CMST 1(1) 7-18(1996) DOI:10.12921/cmst.1996.01.01.07

The Role of Efficient Programming in Theoretical
Chemistry and Physics Problems

Wojciech Cencek
Department of Chemistry, A. Mickiewicz University,
Grunwaldzka 6, 60-780 Poznan, Poland

Abstract

Various aspects of efficient programming of high-performance computer systems
are discussed, using an example from modern electronic structure theory. It is
shown that efficient programming is indispensable in today's theoretical studies by
reducing drastically involved computer time. Timings from our quantum chemical
program CORREL are given for several platforms ranging from Cray Y-MP EL to
PC/486.

1 Introduction

1.1 Variational method in quantum mechanics

The quantum world is one of these fields where physics and chemistry meet particularly
often. As it is commonly known, elementary particles and sufficiently small objects
built out of them—such as atoms and molecules—cannot be described in terms of clas-
sical Newton mechanics, even when we neglect relativistic effects contained in Einstein's
theory. Instead of Newton's laws we have to deal with the famous Schroedinger equation

HV = EV, (1)

where]'} is the so-called Hamilton operator modifying in some defined way the function
W following it. The construction of this operator for a given quantum system is usually a
simple task. To solve the Schroedinger equation means to find both the "wavefunction",
W, and the total energy of the system, E. As follows from quantum mechanics, if we
know W we can easily calculate, apart from the energy, all static properties of the system.
Unfortunately, from what the chemist may be interested in, namely atoms and molecules,
only trivial one-electron cases such as the hydrogen atom can be directly solved. For
larger systems the Schroedinger equation becomes so difficult that one is forced to look
for some approximations. One commonly used, called the Born-Oppenheimer approxi-
mation, treats the movement of the electrons independently of this of the nuclei, basing
upon the significant difference between masses of the two types of particles. In the first
step, the electronic Schrodinger equation is solved, i.e. it is assumed that the nuclear
masses in the Hamilton operator are infinite (the nuclei do not move) and the function v
depends only on the electronic coordinates. This is the subject of the electronic struc-
ture theory and we will restrict ourselves to this first step throughout this paper. The
second step involves solving the equation for the nuclear motion. Having completed both

user
Tekst maszynowy
CMST 1(1) 7-18 (1996)

user
Tekst maszynowy

user
Tekst maszynowy
DOI:10.12921/cmst.1996.01.01.07-18

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

the tasks one can also subsequently compute the couplings between both the types of
movements so that starting with the Born-Oppenheimer approximation does not exclude
calculating the properties of the systems with high accuracy.

The electronic problem is also very complicated but can be numerically solved in
some indirect way, for example variationally. Such methods rely on the following
theorem (variational principle)

Eff‘l’f‘”’d">E)
T Twvavy <7)
It states that taking any integrable function ¥ and calculating the quantity € according
to the above equation (where dV stands for the integration over all the electronic co-
ordinates) one never gets a value lower than the true energy E. Consequently, among
different trial functions the best one is that yielding the lowest value of €. Ifthese func-
tions depend on some set of parameters, we treat € as a function of these parameters
and look for its minimum. It is particularly simple if ¥ is a linear combination

N

W (,...,7K) =P Z cids. 3)

i=1

In the above equation, 7; denotes the set of all the coordinates of the ith electron and P
is some operator ensuring that the total function has appropriate symmetry properties.
A standard way in the electronic structure theory is to express the ¢;’s as products of K
one-electron factors, which is known as the method of configuration interaction (CI). It
turns out, however, that the CI expansions are extremely slow convergent, i.e. the value
of € in Eq. (2) is far above E (at least dozens of cm ') unless an astronomic (compu-
tationally not achievable) number of expansion terms, N, is used. Higher accuracy can
be obtained when the ¢;’s depend not only on the individual electron coordinates but
also on interelectronic distances. These so-called explicitly correlated functions de-
scribe better electron-electron Coulomb repulsions. Examples are the Kotos-Wolniewicz
function |I] for the hydrogen molecule (one of the greatest achievements of the Pol-
ish chemistry) and the Gaussian-type function introduced in the 60's by Boys [2] and
Singer [3[:

