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DETERMINATION OF ELASTIC CONSTANTS
BY MONTE CARLO SIMULATIONS
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ABSTRACT: Simple computational method for studying elastic constants of solids is
presented and applied to the case of af.c.c. tethered crystal. It is shown that the system
exhibits negative Poisson's ratio in a range of isotropic tension (negative pressure).

The role of elastic constants in the solid state physics is twofold: (a) they
provide alink between the mechanical and dynamical behaviour of crystals, and
(b) they are a means of probing the interatomic forces [1], As it is well known,
only for static crystalline systems the elastic constants can be determined exactly
by analytic methods [2]. At non-zero temperatures or/and in the presence of
disorder, numerical methods are inescapable, in general.

In the seminal paper, Squire, Holt, and Hoover [3] proposed a Monte Carlo
simulation method to compute the elastic constants of model systems. Their
method, which uses fluctuations of particle positions in samples of fixed shapes, is
however not directly applicable to non-smooth interaction potentials like square-
well or hard-body ones. The latter are important model systems corresponding to
the very limit of anharmonicity of intermolecular interactions. Studies of elastic
properties of such systems are, at least in principle, easy when fluctuations of the
sample shape are allowed. The idea of exploiting fluctuations of the (periodic) box
containing the sample comes from Parrinello and Rahman [4] who introduced to
the simulations the constant stress tensor [5 to control the deformation (strain)
of the sample. Ray and Rahman [6] pointed out that, to be rigorous, one should
use the tensor of the thermodynamic tension in place of the stress tensor.

The general strain fluctuation method allows one to determine elastic con-
stants of samples which undergo any affine deformations. When one's interests
are restricted to systems at constant pressure, the standard constant pressure
Monte Carlo method with variable shape of the periodic box [7] is sufficient to
determine the elastic constants. The variable box can be conveniently described
by a matrix h, whose columns are formed by components of vectors constituting
edges of the Barallelepiped which plays the role of the box of periodicity [5]. To
avoid the unwanted rotation of the box, the number of the independent compo-
nents should be restricted to A = D(D + 1)/2, where D is the dimensionality of
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the system. The partition function at the constant pressure, p, can be written as:

Zx(p,T) = /(lQA j(h) /dgN exp{[—p(let(g) + N In[det(h)] - lfN(b__.g)] [kT},
(1)

where (i) in the integration over the components of the periodic box, the re-
strictions imposed on Q (to reduce the number of the free coordinates) are taken
into account, (ii) the integration over all the scaled coordinates of the particles,
§nEQ—1In (the vector 1, defines coordinates of the particle n, n = 1,.N and
Q‘l is the inverse of h) is performed within the unit cube, (i) j(h) is the Jaco-
bian of the mapping transforming the matrixginto the strain tensor, €, calculated
with respect to the equilibrium state at p, (ivy and UN is the potential energy of
the system.

In this report we present results of constant pressure simulations of the f.c.c.
tethered crystal. The interaction potential of this tethered crystal is equal to zero
if the distance between the interacting’ particles does not exceed unity, and infinity
otherwise. Tethered solids, introduced by Kantor, Kardar and Nelson [8] to model
properties of two dimensional elastic membranes, are the simplest, purely entropic
models stable in a range of negative pressures. Recently, it has been shown [9]
that, in arange of uniform isotropic tensions (negative pressures), two dimensional
tethered solids of hexagonal lattice exhibit negative Poisson's ratio, » < 0. It has
been also pointed out [10], using exact arguments and free volume approximation,
that such a property should occur at any dimensionality not less than two, both
in harmonic and tethered solids. The harmonic and tethered solids represent
the opposite 'poles' of the elasticity. The first (harmonic solid) corresponds to
purely energetic mechanism, and the second (tethered solid) is governed by the
entropy alone. Hence, one can expect that negative values of ;, gre characteristic
for a broad class of systems under uniform tension. Such a general mechanism
leading to negative Poisson's ratio is in contrast to the mechanisms known before,
which required either special structure of the system [11-14] or special form of the
intermolecular interactions [15-18].

System of N = 108 particles was studied at various negative pressures. Some
runs were also performed for N = 864 particles to test any number dependence
of the results. Typical runs consisted of 5 X 10° cycles (trial steps per particle),
i.e. were by about two orders of magnitude longer than typical runs necessary to
determine the equation of state of the system with similar accuracy. The elastic
constants were computed using the formula:

S;j = kBTS,'J‘ = Vp < AQAGJ' >y (2)

Toavoid a collapse of the system, each particle can interact only with specified particles; the
interacting particles form a network.
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where Sj is the tensor of the elastic compliances, V, is the average volume of
the system at the pressure p, T is the temperature, the Boltzmann constant,
A¢; = ¢,— < ¢; >, and < ... > means the thermodynamic averaging. The Voigt
convention, €, — €1, ..., €, — €¢/2, was used for the components of the strain
and compliance tensors.
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Fig.l. The compliances, S,?‘J- of the f.c.c. tethered crystal versus the reduced pressure,
p* =p/kgT.

Pressure dependence of the compliances is shown in Fig.l. It can be seen there
that S, changes sign in the vicinity of p = 14. This means that the Poisson's
ratio:
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changes sign also, as shown in Fig.2.
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Fig.2. The Poisson's ratio of the f.c.c. tethered crystal versus the reduced pressure,
p* =p/kpT.
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The present simulations confirm the theoretical prediction, by the free volu-
me approximation [10], that the three dimensional tethered solid should exhibit
negative Poisson's ratio. This fact, combined with the rigorous results available
for harmonic crystals [10], suggests that in a range of negative pressures various
systems should exhibit ¥ < 0. Systems of negative Poisson's ratios exhibit many
surprising and useful properties [19]. In such a context, the general mechanism
leading to negative Poisson's ratios, described in this report, can be interesting
from the point of view of practical application.
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