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Abstract: The paper presents one- and two-stage implicit interval methods of Runge-Kutta type. It is shown 
that the exact solution of the initial value problem belongs to interval-solutions obtained by both kinds of 
these methods. Moreover, some approximations of the widths of interval-solutions are given. 

1. INTRODUCTION 

Interval methods for solving the initial value problem are interesting due to interval-solutions 
obtained by such methods which contain their errors. Computer implementations of interval 
methods in floating-point interval arithmetic together with the representation of initial data in the 
form of minimal machine intervals, i. e. by intervals which ends are equal or neighboring machine 
numbers, yield interval solutions which contain all possible numerical errors. 

Explicit interval methods of Runge-Kutta type have been considered and analysed by Šokin 
[3,7]. In this paper we try to extend his approach for implicit methods. A reason to do this follows 
from a well-known fact concerning convential implicit Runge-Kutta methods - higher orders of 
accuracy can be obtained than for explicit methods. 

This paper is dealt with one- and two-stage implicit interval methods of Runge-Kutta type, 
which are presented in sections 3 and 4. We prove that the exact solution of the initial value 
problem belongs to interval-solutions obtained by both kinds of these methods (section 5). In 
section 6 some approximations of the widths of interval-solution are given. 

2. THE INITIAL VALUE PROBLEM 
AND CONVENTIONAL RUNGE-KUTTA METHODS 

As is well-known (see e. g. [4]), the initial value problem consists in finding the function 
y = y(x), such that 

(1) 

exists and is unique. From the theory of ordinary differential equations it is known that 
these conditions are fulfilled if the function ƒ is determined and continuous in the set 

where t [ 0 , T ] , y RN and ƒ: [0, T] x RN R N . We will assume that the solution of (1) 

and there exists a constant L >0 such that for each t [ 0 , T ] and 
all yl, y2 RN we have 
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To carry out a single step by a conventional, m-stage Runge-Kutta method we apply 

the formula (see e. g. [1]) 

(2) 

where 

(3) 

(4) 

and where s = i -1 for an explicit method, and s = m for an implicit one. The set of numbers wi, ci, aij 

are constants which characterize a particular method. 

The local truncation error of step k +1 for a Runge-Kutta method (explicit and implicit) of 

order p can be written in the form (see e.g. [1] or [4]) 

(5) 

where 

(6) 

This error is equal to the difference between the exact value y ( t k + h) and its approximation 

evaluated on the basis ofthe exact value y(tk). Thefunction Ψ(t, y(t)) depends on coefficients 

wi, ci, aij, and on partial derivatives of the function f(t, y) occuring in (1). The form of 

Ψ(t, y(t)) is very complicated and cannot be written in a general form for an arbitrary p (see 

e- g. [1], [4] or [5]). 

3. ONE-STAGE IMPLICIT INTERVAL METHODS 

Let us denote: 

and - sets in which the function f ( t , y ) is defined, i. e. 
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From the theory of conventional Runge-Kutta methods it is known that a one-stage implicit 

method is of order 2 if and only if c1 — a11 = 1/2 (for other values we get methods of the first 

order, and this case is not interesting because of the Euler method, which is explicit one). 

Moreover, from (4) it follows that in the case of one-stage method we have w1 = 1. For these 

(8) 

I ( R ) and I ( R N ) denote the space of real intervals and the space of N-dimensional real interval vectors, 

respectively. 

1) An interval extension of the function 

we call a function 

such that 

(7) 

where 

values of coefficients, t0 = 0 and y0 

type we define as follows: 

Y0, implicit one-stage interval method of Runge-Kutta 

• thefunction Ψ (T, Y) is monotonie with respect to inclusion. 

• the function Ψ ( T , Y) is defined for all T and 

F(T,Y) - an interval extension of f(t, y) 

Ψ (T, Y) - an interval extension of Ψ (t, y) (see (5)), 

and let us assume that: 

• thefunction F(T, Y) is defined and continuous for all and 

• the function F(T,Y) is monotonie with respect to inclusion, i. e. 

• for each and for each there exists a constant L > 0 such that 

where d(A) denotes the width of A (if A = ( A 1 , A 2 AN )T, then the number d(A) is 

defined by 
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The step-size h of the method (7), where 

from the formula 

(9) 

The number η1 > 0 is evaluated in such a way that 

(11) 

remind that G is called a contraction mapping if 

denotes a given number, is calculated 

where 

(10) 

and the number η0 — f r o m the relation 

(12) 

for and 

The interval we divide into n parts by the points tk =kh (k = 0,1,..., n), and 

the intervals Tk, which appear in the method (7) - (8), we choose in such a way that 

From (8) it follows that in each step of the method we have to solve a (vector) interval 

equation of the form 

where 

If we assume that the function G is a contraction mapping, then the well-known fixed-point 

theorem implies that the iteration process 

(13) 

is convergent to for an arbitrary choice of Let us 
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where ρ is a metric1), and α < 1 denotes a constant. 

For the equation (8) the process (13) is of the form 

where we choose 

4. TWO-STAGE IMPLICIT INTERVAL METHODS 

From the theory of conventional Runge-Kutta methdos it follows that two-stage implicit 

methods, which are characterized by the set of coefficients wi, ci, aij (i, j = 1, 2), canhave order 

up to four, and the maximum order condition (p= 4) is fulfilled if 

conventional ones we determine by the following formulas: 

1) In the space I ( R ) the distance between intervals A = 

where ρ : I ( R ) x I ( R ) — > R defines a metric. The space I (R) with the metric ρ is the complete metric 

space. If A and B are interval vectors, i.e. 