K K
. T
¢; =exp | — E aklfe — Al — E Bira|Fx — 71l “)
k=1 k>l=1

The first sum contains electron coordinates expressed as squared distances between the
kthelectron and the given point /fzk, The second sum mixes the electron coordinates
introducing explicit correlation of their movements. Because of the symmetry require-
ments, in atoms all the centers .‘fzk coincide usually with the position of the nucleus and
need not to be determined, and in linear molecules they lie on the molecular axis and
have one component to be optimized. Apart of these, with each ¢; term the following
variational parameters are connected: one c, (linear), K a@;x’s (nonlinear) and %K(K—l)
Bixl’s (nonlinear). This type of wavefunction has been tried for thirty years, generally
yielding significantly worse results than other explicitly correlated functions (e.g. the
Kotos-Wolniewicz expansion). An opinion that it is inferior—when very high accuracy
is desired—has been commonly accepted. A few years ago a large project was started
in our group, which aimed at weakening this conviction and investigating what level of
accuracy can be reached when large expansions with very carefully optimized nonlinear

8

parameters are used in conjunction with high-performance and efficiently programmed
computers. It should be noted that almost al of today's quantum chemical computa-
tions are restricted to the linear optimization because optimizing nonlinear variational
parameters is usually extremely expensive. As a part of the project we developed a
computer program named CORREL which allows to optimize all the parameters in the
wavefunction of the type (4) for small atoms and molecules. The largest expansion used
so far by us has been a 2172-term wavefunction for the lithium atom (N=2172, K =3).
As follows from above, it contains 2172 linear and 13032 nonlinear parameters, all of
them to be optimized. This already sheds some light on the difficulties arising from such
extensive calculations and explains the need of efficient programming.

1.2 Optimization of the linear parameters

In case we would like to optimize only the linear parameters c¢; in (3), the problem is
not theoretically difficult and has a general solution. Putting (3) into the expression for
e (2) and assuming d¢/dc;=0 leads to

Hc=¢Sc)

where H and S are N x N matrices defined by

hlj = /@if:l(l)j 1A% (6)
/dnaﬁj av @)

and c is an N x 1 vector of the parameters c; (see for example [5]).

Equation of the type (5) is well-known in linear algebra as the general symmetric
eigenvalue problem. Its solution presents no formal difficulties but becomes time-
consuming for large matrices since its cost goes as N3.

It should be also noted that Eq. (5) has N solutions defined by the pairs {(¢, c)[, l=1,N},
each of them fulfilling the variational principle (2) for the /th quantum state of the system
(I=1 for the ground state and [>2 for excited states).

sij

1.3 Optimization of both the linear and the nonlinear parame-
ters

Unfortunately, it is not possible to obtain a compact equation for the best nonlinear
parameters, analogous to (5). Instead we are forced to use some kind of nonlinear
optimization. There are many such techniques but most of them consist in changing
iteratively the values of the parameters according to some predefined strategy, testing
the function (in our case—energy) value after each step, and modifying the strategy
in order to move in the direction where the energy diminishes faster. The process
stops when no modification of the parameters leads to further energy improvement. In
the CORREL program we have implemented the so-called conjugate directions method
introduced thirty years ago by Powell [4 and still considered as one of the most efficient
despite its simplicity.

