(k) is the energy of bands at k-point. 

The one-electron Hamiltonian is given by 

(2) 

V(k, G, G ' , E) is the pseudopotential form factor, and S(G) is the structure factor. The pseudo-

potential form factor is 

(3) 

where V l o c (G - G') is a local pseudopotential and Vnl(k, G, G ' , E) represents nonlocal cor-

rections to the pseudopotential. For the local part of the pseudopotential we used a function 

suggest by Falicov and Lin [6]. 

The nonlocal corrections to the pseudopotential are caused by d states within the ion core 

which modify the conduction-band structure. The expression for Vnl can be found in [4, 5]. 

With respect to the computational details, the energy cutoffs in the matrix in equation (1) were 

determined so that plane waves with were treated directly; plane waves 

with were treated using Löwdin-Brust [7, 8] method. For 

calculating the eigenvalue and eigenvectors it was used the standard numerical library - LAPACK 

[9], for which the source code can be found at http:// www.netlib.org. 

The standard procedure for obtaining theoretically the optical constants of a crystal is to 

evaluate expression [4] 

(4) 

where ε2 is the imaginary part of the dielectric function; is 

the interband transition energy between the valence (v) and conduction (c) band at the k-point in 

the Brillouin zone. 

Using Kramers-Kröning relations the real part of the dielectric function can be obtained and 

thus, the reflectivity; is the matrix element beetwen a given couple of the valence 

and the conduction band. 

Equation (4) can be written in the form 

(5) 

where 

(6) 

http://www.netlib.org
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Table I. The time of calculations of the objective function 

as dependency on the number of processors 

Number of processors Time of calculation 

1 222 min. 

2 112 min. 

3 80 min. 

4 64 min. 

5 54 min. 

6 44 min. 

Fig. 1. The density of states of Zn3P2. Solid line - theory, dashed line - experiment. 
The energy zero is at the top of the valence band. 

is the total density of states. For calculating these integrals in k space over the Brillouin zone 

tetrahedron method [10, 11] was used. 

The word "empirical" in the name of the method means, that one adjust the form factors in 

such a way that there should be some resemblance between theoiy and experiment in some kind 

of optical spectrum. Hand adjust form factors are impossible because calculations take too much 

time. So we construct some objective function - this function describes the agreement between 

the theoiy and experiments. The lower values of the objective function the better agreement is 

achieved. Thus, once we have the objective function, the process of adjusting the form factors 

to the experimental data can be done by some optimization algorithm. 

Although there may be several ways to classify optimization algorithms from different points 

of view [12], one natural candidate is a classification based on the deterministic or non-deter-

ministic nature of the search algorithm. The deterministic algorithms (like gradient methods or 

Newton methods) are very sensitive to the starting point and they are often trapped in local 
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minima. For our task these systematic methods fail and we must resort to non-systematic tech-

niques i.e. random search ones: So, we try two different kinds of stochastic methods: genetic 

algorithm and simulated annealing. 

Genetic algorithm (GA) is an attempt to simulate the phenomenon of natural evolution which, 

in biology, was first observed by Darwin. Any GA [13] emphasizes the role of the representation 

and the interaction between the representation and perturbation operators. The GA use the repre-

sentation to implicity divide the search space into several non-overlapping classes. The algorithm 

works on a population of samples. We use one of the modifications of the GA called messy gene-

tic algorithms (mGA) [14]. Unlike simple GA's, the mGA emphasize the search for appropriate 

relations among the members of the search space. 

As it name implies, the Simulated Annealing (SA) method exploits an analogy between 

the way in which a metal cools and freezes into minimum energy crystalline structure (the an-

nealing process) and the search for a minimum in more general system. The algorithm is based 

upon that of Metropolis et al. [15] (which is also known as Monte Carlo method). SA's major 

advantage with respect to other methods is the ability to avoid becoming trapped at local minima 

and it has a proof for asymptotic convergence to the optimal solution [16]. In this work we use 

the algorithm called ASA (Adaptive Simulated Annealing) developed by Ingber [17], 

The construction of the objective function is sepearate problem. In case of Zn3P2 we even do 

not know what is the kind of the energy band gap [18]. So, in this case the situation is very 

difficult and we concentrate only on that particular compound. For the construction of 

the objective function we consider and use the following experimental data: 

1) Direct energy band gap is in the range of 1.5 1.6 eV. 

2) Maximum of valence band is located at the Γ point. 

3) The width of the valence density of states is ~ (5.5 6.5) eV. 

4) Any indirect band gap and direct band gap at points other then Γ point are grater than 

1.3 eV. 

Constructing the objective function we also used the experimental reflectivity [19] in 

the range of 0 8 eV and valence density of states [20]. In order to achieve better agreement 

between the theoiy and experiment we use the quantity defined as and 

quantity respectively, for calculated reflectivity and density of 

states. This two quantities have been fitted in the sense of the least square approximation. This 

way of fitting has some advantages: 

1) Calculating derivatives one gets good fitting to the optical transitions. 

2) Dividing by reflectivity or density of states, one gets good fitting to the absolute values 

of this ones. 

