
C O M P U T A T I O N A L M E T H O D S I N SCIENCE A N D T E C H N O L O G Y 5 , 8 1 - 8 5 ( 1 9 9 9 ) 

PSEUDORANDOM NUMBER GENERATORS 
BASED ON THE WEYL SEQUENCE 

K . W . W O J C I E C H O W S K I 

Institute of Molecular Physics, Polish Academy of Sciences 
Smoluchowskiego 17/19, 60-179 Poznań, Poland 

kww@man.poznan.pl 

A b s t r a c t : Some modifications of the pseudorandom number generator proposed recently by Holian et al. 
[B. L. Holian, 0. E. Percus, T. T. Warnock, P. A. Whitlock, Phys. Rev. E 5 0 , 1 6 0 7 (1994)] are presented. 

1. INTRODUCTION 

Random numbers are useful in all the areas of human activity to which probabilistic methods 
can be applied. Although truly random numbers of various distributions can be generated in many 
ways by physical systems exhibiting chaotic properties1, using them can be inconvenient or 
expensive when the generated sequences of random numbers have to be long enough and 
possibility of repetition of these sequences is required2. Recent development of fast computers 
caused an increasing interest in deterministic algorithms generating sequences of numbers which 
reproduce (as close as possible) many statistical properties of random numbers. The numbers 
produced by such algorithms are known as pseudorandom numbers (PRNs). Various generators 
of pseudorandom numbers have been discussed in the literature, see e. g. [1-4]. 

It follows from the definition that no generator of PRNs can be perfect, i. e. no PRN generator 

can be successfully used for all possible applications3. Hence it is meaningful to introduce 
the notion of quality of generators with respect to particular classes of applications [5], Better 
generators have broader spectrum of applications for which they give correct results. 

From a point of view of a practitioner the quality of a PRN generator depends on the speed 
of the generator, its memory usage, ease of its implementation, portability of its implementations, 
possibility to parallelize (distribute) the calculations using it, period length, structural properties, 
correlations, etc. [1-3], 

The speed, parallelizability, and small memory requirements are crucial for possibility to 
apply a given PRN generator to large scale computer simulations. Recently, a simple and 
interesting, in this context, generator which bases on the shuffled nested Weyl sequence (SNWS) 
has been proposed by Holian and co-workers [6]. The SNWS generator was designed for large 
scale molecular dynamics simulations. Its modification, designed for Monte Carlo (MC) 

1 These are, e.g., radioactive materials, various electronic devices or mechanical systems. 

2 This is, e.g., the case of Monte Carlo computer simulations. 

3 The deterministic algorithm generating the pseudorandom numbers can be always used to construct a "test" 

in which the generator will produce wrong results. 
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simulations, has been tested in [5]. The behaviour of both the original SNWS generator [6] and 

its modification described in [5] depends on the computer implementation of the floating point 

arithmetic. In the case of the modified SNWS generator this reduces the maximal length of 

a sequence4 of PRNs to about 1014. Existence of some very long-range correlations is, however, 

possible in such a sequence. In the present note we give some hints how to reduce such 

correlations, and how to increase the maximal length of the sequence. 

2. THE SNWS GENERATOR AND ITS MODIFICATIONS 

The pseudo-code for the original SNWS generator can be written as follows [6]: 

MULT= 1234567 

SEED = MOD(SQRT(2.), 1.) 

DO N = 1,NUMBER (*) 

X(N) = MOD(N*MOD(N*SEED, 1.), 1.) *MULT + 0.5 

X(N) = MOD(X(N) *MOD(X(N) *SEED, 1.), 1.) 

ENDDO 

For comparison, the pseudo-code of the modified SNWS generator used in [5] writes: 

LENGTH = 1000003 

BIGN = MOD(EXP(L), 1.) *107 

DO N = 1,NUMBER 

ISEED =ISEED +1 

SEED = MOD(SQRT(ISEED), 1.) 

IF(SEED.EQ.O) THEN 

ISEED=ISEED +1 (**) 

SEED = MOD(SQRT(ISEED), 1.) 