The whole algorithm of optimizing all the parameters in the wavefunction of the
type (3) can be summarized as follows

1. Choose starting values for the nonlinear parameters.

9

2. Compute H and S matrices.
3. Solve eigenvalue problem Hc = ¢Sc.

4. Stop condition fulfilled?
NO: change the values of the nonlinear parameters; go to 2.
YES: stop.

As we can see, each (2,3,4)-loop iteration in the optimization of the nonlinear pa-
rameters involves the full linear optimization (step 3). In practice a number of these
iterations which are necessary to reach convergence turns out to be of the order of 100
times the number of the nonlinear parameters. Turning back to our 2172-term example
lithium function, it means that following tasks have to be completed over one million
times:

» computation of more than 2 millions matrix elements h;; and s;;, each of them
involving calls to several complicated procedures,

« solving generalized eigenvalue problem of the order N=2172.

It is worth to say that doing the latter just once was itself a serious computational
challenge only some 10 years ago. It becomes clear that without clever and efficiently
programmed algorithms our method would be hopelessly time-consuming.

2 Details of the algorithms

2.1 Inverse iteration. Theory

Solving the eigenvalue problem (5) is crucial for the efficiency of our program. Even if,
for some special cases, computing H and S matrices might be the slowest step, its time
grows only as N2. For high-accuracy quantum chemical calculations, in which we are
ultimately interested, N has to be large and N*-dependence of (5) will sooner or later
provide a bottleneck.

We have used a method called inverse iteration [6], known as fast and numerically
stable. The vector ¢, being a solution of Eq. (5), is found as the following limit

ClL
c= lim —k, (8)
k—o0 |ck|

where the sequence {cx} is defined by the recurrence relation
(H—E()S) Ck+1 = Scy (9)

and co is an arbitrary starting vector. It can be proven [6] that {ck} converges to
an eigenvector corresponding to this eigenvalue which is closest to the constant €g.
Therefore, the eigenvalue (energy) has to be known approximately at the beginning.
The exact value can be computed from the converged eigenvector:

cTHe 10

€= —/.

cTSc (10
In practice, for a reasonably chosen €0, only a few iterations (N 3+ 5) are needed to
obtain 15 significant digits of .

10

2.2 Inverse iteration. Computational scheme

That the computational effort involved in the inverse iteration procedure is proportional
to N® comes from the necessity to solve (several times) the linear equations system (9).
Such systems, very common in numerical linear algebra, can be generally written as

Ax=Db (11)

where the matrix A and the vector b are known. In our case, we have to solve such a
system once in each iteration, i.e. for each value of of k in (9). It can be also noted
that b=Sc, changes from one iteration to another and has to be recalculated each
time, whereas A=H — ¢3S remains constant. This observation is very useful due to the
following well-known facts. Firstly, if the matrix in the linear equations system is either
lower triangular L (has zeroes everywhere above the diagonal) or upper triangular U
(has zeroes everywhere below the diagonal)

Lx=bh or Ux = b, (12

then solving such a system requires only ~ N? operations instead of ~ N° Secondly,
every matrix A can be decomposed with ~ N*® operations into a product of a lower
triangular matrix L and an upper triangular matrix U

A=1LU (13)
what allows to express Ax=b equivalently as

Ly=b (14)

Ux=y. (15)

Now it becomes clear that we can decompose A=H — ¢S at the beginning and in
subsequent iterations solve much less expensive systems (14) and (15) instead of (11).
The slowest step—matrix decomposition—remains proportional to N°, but it has to be
done just once. The final scheme of the inverse iteration procedure reads as follows.

1. Calculate A=H — ¢¢S.

2. Find the decomposition: A=LU.
3. k0.

4. Choose the starting vector c.

5. Calculate Scy.

6. Solve Ly=Scy.

7. Solve Ucgi1=y.

T =1
8. Cr+1 — Ckt1 (Chy1SChy1)
; eeey T
9. Calculate the eigenvalue ¢ = ¢ Hegyg.

