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A B S T R A C T : Simple computa t iona l me thod for s tudying elastic constants of solids is 

presented and applied to the case of a f.c.c. tethered crystal. It is shown t h a t the system 

exhibi ts negative Poisson's rat io in a range of isotropic tension (negative pressure). 

The role of elastic constants in the solid s ta te physics is twofold: (a) they 

provide a link between the mechanical and dynamical behaviour of crystals, and 

(b) they are a means of probing the interatomic forces [1], As it is well known, 

only for s tat ic crystalline systems the elastic constants can be determined exactly 

by analytic methods [2]. At non-zero temperatures o r / a n d in the presence of 

disorder, numerical methods are inescapable, in general. 

In the seminal paper , Squire, Holt, and Hoover [3] proposed a Monte Carlo 

simulation method to compute the elastic constants of model systems. Their 

me thod , which uses fluctuations of particle positions in samples of fixed shapes, is 

however not directly applicable to non-smooth interaction potentials like square-

well or hard-body ones. The lat ter are important model systems corresponding to 

the very limit of anharmonici ty of intermolecular interactions. Studies of elastic 

properties of such systems are, at least in principle, easy when f luctuat ions of the 

sample shape are allowed. The idea of exploiting fluctuations of the (periodic) box 

containing the sample comes from Parrinello and Rahman [4] who introduced to 

the simulations the constant stress tensor [5] to control the deformation (strain) 

of the sample. Ray and Rahman [6] pointed out t ha t , to be rigorous, one should 

use the tensor of the thermodynamic tension in place of the stress tensor. 

The general strain fluctuation method allows one to determine elastic con-

s tan ts of samples which undergo any affine deformations. When one's interests 

are restricted to systems at constant pressure, the standard constant pressure 

Monte Carlo method with variable shape of the periodic box [7] is sufficient to 

determine the elastic constants . The variable box can be conveniently described 

whose columns are formed by components of vectors const i tut ing 

edges of the parallelepiped which plays the role of the box of periodicity [5]. To 

avoid the unwanted rota t ion of the box, the number of the independent compo-
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nents should be restricted to = D(D + l ) / 2 , where D is the dimensionality of 

by a mat r ix 
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t h e s y s t e m . T h e p a r t i t i o n f u n c t i o n a t t h e c o n s t a n t p r e s s u r e , p , c a n b e w r i t t e n as : 
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( 1 ) 
w h e r e (i) i n t h e i n t e g r a t i o n ove r t h e c o m p o n e n t s o f t h e p e r i o d i c b o x , t h e re-

s t r i c t i o n s i m p o s e d o n ( t o r e d u c e t h e n u m b e r o f t h e f r e e c o o r d i n a t e s ) a r e t a k e n 

i n t o a c c o u n t , (ii) t h e i n t e g r a t i o n ove r all t h e s ca l ed c o o r d i n a t e s o f t h e p a r t i c l e s , 

( t h e v e c t o r d e f i n e s c o o r d i n a t e s of t h e p a r t i c l e n, n = 1 ,...,N a n d 

i s t h e i n v e r s e of i s p e r f o r m e d w i t h i n t h e u n i t c u b e , (iii) j i s t h e J a c o -

b i a n o f t h e m a p p i n g t r a n s f o r m i n g t h e m a t r i x i n t o t h e s t r a i n t e n s o r , c a l c u l a t e d 

w i t h r e s p e c t to t h e e q u i l i b r i u m s t a t e a t p , (iv) a n d UN i s t h e p o t e n t i a l e n e r g y o f 

t h e s y s t e m . 

In this report we present results of constant pressure simulations of the f.c.c. 
tethered crystal. The interaction potential of this tethered crystal is equal to zero 
if the distance between the interacting1 particles does not exceed unity, and infinity 
otherwise. Tethered solids, introduced by Kantor, Kardar and Nelson [8] to model 
properties of two dimensional elastic membranes, are the simplest, purely entropic 
models stable in a range of negative pressures. Recently, it has been shown [9] 
t ha t , in a range of uniform isotropic tensions (negative pressures), two dimensional 
tethered solids of hexagonal lattice exhibit negative Poisson's ratio, 
been also pointed out [10], using exact arguments and free volume approximation, 
tha t such a property should occur at any dimensionality not less than two, both 
in harmonic and tethered solids. The harmonic and tethered solids represent 
the opposite 'poles' of the elasticity. The first (harmonic solid) corresponds to 
purely energetic mechanism, and the second (tethered solid) is governed by the 
entropy alone. Hence, one can expect that negative values of 
for a broad class of systems under uniform tension. Such a general mechanism 
leading to negative Poisson's ratio is in contrast to the mechanisms known before, 
which required either special s t ructure of the system [11-14] or special form of the 
intermolecular interactions [15-18]. 

System of N = 108 particles was studied at various negative pressures. Some 
runs were also performed for N = 864 particles to test any number dependence 
of the results. Typical runs consisted of 5 X 106 cycles (trial steps per particle), 
i.e. were by about two orders of magnitude longer than typical runs necessary to 
determine the equation of s ta te of the system with similar accuracy. The elastic 
constants were computed using the formula: 

1To avoid a collapse of the system, each particle can interact only with specified particles; the 

interacting particles form a network. 

( 2 ) 

< 0. It has 

are characteristic 



where S,j is the tensor of the elastic compliances, Vp is the average volume of 
the system at the pressure p, T is the temperature, the Boltzmann constant , 

means the thermodynamic averaging. The Voigt 
was used for the components of the strain 

and compliance tensors. 

of the f.c.c. tethered crystal versus the reduced pressure, 

Pressure dependence of the compliances is shown in Fig . l . It can be seen there 

changes sign in the vicinity of p = 14. This means tha t the Poisson's 

rat io: 

c h a n g e s s ign a lso , as s h o w n in F ig .2 . 
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a n d 

c o n v e n t i o n , 

F ig . l . T h e compliances, 

t h a t 



Fig.2. The Poisson's ratio of the f.c.c. tethered crystal versus the reduced pressure, 

The present simulations confirm the theoretical prediction, by the free volu-
me approximation [10], that the three dimensional tethered solid should exhibit 
negat ive Poisson's ratio. This fact , combined with the rigorous resul ts available 
for harmonic crysta ls [10], sugges t s that in a range of negat ive pressures various 

< 0. Systems of negat ive Poisson's rat ios exhibit many 
surpr is ing and useful propert ies [19]. In such a context, the general mechanism 
leading to negat ive Poisson's rat ios, described in this report , can be interest ing 
f r o m the point of view of practical application. 
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s y s t e m s should exhibit 
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