
A SIMULATED ANNEALING ALGORITHM 
FOR SOME CLASS OF DISCRETE-CONTINUOUS 

SCHEDULING PROBLEMS 

Joanna Józefowska, Marek Mika and Jan Węglarz 

Poznań University of Technology, Institute of Computing Science, 

Piotrowo 3A, 60-965 Poznań, Poland 

e-mail: mika@man.poznan.pl 

Abstract 

In this paper a Simulated Anneal ing algorithm is proposed and applied to the n-job and 
m-machme discrete-continuous scheduling problem with the objective to minimize the makespan. 
This problem can be divided into two interrelated subproblems (i) constructing a feasible sequence 
of j o b s on machines and (ii) allocating the continuos resource among j o b s already sequenced. 
The application of the Simulated Anneal ing algorithm operating on a space of feasible sequences is 
presented. By computational experiment on randomly generated test problems, the proposed 
algorithm is compared with two other heuristics, namely Multi-start Iterative Improvement 
algorithm and Random Sampling Technique. 

1. I n t r o d u c t i o n 

We consider a problem of scheduling n independent, nonpreemptable jobs on m 
identical parallel machines under additional resources. In the classical model 
of scheduling the additional resource can be allotted to jobs in amounts from a given 
finite set only. For this model a number of results are known in the literature, 
concerning the computational complexity analysis, as well as optimization and 
approximation algorithms [2], But in many practical situations the additional resource 
can be allotted to a job in an amount (unknown in advance) from a given interval 
(a continuous resource). In the problem considered in this paper jobs require for their 
processing simultaneously both: discrete and continuous resources. This problem will 
be called a discrete-continuous scheduling problem [3], Such problems arise, for 
example, when jobs are assigned to parallel processors driven by a common electric, 
hydraulic or pneumatic power source. The processors correspond to the discrete 
resource and power corresponds to the continuous resource. The processing rate 
of a job depends on the amount of the continuous resource allotted to it at a time. 

The problem is to find a sequence of n jobs on m machines and a continuous 
resource allocation among jobs already sequenced, that optimize the makespan. Of 
course, other criteria can be examined, as well. 

73 

user
Tekst maszynowy
CMST 2(1) 73-85 (1996)

user
Tekst maszynowy
DOI:10.12921/cmst.1996.02.01.73-85



2. Problem Formulation 

Let us consider a discrete-continuous scheduling problem with n nonpreemptable 
and independent jobs, m identical, parallel machines and a single continuous renewable 
resource. We assume that all jobs and machines are simultaneously available at the 
start of the process, and that each machine can process one job at a time only. The total 
amount of the continuous resource available at a time is limited (without loss 
of generality this limit can be fixed at 1). The processing rate of job i depends 
on the amount of the continuous resource allotted to this job at time t and is described 
by the equation: 

is the resource amount allotted to job i at a time t. 

is (unknown in advance) completion time of job i; 

is the final state (processing demand) of job i; 

corresponding to the minimal value M* of M. 
It has been proved [3] that for the problem with uniform machines and functions 

74 

The problem is to find a sequence of jobs on machines and, simultaneously, 
a continuous resource allocation, which minimize the schedule length (makespan): 

The continuous resource allocation is defined by a piece-wise continuous, non-negative 
vector function: 

which values are continuous resource allocations 

where and i = 1,2, ..., n, a schedule with minimal makespan 

can be obtained by scheduling all jobs on the fastest machine, and processing them 
using the total available amount of the continuous resource. 

we assume that and 

where is the state of job i at time t; 

is a continuous nondecreasing function, 

Let us consider concave functions 

optimal. 

For this case the parallel configuration is 



times of consecutive jobs. Let S denote a sequence Z1,...,Zp associated with each 

feasible schedule, where Zk k = 1, 2, ..., p is a combination of jobs processed 

in the interval Mk. Sequence Z1,...,Zp , is feasible if the number of elements 

in each combination is at most m, and each job appears in at least one combination in 

S. If job appears in more than one Zks these combinations must be consecutive ones 

(jobs are nonpreemptable). 

Example 1 
Consider the following feasible schedule of 10 jobs on 3 machines. For simplicity it is 

Fig 1. An example of a schedule for discrete-continuous scheduling 

The corresponding feasible sequence of combinations Z 1 , Z 2 , . . . , Z8 is: 

S= {1,2,3}, {4,2,3}, {4,5,3}, {4,5,6}, {7,5,6}, {7,8,6}, {7,8,9}, {10,8,9} 

75 

assumed for every t (Fig 1). 