10. Stop condition fulfilled?
(e changed negligibly between last two iterations?)
NO: k «— k + 1; go to 5.
YES: stop.

2.3 Updating algorithms: A clue to the efficiency

Although we chose a very good procedure to solve the general eigenvalue problem (5), it
still requires ~ N® operations and has to be invoked thousands or millions times to get
the optimized nonlinear parameters (see Sec. 1.3). Fortunately, the only N3-dependent
step (matrix decomposition A=LU) has some very convenient property which we will
now employ to reduce dramatically the optimization cost. Namely, elements of the kth
row of L (and the kth column of U) are functions of elements of the first k rows and
columns of A but do not depend of whatever is in rows (columns) k+ 1, k+ 2, ..., N
of A. Let us now figure that we have to decompose some sequence of matrices A; Aj,
.., A, which differ only in the last row and column. Since rows 1, 2, ..., up to k - 1
of L and columns 1,2,..., up to k- 1 of U do not depend on what is in the last row
and column of A, they will be the same along the whole sequence. As a consequence,
only the first matrix requires the full decomposition and ~ N°® operations. For the other
matrices, only one single row of L and one single column of U remain to be calculated,
which is of course much faster and depends on N as N2 This is an example of what
is called updating in numerical linear algebra, namely using information accumulated
during the solution of a problem to solve faster the same problem slightly modified, or
perturbed.

How can we ensure that the matrix A=H—c0S does not change during the optimiza-
tion process except in the last row and column? First of all, only parameters belonging
to a single term of expansion (3) may change simultaneously in one iteration (one pass
through steps 2, 3, 4 in Sec. 1.3 is meant here as the iteration). In other words, we
optimize one term ¢; While keeping the rest fixed. Then, only term i + 1 is optimized
and so on. But the matrix should have changed at the end, not somewhere in the mid-
dle, shouldn't it. Here the solution is very simple. Before we start to optimize the ith
term, we formally renumber the terms—this can always be done without changing the
solutions of (5)—so that the ith and the last trade their places. Optimization of a single
term typically requires a few dozens iterations. However, only the first iteration involves
the standard, N*-dependent inverse iteration procedure. All the remaining ones can be
done considerably faster thanks to the updating.

Optimizing only a single function ¢: has one more advantage: We do not need to
recompute the whole H and S matrices (see step 2 in Sec. 1.3), since only one row and
column change from one iteration to another. On the other hand, such an optimization
is less flexible: The parameters in the ith term, no matter how carefully they were
obtained, are optimal only with respect to the current fixed values of the others. They
are not optimal as soon as the next term is released and modified. Therefore, going once

from i-1 to i=N is not sufficient. In our program dozens or hundreds of such cycles are
repeated until a satisfactory convergence is reached.

3 Practical implementation

3.1 General remarks

The inverse iteration algorithm described in Sec. 2.2, with updating capabilities added,
has been coded in Fortran 77 as a procedure named SOLVE, a part of our CORREL
program. Running CORREL on different platforms we have always taken care of tuning
this crucial procedure to the particular hardware and software environment. It was soon
realized that SOLVE can be a good test of computing performance for vector problems.

12

On the contrary, we have used a module generating matrix elements (6) and (7) to
measure scalar performance, which will be discussed later.

For each platform we have prepared, whenever possible, three different versions of
the SOLVE procedure:

1.

3.

containing only standard Fortran 77 statements and intrinsic function calls, com-
piled with maximum scalar optimization but without using vector or pipelining
capabilities

containing only standard Fortran 77 statements and intrinsic function calls, com-
piled with maximum scalar and vector (or pipeline) optimization

containing calls to hardware-optimized library routines

Parallelization of SOLVE on multiprocessor machines requires special programming
techniques and is beyond the scope of this paper. All the tests described here were run
on a single processor.

3.2

Tested systems and compiler options

These are the systems on which we ran SOLVE, the compilers used and the compiler
options, chosen after a number of tests. The first options line gives the invocation of the
compiler for version 1 of SOLVE, the second one for 2 and 3.