(14) 

In general, for t0 = 0 and y0 Y0 two-stage implicit interval methods corresponding with 

is determined by 

then the distance between them is defined by the formula 
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where 

(15) 

and 

The step-size h, where h0 is given, can be found from the formula 

(16) 

(17) 

(18) 

where 

The numbers η1 > 0 and η2 > 0 should fulfill the conditions 

and the number η 0 should be choosen in such a way that 

(19) 

for and 

As for the one-stage method described in the previous section, the interval is devided 

into n parts by the points tk = kh (k - 0,1, . . . ,n), and the intervals Tk in the method (14) 

- (15) should be such that 

As previously, at each step of the method (14)-(15) one should apply the process (13). 

5. THE E X A C T SOLUTION VS. I N T E R V A L SOLUTIONS 

For the methods (7)-(8) and (14)-(15) we can prove that the exact solution of the initial value 

problem (1) belongs to the intervals obtained by these methods. Let us note that in the proof of 

the theorem below there are no restrictions to one- or two-stage implicit interval methods of 

Runge-Kutta type, and in the same way we can prove this theorem for any arbitrary number of 

stages. 

Theorem 1, For the exact solution y(t) of the initial value problem (1) we have 

(k = 0,1,..., n ), where Yn ( t k ) are obtained from the method 

(7)-(8) or (14)-(15). 
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Proof (induction with respect to k). For k = 0 we have 

where 

and 

(20) 

is a summarized error of interpolation and integration. But Ψ ( t k , y{tk)) 

from the assumption (about our methods) it follows that 

This implies that Hence, taking into account (20), we have 

Moreover, 

Let us assume that we have 

If we substitute an interpolation polynomial for the integrand above and then use the quadrature 

formula analogous to, we get 

for each and from the induction assumption 

we have Thus, we get 

Ψ ( T k , Y n ( t k ) ) , and 
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But on the basis of (7) (in the case of one-stage method, i.e. with m = 1) or (14) (for two-stages 
methods, i.e. with m = 2) the interval on the right-hand side of membership operator is equal to 

Y n ( t k + 1) . 

6. WIDTHS OF INTERVAL SOLUTIONS 

Before we estimate the widths of interval solutions obtained by the methods (7) and (14), let 
us consider the widths of intervals Ki,k ( h ) given by (8) and (15). From these formulas and 
properties of the function F it follows that 

and can be also written as 

• m = 2 

where 

(22) 

(23) 

(24) 

On the basis of (23) for the method (7) from (21) we have 

For m = 1 and 2 we get the following solutions of (22): 

• m = 1 

where i = m = 1 for the method (7)-(8), and m = 2, i = 1, 2 for the method (14)-(15). 
The inequalities (21) are of the form 

(21) 
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if 

(25) 

(26) 

Using the inequality (25) we can prove 

Theorem 2. If Yn{tk )(k = 0,1 n) are obtained from (17)-(18), thenfor h0 < we have 

(27) 

where Q, R and S are some nonnegative constants. 

Proof. From (7) we get 

(28) 

Since then from the assumption that h0 < it follows the inequality (31), and also 
(30). For from (30) we have 

Insertion of this estimate into (33) yields 

Denoting 

we can write the last inequality in the form 

(29) 

From (29) it follows that 
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Thus, for each k=1,2,..., n we have 

But 

where, according to (9) and (10), 

............................................... 
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Hence 

where 

(30) 

Taking into account that T0 = [0, 0], i. e. d(T0) = 0, the inequality (27) follows immediately 
from (30). • 

For the two-stage implicit interval method of the Runge-Kutta type we can prove 

Theorem 3. If Yn (tk) (k = 0,1,..., n) are obtained on the basis of the method (14)- (15), then 

for ho such that 

(31) 

we have 

where Q, R and S denote some nonnegative constants. 

Proof. The formulas (15) yield 

(34) 

(35) 

(33) 

k = 0,1,.. . , n - 1 . On the basis of (15) we have where 

From (24) it follows that the solution of the inequalities (34) is of the form 

(32) 
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if 

i. e. 

and hence, obviously 

The first two inequalities are fulfilled from the assumption (31) and because of The third 

inequality also follows from (31), because for we have 

(36) 

Since h < 1 (as a consequence of h0 < 1 ), then h2 < h. Thus, from (36) it also follows that 

Taking into account that 

Using these estimate, from the inequality (33) we obtain 

(37) 

where 

(38) 

from (35) we get 
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Since d ( 0 ) = 0, the inequality (31) is an obvious consequence of (39). • 

7. REMARKS 

Theoretical justifications presented in this paper must be accompanied by a practical 
realization of the methods on the computer. An appropriate object-oriented system, called OOIRK 
(Object-oriented interval Runge-Kutta methods), is just developed by the authors [5], Currently 
this system is fully functional for a number of explicit interval methods of Runge-Kutta type, and 
makes possible to provide calculations in standard floating-point arithmetic (sometimes called 
naive arithmetic) and in interval floating-point arithmetic together with interval representations 
of data in the form of machine intervals. 

We plan to add to this system not only one- and two-stages implicit interval methods presented 
in this papaer, but also three- and four-stage methods, including symplectic ones. Some theoretical 
results for such methods already have been obtained [6], but other still wait for considerations. In 
our opinion, one of the main problems which should be solved concerns an iteration process used 
in the implicit methods. Such a process cannot be too complicated and should be possible to apply 
to a wide range of interval functions. The assumption about such functions in the process (13) (to 
make them contraction mappings) seems to be too strong. 
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