Further, for each job i its processing demand i = 1,2, ...,n, can be divided 

into parts processed in particular time intervals (combinations), 

as it is illustrated in Fig. 2. 
For a given feasible sequence S one can find a division of processing demands of 

jobs among combinations in S, which leads to a schedule of the minimum length 

from among all feasible schedules generated by S. Such a division is an optimal one. 
To this end a nonlinear programming problem can be formulated in which the sum of 
the minimum-length intervals generated by consecutive combinations in S, as functions 

of 's is minimized subject to obvious constrains. 

A feasible schedule, which is a solution of a discrete-continuous problem, can be 

divided into p n intervals of length Mk (k = 1 , 2 , . . . , p ) , defined by the completion 



Fig 2. A division of processing demands of jobs in discrete-continuous scheduling 

Minimize 

subject to 

where for concave func t ions 

76 

Notice that for identical concave functions it is sufficient to consider feasible 

schedules in which the resource allocation among jobs remains constant in each 

interval Mk, k = 1,2. ... , p. [3], The optimization problem obtained is always 

a convex one, because a sum of convex functions is also convex. 

Of course, knowing a division of 's one can easily calculate corresponding 

resource allocations. 
The following mathematical programming problem can be defined to find an 

optimal demand division for a given feasible sequence S . 

Problem P 

posi t ive root of the equation 

K i is the set of all indices ; 

; 

is a part of job i processed in combinat ion 

is the un ique 

' s such that i 



Thus our problem is to minimize a convex function subject to linear constraints. 
Let us define a potentially optimal set POS for a given instance 1, as a set of 

feasible sequences S, which contains at least one sequence corresponding to an optimal 
schedule. A POS which consists of all feasible sequences of n-m+1 m-element 
combinations will be called a general POS. If the number of sequences in a POS is not 
very large one can solve problem P for each S from the POS and chose a schedule with 
the minimum length as an optimal solution. However, in the general case, the general 
POS has to be considered, the cardinality of which grows exponentially with 
the number of jobs n. Thus, in general, we are left in a situation, in which the problem 
cannot be solved to optimality, because the search for an optimum requires prohibitive 
amount of computation time. In these cases one may use e.g. local search 
metaheuristics. 

In this paper we propose a Simulated Annealing algorithm for a special case 
of n-jobs m-machines discrete-continuous scheduling problem with an objective 

The proposed algorithm is compared with two other approximation algorithms: 
Multi-start Iterative Improvement algorithm and a Random Sampling Technique. 

A homogeneous Simulated Annealing algorithm [1] can be written as follows. 

Step 1. Let k := 0; Generate an initial solution a ; 

Calculate initial value of the control parameter T0 ; 

Set initial length of Markov chain L0 ; 

Step 2. Let i := 1 ; 

Step 3. Randomly generate a solution b from the neighborhood 
N(a) of the current solution a; Let i := i +1 ; 

Step 4. Replace a by b with the probability 

3. Simulated Annealing algorithm 

where C is the cost function. 

77 

Step 5. If i Lk, then go to step 2 ; 

Step 6. Let k := k+ 1 ; Update Lk;Set new value of Tk ; 

to minimize the makespan. in which functions are of the form: 



Step 7. If stop criterion is fulfilled then stop else go to step 2 

In order to apply the above described algorithm, a number of decisions have to be 
made. One must choose: 

1. representation of a solution; 
2. evaluation function C(a): 
3. mechanism of neighbourhood generation; 
4. initial solution a0; 

5. initial value of control parameter T0 ; 

6. number of iterations (the Markov chains length) ; 

These decisions can be divided into two groups. The first one contains the 
problem specific decisions (1-4), which are closely related to the considered problem, 
and the second one, the generic decisions (5-8) which are usually called the cooling 
schedule. 

3.1. The problem specific decisions 

1. Representation of a solution. 

A solution is represented by a feasible sequence consisting of (n - m + 1) 
element sequence consisting of m-element sets of job indices, which occur in 
corresponding Zk ' s . The solution space is a general POS. 

2. Evaluation function. 

function is computationally easy and consist in solving the following system of 
equations: 

78 

For the considered class of functions the evaluation of the cost 

- the temperature function; 7. 

8. stop criterion; 



Thus our (minimized) cost function, is the following one: 

3. Mechanism of neighbourhood generation. 

New solutions are generated in the following way. One element is randomly 
choosen from the current configuration. The chosen element must fulfill 
the following feasibility conditions: 

(i) it must represent a job. which occurs in at least two Zk's; 
(ii) if the number of combinations Zk's in which the chosen job occurs is 
greater than two. this Zk must be the first one or the last one from 
the combinations in which this job occurs. 