Cray Y-MP EL 33 MHz

Compiler: Cray CF77 Version 6.0 (6.49)

cf77 -dp -Oscalar3 -OvectorO

cf77 -dp -Oscalar3 -Ovector3

Remarks: All inner loops have been vectorized without need to change the source
code

Silicon Graphics Power Challenge L (processor MIPS R8000 75 MH2z)
Compiler: MIPSpro F77 6.0

f77 -64 -mips4 -03 -sopt -SWP:=OFF

f77 -64 -mips4 -03 -sopt -SWP:=ON

Remarks: Linking version 3 requires -lblas option

Hewlett-Packard 715 50 MHz

Compiler: HP-UX Fortran/9000 09.16

f77 +04 +OP4 +Onopipeline

f77 +04 +0OP4

Remarks: Version 3 has been not prepared (BLAS and matrix libraries unavailable)

Microway Number Smasher XR-860 (processor Intel i860 40 MHz)

Compiler: Microway NDP Fortran-860 4. Id for DOS

mf860n -on

mf860n -on -vast

Remarks: Vectorizing preprocessor Pacific Sierra Research VAST-2 was used for
version 2. All inner loops have been vectorized without need to change the source
code

e PC Pentium (processor Intel Pentium 90 MHZz)
Compiler: Microway NDP Fortran-486 4.2.0 for DOS
mf486 -n2 -n3 -on -486 -4861ib
Remarks: An older version of NDP compiler without Pentium-specific optimiza-
tions was used. SOLVE versions with pipelining or optimized libraries unavailable.

3.3 Hardware-specific libraries

In three cases (Cray, Power Challenge and Number Smasher) we have used libraries
containing routines callable from Fortran. Most of linear algebra routines available on
different systems belong to the following classes:

1. BLASI (Basic Linear Algebra Subroutines Level 1): vector-vector operations
2. BLAS2: matrix-vector operations
3. BLAS3: matrix-matrix operations

4. LINPACK: high-level standard procedures such as matrix decomposition or solving
linear systems of equations; invoke BLASI and BLAS2 routines

5. LAPACK: a modern package of routines developed to replace LINPACK; invoke
mostly BLAS3 routines

Generally speaking, a user program should call machine-specific routines of the highest

possible level to get best efficiency (one can imagine a whole user program written

directly in the machine language as the limiting case). Therefore, when possible BLAS3

should be preferred to BLAS2 or BLASI and LAPACK is more efficient than LINPACK.
The list below contains library routines used in Cray version 3 of SOLVE

SPOTRF (LAPACK)
Decomposes a symmetric positive definite matrix into triangular matrices with the
Cholesky method.

« SPOTRS (LAPACK)
Solves a system of linear equations using triangular matrices generated by SPOTRF.

e SSYMV (BLAS2)
Multiplies a symmetric matrix by a vector.

e STRMV (BLAS2)
Multiplies a triangular matrix by a vector.

e SDOT (BLASI)
Computes a scalar product of two vectors.

 SSCAL (BLASI)
Multiplies a vector by a scalar.

*SCOPY (BLASI)
Copies a vector into another vector.

14

Analogous routines are available for Number Smasher. We have used CLASSPACK
package from Kuck & Associates, probably the best libraries for Intel i860 processor.
At the time of our tests, we had access only to BLASI and BLAS2 routines for the
Power Challenge machine. They are linked to a user program with -Iblas option.
No linear algebra libraries for Hewlett-Packard and Pentium machines were available
to us during the tests.

4 Results of the tests

4.1 Timings from the vector test

Tables 1 and 2 contain CPU times required to find the lowest root of the general sym-
metric eigenvalue problem with different versions of the SOLVE procedure on different
machines. Times in parentheses concern solving the same problem using updating.

Table 1: SOLVE timings for N=125 and N=250. All times in seconds.