ENDIF 

DO K = 1, LENGTH 

X= MOD(K*MOD(K*SEED, 1.), 1.) *BIGN +0.5 

X= MOD(X*MOD(X*SEED, 1.), 1.) 

ENDDO 

ENDDO 

4 For arithmetic of infinite precision, the maximal length of a sequence of PRNs produced by the SNWS 

generator is equal to infinity. However, the round-off errors caused by the finite precision of the computer 
floating point arithmetic reduce this length to a finite number depending on the precision used. For SINGLE 

PRECISION arithmetic this length is obviously much smaller than for the DOUBLE PRECISION arithmetic 

for which it is, in turn, much smaller than for the QUADRUPLE PRECISION arithmetic. Since, however, 
the latter arithmetic is performed by present computers much slower than the former ones, further discussion 

in this paper concerns the DOUBLE PRECISION case. 
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Fig. 1. The dependence of the variable SEED on N for the generator of the pseudo-code (**) 

5 0 0 0 

Fig. 2. The same dependence as in Fig. 1 but for the pseudo-code containing the modification (***). 

As it is easy to notice, the essence of the difference between the above generators consists in 

fixing the variable SEED in the first example and varying it in the second example. It can be seen, 

however, in Fig. 1 that in the case (**) the values of this variable exhibit strong correlations 

producing some clearly visible patterns in the plot of the dependence of SEED on N. One can 

check (see Fig. 2) that these patterns disappear when replacing the fifth and the eighth lines of 

the pseudo-code (**) by the following line: 

SEED=MOD((1. +SIN(ISEED)) *SQRT(ISEED), 1.) (***) 

It is not difficult to check that many other modifications of the SNWS generator in which 

SEED is obtained by using various combinations of nonlinear and oscillatory functions of ISEED 
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do not reveal any simple patterns in the plots analogous to Fig. 1. Some of them can be used to 

increase the length of the maximal sequence of the generated PRNs. As an example we present 

the following algorithm: 

LENGTH = 1000003 

BIGN = MOD(EXP(l.), 1.) *107 

SCALE = 29 

SECOND = SQRT(2.). 

ISEED1 = 1 

SEED2 = 1 

DON1 = 1,NUMBER 

ISEED1 = ISEED1+1 

DON2 = 1,NUMBER 

ISEED2 = ISEED2+1 

SEED = SCALE *MOD((l. +SIN(ISEED1)) *SQRT(ISEED1)+ 

(l.+SIN(MOD(ISEED2,SECOND))) *SQRT(ISEED2), 1.) 

IF(SEED.EQ.O) THEN 

ISEED2 = ISEED2+1 (****) 

SEED = SCALE*MOD((l. +SIN(ISEED1)) *SQRT(1SEED1)+ 

(1. +SIN(MOD(ISEED2,SECOND))) *SQRT(ISEED2), 1.) 

ENDIF 

DO K= 1,LENGTH 

X = MOD(K*MOD(K*SEED, 1.), 1.) *BIGN +0.5 

X= MOD(X*MOD(X*SEED, 1.), 1.) 

ENDDO 

ENDDO 

ENDDO 

We estimate that the longest sequences of the PRNs generated by the above algoritm exceed 

1020 numbers. This is more than enough for the present large scale MC simulations. 

The maximum length of generated sequences of PRNs can be increased even further, e. g. by 

introducing higher than SECOND incommensurate periods. 

We should stress that the presented above modifications of the SNWS generator do not reduce 

its very high speed [5]. This is because these modifications do not touch its most internal loop 

which has the length of order 106 cycles. 

3. FINAL REMARKS 

Some "practical" tests, which consist of large scale MC computations of various physical 

properties of certain many-body systems, were performed. They have shown that the results 

obtained for the above described generalizations of the SNWS generator are in good agreement 

with those obtained by using a few other (well known) random number generators. 
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There exist infinitely many ways to generate pseudorandom values of the variable SEED 

which is used in the internal loop of the described, modified SNWS algorithms. One of 

the simplest idea, which has not been discussed in this paper would be to exploit other (well 

known) PRN generators to reach this goal. 
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