If the randomly chosen job doesn't fullfil (i) or (ii) we must chose another job. 
The job chosen from combination Zv can be replaced only by a job which: 

• doesn't occur in Zv and does occur in Zv-1 (if Zv is the last combination 
in the feasible sequence in which the chosen job occurs); 

• doesn't occur in Zv and does occur in Zv+1 (if Zv is the first combination 
in the feasible sequence in which the chosen job occurs); 
For example, for the n-jobs m-machines problem, where n - 10 and 
m. = 4, and current solution is represented by the sequence: 

S = {1,2,3,4}, {2,3,4,5}, {3,4,5,6}, {4,5,6,7}, {5,6,7,8}, {6,7,8,9}, {7,8,9,10} 

Elements which fulfill the conditions (i) and (ii) are displayed as a bold text. 
Let us assume that v = 4, then we can chose either job number 4 or job number 
7. Job number 4 can be replaced only by job number 3 and then job 7 can be 
replaced only by job number 8. 

4. Initial solution 

The initial solution has the following form: 

S = {1,2, ... , m},{2,3, ... , m + 1} , . . . ,{n - m + n - m + 2, ... , n -1, n) 

We choose th i s kind of solution, because the neighborhood which can be 
obtained from this configuration is greater then neighborhoods which can be 
obtained from other kinds of configurations. 

79 



3.2. Simple Cooling Schedule 

1. The initial value of the control parameter T0 is obtained from 
the equation: 

80 

where is an initial acceptance ratio, which is defined as the number 

of accepted transitions divided by the number of proposed transitions and 

is the average difference in cost. We chose and 

the number of proposed transition equal to 50. 

2. A decrement function decreasing the value of the control parameter is 
given by: 

where k = 0,1,2,..., and = 0.95 . 

3. Stop criterion is the computation time, which depends on the size of 
the problem. 

4. The length of the Markov chains Lk is determined so that the number of 

the rejected transition is not less than the number of jobs n . 

4. Multi-start Iterative Improvement algorithm and Random 

Sampling Technique 

A Multi-start Iterative Improvement algorithm can be written as follows. 

Step 1. Randomly choose an initial solution a ; 

Step 2. Generate a solution b from the neighborhood N(a) of 
the current solution a: 

Step 3. Calculate the value of the cost function C. 
If C(b) < C(a) then replace a with b and go to step 4. 
else go to step 5. 

Step 4. If stop criterion is fulfilled then stop else go to step 2. 

Step 5. If there is no solution that improves a go to step 1. 
else go to step 4. 



In this algorithm, the current solution a is replaced by the first solution b that 
improves a. If there is not such solution in N(a), i.e., if a is a local optimum, the 
iterative improvement procedure restarts at another initial solution. This procedure is 
repeated until the stopping condition in step 4 is satisfied. The stop criterion and the 
neighborhood generation mechanism are identical as in the Simulated Annealing 
algorithm and therefore we can compare results obtained by using both algorithms. 

The Random Sampling Technique is an algorithm in which we randomly generate 
the next solution from the current one in order to find a configuration with the smallest 
value of the cost function. In this algorithm, the next solution is generated according to 
the mechanism described in the simulated annealing algorithm. The stop criterion is 
identical with this of Simulated Annealing algorithm. 

5. Computational experiments 

5.1. Test problems 

As the test problems, we randomly generated 1000 instances for 13 problems 

the number of jobs n = 10 the results obtained by all three algorithms has been 
compared with optimal solutions. For other problems the results are compared among 
the applied algorithms. 
Table 1 shows the number of instances in which an optimal solution has been obtained 
by proposed algorithms. In Table 2 and Table 4 we summarize the average relative 
deviation from the reference makespan over 1000 randomly generated instances for 
each problem. The relative deviation of each solution a was calculated from the 
equation: 

81 

of different sizes (for = 2 : 1 0 jobs x 2 machines, 10 x 3, 20 x 2, 20 x 3, 50 x 2, 
50 x 3 ,100 x 10 and for = 3 : 10 x 2, 10 x 3, 20 x 2, 20 x 3, 50 x 2, 50 x 3). 
A processing demand of each job is given as a random integer from the interval 
[1,1000]. All algorithms have been written in C++ language, and the experiment has 
been carried out on SGI PowerChallenge computer. 

The numerical results are summarized in Table 1 Table 4. For problems with 

relative deviation = 

where C(a) is the makespan obtained by an algorithm. The reference makespan is 
chosen as an optimal one for problems with n = 10 (Table 2) and the best from among 
those obtained by Simulated Annealing, Random Sampling Technique and Multi-start 
Iterative Improvement algorithm, for n >10 (Table 4). 