N=125 scalar mode vector mode with libraries
Cray Y-MP EL 0.246 (0.066) 0.118 (0.019) 0.020 (0.007)
Power Challenge 0.029 (0.008) 0.013 (0.003) 0.013 (0.003)
NS 860 40 MHz 0.153 (0.040) 0.134 (0.028) 0.059 (0.017)

(0.034) (0.027)
(0.032)

HP 715 50 MHz 0.106 (0.034) 0.066 (0.027
Pentium 90 MHz 0.130 (0.032

N=250 scalar mode vector mode with libraries
Cray Y-MP EL 1.483 (0.240) 0.504 (0.045) 0.089 (0.019)
Power Challenge 0.187 (0.032) 0.070 (0.012) 0.070 (0.012)
NS 860 40 MHz 0.955 (0.154) 0.691 (0.086) 0.285 (0.050)

(0.128) ()
()

HP 715 50 MHz 0.922 (0.128) 0.674 (0.105
Pentium 90 MHz 0.827 (0.135

As it could be expected, the vectorized (pipelined) versions are always faster than
scalar ones but inferior to those calling library routines. Cray, a typically vector ma-
chine, benefits most from non-scalar optimization techniques: The slowest in scalar
mode becomes the fastest with specialized libraries and large matrices (N=1000), but—
surprisingly enough—Iloses with Power Challenge for smaller values of N. As can be
seen, the speed-up resulting from the updating technique grows with the matrix size
and for N=1000 amounts to more than one order of magnitude.

4.2 Timings from the scalar test

The scalar test has consisted in computing the full lower triangles of the symmetric
matrices H and S, defined by (6) and (7), for a 300-term expansion of the H, molecule
wavefunction, i.e. 45150 matrix elements h;; and s;;. The relevant module of the
CORREL program contains long sequences of arithmetic floating point operations, calls

15

Table 2: SOLVE timings for N=500 and N=1000. All times in seconds.

N=500

scalar mode

vector mode

with libraries

Cray Y-MP EL
Power Challenge
NS 860 40 MHz
HP 715 50 MHz
Pentium 90 MHz

10.00 (0.912)
1.405 (0.162)
6.620 (0.618)
6.707 (0.498)
5.935 (0.538)

2.320 (0.119)
0.502 (0.082)
3.972 (0.291)
4.820 (0.407)

0.513 (0.059)
0.445 (0.048)
1.730 (0.165)

N=1000 scalar mode vector mode with libraries
Cray Y-MP EL 73.36 (3.582) 11.89 (0.359) 3.444 (0.205)
Power Challenge 12.50 (0.838) 5.970 (0.577) 5.600 (0.423)
NS 860 40 MHz 50.59 (2.608) 24.71 (1.077) 12.08 (0.605)
HP 715 50 MHz 50.16 (1.995) 35.05 (1.635)

Pentium 90 MHz 45.86 (2.398)

to the intrinsic exponential function and no loops. The best times from each machine
(additionally, a PC/486 system has been tested) are summarized in Table 3. The last
place of Cray Y-MP EL may be perhaps somewhat shocking for a non-specialist but it
confirms once more that the power of Cray comes from its vector architecture.

Table 3: Timings from the scalar test. All times in seconds.

HP 715 50 MHz 4.3
Power Challenge 4.8
Pentium 90 MHz 7.5
486 DX/2 66 MHz 16.4
NS 860 40 MHz 16.6
Cray Y-MP EL 21.7

4.3 Summary of the tests

We have just seen that the relative performance of various computer systems depends
significantly on the nature of the problem (vector or scalar). This effect can be expressed
semi-quantitatively by introducing the "vector character" of a system, defined by

(ts/tv)

7) -)
(ts/tv)min

where ts is the best time of solving the scalar problem on the particular system and
ty is the best time to solve the eigenvalue problem for N=1000 using updating on the
same system. The values of tdt, are normalized so that the lowest possible value of 7
is 1. The larger is7, the faster is the system when crunching vector problems compared

(16)

16

to its speed doing only scalars. It must be stressed that we have defined this quantity
only for the purpose of our present discussion and it is not strict because someone else
taking other vector and scalar tests would obtain a little different values. Nevertheless,
the conclusions would be the same. Again, as we can see in Table 4, Cray turns out to
be "the most vector" of al the tested machines. What does the value n=40.2 mean in
practice? Imagine that someone asks the following question: "How many times is Cray
Y-MP EL faster than Hewlett-Packard 715/50?" His friends take their programs and
make the tests. Depending on what programs they use, their answers can differ by a
factor of forty!