3 . P A R A L L E L I M P L E M E N T A T I O N 

Parallel processing, the method of having many small tasks to solve one large problem, has 

emerged as a key-enabling technology in modern computing. In general, there are two kinds of 

parallel computing: 
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- massively parallel processors (MPP). In MPP every processor is exactly like every other 

in capability, resources, software, and communication speed. 

- distributed computing - a set of computers connected by a network; the computers may 

be made by different vendors, may have different compilers, computational speed, etc. 

MPP computers are very expensive. In contrast, for distributed computing one can use many 

computers available at a university or even in a city. Distributed computing also hase some other 

advantages - the computational speed can be enhanced by adding new computers. 

The most popular libraries for distributed computing are message passing interface (MPI) [21] 

and parallel virtual machine (PVM) [22], Both implementation are open source and can run on 

variety of computers and operating systems. We choose PVM, because MPI does not include 

necessities such as process management (the ability to start a task). This is a very important 

feature, because sometimes connections beetwen computers are lost (because of the network 

problems or shut down a computer) and it is necessary to start a new task on computers when the 

connection can be established again. 

Our parallel implementation of computing energy band structure is based on PVM. Its source 

code is available in the Internet at http://www.netlib.org and we successfully compiled it on 

computers such as the HP Series 700, SGI Power Challenge XL and PC with running Linux (both 

with kernel 2.0 and 2.2). 

In distributed computing, where sometimes one computer is far from the other ones, it is 

important to take care how much data are being send between them. If one wants to calculate the 

energy band structure using NEPM, it is necessary to calculate the objective function. The main 

computational effort in calculating the objective function is the calculation of the density of states 

(DOS) and the reflectivity. The time spent in calculation of the DOS and the reflectivity is greater 

than 95% of total time. In order to calculate this quantity one must calculate the expression (6), 

but before that secular equations (1) on grids of k-points should be solved. We use master-slave 

model of calculation. The slave process computes the matrix (equation 2), solve the secular 

equation (equation 1) and calculate the matrix elements. The most demanding task in the slave 

process is calculating the eigenvalue and eigenvectors of secular equation. 

The master process is responsible for sending a new task to the slave and for collecting 

the calculated data. When for all k-points the energy of bands and matrix elements are calculated, 

the master process calculates joint density of states (equation 6) and finally calculates the objec-

tive function. Further, master process performs the next step in optimization and parallel 

computation begins. 

This method of parallel computation of energy band does not send big amount of data between 

the master process and slave one and can use as many slave processes as the number of different 

k-points in the Brillouin zone (typically 70-100 points). The network load generated by 

the communication between processes are small because the times needed to complete the whole 

task are big (they depend of the size of matrix; for veiy big matrix this can be several hours on 

SGI). If distributed computing is done on heterogeneous computers the master process also must 

take care about the connections because sometimes connections between master and slave 

http://www.netlib.org
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processes are lost due to various reasons like: network problems, shut down of computers on 
which slave task is running etc. 

In order to save the CPU time the process of computation of the objective function can be 
truncated to the calculation of the eigenvalues and eigenvectors at the points of high symmetry. 
Next, for instance if the energy of transitions at these points are reasonable, the process of 
calculation is continued - the DOS and the reflectivity are calculated. 

4 . E X A M P L E R E S U L T 

Because the scope of this article is not a calculation of the energy band of a certain structure, 
we only present a result of example calculation - Fig. 1. From our experience, we find out that 
deterministic algorithms are not helpful because of their sensitivity to starting point and their local 
character. The mGA algorithm gives much better results, but still not satisfactory. As it was stated 
in [23] the ASA is at least an order of magnitude superior to the GA in the convergence speed and 
it is more likely to find a global minimum during a time limited search. This is an important fact 
if one takes into consideration that the calculation of the objective function sometimes is very 
expensive. Our numerical experiments show that the ASA method is more suitable than the mGA 
one for this kind of calculations. 

In the table 1 we present the time of calculation of the objective function as dependent on the 
number of processors used in the calculations. It can be seen that the dependence is almost linear 
with number of processors. These calculations were done on the SGI Power Challenge XL 
computer with 12 processors. The results presented in this table concerne the situation that there 
are no other running programs on the commputer. 

5 . C O N C L U S I O N 

For adjusting the form factors the stochastic algorithms like the mGA and the ASA were used. 
These methods require much more calculations of objective function than deterministic algo-
rithms. The deterministic algorithms are useless, however our numerical experience show that 
ASA method gives much better results than mGA. The construction of the objective function is 
also important, and we suggest the way of construction of the objective function. 

The algorithm described in this paper is efficient and, in our opinion, can be rather easily 
implemented, especially if one has a working sequential program for energy band structure. 
Another advantage is that in practice this algorithm allows for linear increase of the efficiency 
with number of processors. Moreover, it does not require high communication speed. Because 
the PVM library is an open source and it can be compiled on variety of computers, the same 
source program can be used both on supercomputers, on workstations, and PC computers. 

The numerical calculations were done on various computers in Technical University of 
Wrocław and in the Poznań Supercomputing and Networking Center. 
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