Table 3 shows the number of instances in which solutions obtained by a given 
algorithm is not worse than results obtained by two others. 

Table 1. The number of instances whose optimal solutions are obtained by the proposed algorithms. 

82 

Table 3. The number of instances whose best results are obtained by the proposed algorithms. 

Table 2. Average relative deviation from optimum obtained by the proposed algorithms. 



Table 4. Average relative deviation from the best known solution obtained by the proposed 

algorithms. 

We can draw the following conclusions from the results of the computational 
experiment: 

1. In almost all cases the Simulated Annealing algorithm is better than two other 
heuristics. 

2. The approach based on the Random Sampling Technique for problems with two 
machines is comparable to the Simulated Annealing. But for other problems 
sizes this algorithm is much worse than two other heuristics. 

3. The proposed Simulated Annealing is the best one for large problems sizes, 
where the Random Sampling Technique disappoints completely. 

4. In cases where the number of solutions obtained by the proposed Simulated 
Annealing algorithm is less than the one obtained by Multi-start Iterative 
Improvement the average relative deviation shows that results obtained by 
Simulated Annealing are very close to those obtained by Iterative Improvement. 

5. The proposed stop criterion is not very good, because the number of generated 
solutions is slightly different for each technique. The Simulated Annealing 
algorithm generates less configurations than two other techniques. 

6. The proposed neighborhood generation mechanism is good for small numbers of 
machines, but it is worse for problems with greater values of m, because the 
size of the neighborhood, which consist of only feasible solutions is different for 
different current solutions. For example, for the n-jobs m-machines problem, 
where n = 10 and m = 5, in the best case, when current solution is represented 
by sequence 

S = {1,2,3,4,5}, {2,3,4,5,6}, {3,4,5,6,7}, {4,5,6,7,8}, {5,6,7,8,9}, {6,7,8,9,10} 

83 



we can replace all elements which fulfill the feasibility conditions and are 
displayed as bold text. The number of these elements is equal to 2{n - 2) and the 
probability that we randomly choose such an element is represented by 
expression 

84 

In the worst case, when the current solution is represented by the sequence 

5 = {1,2,3,4,5},{1,2,3,4,6},{1,2,3,4,7},{1,2,3,4,8},{1,2,3,4,9},{1,2,3,4,10} 

The number of elements which fulfills the feasibility conditions is equal to 
2{m. - 1) and the corresponding probability is equal to 

It influences the algorithms, where the neighbour solution is generated in 
random way like in Simulated Annealing or Random Sampling Technique and 
have smaller effect in algorithms where the neighborhood is generated in 
deterministic way like in Iterative Improvement algorithm. 

6. Conclusions 

In this paper, we proposed a Simulated Annealing algorithm for some class of 
discrete-continuous scheduling problems with the objective to minimize the makespan. 
By computer tests on various problem sizes it was shown that the proposed algorithm 
is better than two other heuristics (Multi-start Iterative Improvement and Random 
Sampling Technique) and that for small numbers of machines the Random Sampling 
Technique gives better solutions than the Multi-start Iterative Improvement algorithm, 
but for greater values of m it is inferior to the Iterative Improvement. However, these 
two algorithms are still not better than the proposed Simulated Annealing algorithm. In 

will improve the neighbourhood generation mechanism. Moreover, we plan to 
parallelize this algorithm to make the searching procedure faster and more efficient. 

Acknowledgments 

This research has been supported by the KBN Grant 8T11F 010 08p02. 
The numerical experiments were carried out on a Silicon Graphics PowerChallenge 
computer with eight RISC TFP 75 MHz processors in the Poznań Supercomputing 
and Networking Center. 

the future it is planned to apply this algorithm to a wide class of functions . Also, we 



References 

[1] Aarts. E.H.L., and Korst. J., Simulated Annealing and Boltzman Machines, Wiley. 
Chichester. 1989. 

[2] Błażewicz. J., Ecker. K.H.. Schmidt. G., Węglarz. J., Scheduling in Computer and 
Manufacturing Systems. 2nd edition. Springer Verlag, Berlin (1994). 

[3] Józefowska. J., and Węglarz. J., On a methodology for discrete-continuous 
scheduling Research Report of the Institute of Computing Science. Poznań 
University of Technology . RA-004/95 (1995). 

[4] van Laarhoven. P.J.M., and Aarts, E.H.L., Simulated Annealing: Theory and 
Applications. Kluwer Academic Publishers, Dordrecht. 1987. 

[5] Węglarz. J., Multiprocessor scheduling with memory allocation - a deterministic 
approach . IEEE Trans. Computers C-29/8, 703-710 (1980). 