Table 4: Vector character n of different computer systems.

system Ui

HP 715 50 MHz 1.0
Pentium 90 MHz 1.2
Power Challenge 4.3
NS 860 40 MHz 104
Cray Y-MP EL 40.2

Strictly speaking, the calculated values of n for HP and Pentium systems are too low
because we didn't have the relevant libraries which would speed-up the vector computa-
tions. At least in the Pentium case it would hardly change our conclusions qualitatively
because this processor does not seem to benefit from the pipelining so much as typical
RISC chips.

Taking into account the collected data we can formulate the optimal application
areas of these systems:

e HP 715/50: an ideal workstation for extensive scalar computations,

e Pentium: a low-cost system for scalar computations; very good performance/price
ratio,

* Power Challenge: a universal tool with very well balanced vector and scalar power,;
ideal for mixed problems,

* Number Smasher: a low-cost system for vector computations; offers one-third of
the vector power of Cray Y-MP EL for $4000!

e Cray Y-MP EL: ideal for large-scale vector problems; used for scalar applica-
tions only by barbarians; it can be done faster on a PC!

5 Conclusions

We spent indeed a lot of time making CORREL more and more efficient, and finally
let us say a few words about profits—from the physicist and chemist's point of view,
not the programmer's. CORREL has been employed so far to investigate the following
systems:

17

+ 2-electron: ground [7] and several excited states of H,, ground states of HeH" [§]
and H,"

+ 3-electron: H, [9], He,” [10], Li
* 4-electron: LiH [9], Be, He,

It is sufficient to say that in each case we obtained lower (i.e. more accurate) energies
than previously reported variational results. The result for the ground state of H,
is better than those obtained with the Kotos-Wolniewicz function and represents in
fact the highest level of accuracy ever reached in molecular quantum computations
(except for trivial one-electron cases). These facts change dramatically the reputation
of the Gaussian-type explicitly correlated wavefunctions (4) in quantum chemistry (see
Sec. 1.3).

In conclusion let us summarize what can be learnt from our experience with devel-
oping the CORREL program.

+ Efficient programming allows to reduce drastically time needed to get the results,
often even making the given approach applicable.

* Importance of various elements of the efficient programming can be ranked as
follows

optimal algorithm system

. : : ; > vectorization
and its coding libraries

* There is no such notion as speed of a computer system. Instead, we should talk
about the speed of the system applied to the particular problem.

Acknowledgments

This work was supported by the KBN grant 8 TI1F 010 08p0l. The author wishes also
to thank Poznan Supercomputing and Networking Center for the computer time.

References

[11 W. Kotos, L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).

[2] S. FE. Boys, Proc. Roy. Soc. A258, 402 (1960).

[3] K. Singer, Proc. Roy. Soc. A258, 412 (1960).

[4] M. J. D. Powell, Comput. J. 7, 155 (1964).

i5) W. Kotos, Chemia kwantowa, PWN Warszawa, 1986 (in Polish).

[6] A. Kietbasinski, H. Schwetlick, Numeryczna algebra liniowa. Wprowadzenie do
obliczeri zautomatyzowanych, Wydawnictwa Naukowo-Techniczne, Warszawa 1992
(in Polish).

[71 J. Rychlewski, W. Cencek, J. Komasa, Chem. Phys. Lett. 229, 657 (1994).
[8] J. Rychlewski, Int. J. Quant. Chem. 49, 477 (1994).
[9] W. Cencek, J. Rychlewski, J. Chem. Phys. 98, 1252 (1993).

[10] W. Cencek, J. Rychlewski, J. Chem. Phys. 102, 2533 (1995).

