
The Role of Efficient Programming in Theoretical
Chemistry and Physics Problems

Wojciech Cencek
Department of Chemistry, A. Mickiewicz University,

Grunwaldzka 6, 60-780 Poznań, Poland

A b s t r a c t

Various aspects of efficient programming of high-performance computer sys tems
are discussed, using an example from modern electronic s tructure theory. It is
shown that efficient programming is indispensable in today's theoretical studies by
reducing drastically involved computer time. Timings from our quantum chemical
program C O R R E L are given for several platforms ranging from Cray Y-MP EL to
PC/486.

1 I n t r o d u c t i o n

1.1 V a r i a t i o n a l m e t h o d i n q u a n t u m m e c h a n i c s

T h e q u a n t u m w o r l d i s one o f t h e s e f i e lds w h e r e phys ics a n d c h e m i s t r y meet p a r t i c u l a r l y
o f t e n . A s i t i s c o m m o n l y k n o w n , e l e m e n t a r y par t ic le s a n d suf f ic ient ly s m a l l o b j e c t s
b u i l t o u t o f t h e m — s u c h as a t o m s a n d m o l e c u l e s — c a n n o t be d e s c r i b e d in t e r m s o f c las-
s ical N e w t o n mechanics , even w h e n w e neglect r e l a t i v i s t i c e f f e c t s conta ined i n E i n s t e i n ' s
t h e o r y . I n s t e a d o f N e w t o n ' s l a w s we h a v e to deal w i t h t h e f a m o u s Schroedinger e q u a t i o n

7

(1)

w h e r e i s t h e so-cal led H a m i l t o n o p e r a t o r m o d i f y i n g in s o m e def ined w a y t h e f u n c t i o n
f o l l o w i n g it . T h e c o n s t r u c t i o n of th i s o p e r a t o r for a g iven q u a n t u m s y s t e m is u s u a l l y a

s i m p l e t a s k . T o s o l v e t h e Schroedinger e q u a t i o n m e a n s t o f i n d b o t h t h e " w a v e f u n c t i o n " ,
a n d t h e to ta l e n e r g y of t h e s y s t e m , E . As fo l lows f r o m q u a n t u m mechanics , i f we

k n o w we can eas i ly ca lculate , a p a r t f r o m t h e energy, all s t a t i c p r o p e r t i e s o f t h e s y s t e m .
U n f o r t u n a t e l y , f r o m w h a t t h e chemis t m a y b e i n t e r e s t e d in, n a m e l y a t o m s a n d molecules ,
only t r i v i a l one-electron cases such as t h e h y d r o g e n a t o m can be d i rec t ly so lved . For
l a r g e r s y s t e m s t h e Schroedinger e q u a t i o n b e c o m e s so d i f f icu l t t h a t one i s fo rced to look
for s o m e a p p r o x i m a t i o n s . O n e c o m m o n l y used, called t h e B o r n - O p p e n h e i m e r a p p r o x i -
m a t i o n , t r e a t s t h e m o v e m e n t of t h e e lect rons i n d e p e n d e n t l y of this of t h e nuclei, b a s i n g
u p o n t h e s i g n i f i c a n t d i f f e r e n c e b e t w e e n m a s s e s of t h e two t y p e s of p a r t i c l e s . In t h e f i r s t
s t e p , t h e e l e c t r o n i c S c h r ö d i n g e r e q u a t i o n i s solved, i.e. i t i s a s s u m e d t h a t t h e n u c l e a r

m a s s e s in t h e H a m i l t o n o p e r a t o r a re in f in i te (the nuclei do not move) a n d t h e f u n c t i o n
d e p e n d s only o n t h e e lectronic c o o r d i n a t e s . T h i s i s t h e s u b j e c t o f the e l e c t r o n i c s t r u c -
t u r e t h e o r y a n d w e will res t r ic t o u r s e l v e s t o this f i rs t s t e p t h r o u g h o u t this p a p e r . T h e
s e c o n d s t e p i n v o l v e s s o l v i n g t h e e q u a t i o n for t h e nuc lear mot ion. H a v i n g c o m p l e t e d b o t h

user
Tekst maszynowy
CMST 1(1) 7-18 (1996)

user
Tekst maszynowy

user
Tekst maszynowy
DOI:10.12921/cmst.1996.01.01.07-18

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

t h e t a s k s one can also subsequent ly c o m p u t e the couplings between both the t y p e s of
m o v e m e n t s so t h a t s t a r t i n g with the Born-Oppenheimer approximat ion does not e x c l u d e
ca lcu la t ing the propert ies of the s y s t e m s wi th high accuracy.

T h e electronic problem is also very complicated b u t can be numerical ly solved in
s o m e indirect way, for e x a m p l e v a r i a t i o n a l l y . Such methods rely on the fol lowing
theorem (variat ional principle)

8

(2)

It s t a t e s t h a t t a k i n g any in tegrable function and ca lculat ing the quant i ty according
to the a b o v e equat ion (where dV s t a n d s for the integrat ion over all the electronic co-
ordinates) one never gets a value lower than the t rue energy E. Consequently, a m o n g
di f ferent trial funct ions the b e s t one is tha t y ie lding the lowest value of If these func-
tions d e p e n d on some set of parameter s , we t reat as a function of these p a r a m e t e r s
and look for its minimum. It is part icular ly s imple if is a linear combinat ion

(3)

In the a b o v e equation, denotes the set of all the coordinates of the i t h electron and
i s s o m e o p e r a t o r ensur ing tha t the total function has appropr ia te s y m m e t r y proper t ie s .
A s t a n d a r d way in the electronic s t r u c t u r e theory is to express the as p r o d u c t s of K

one-electron factors, which is known as the method of conf igurat ion interact ion (CI). It
t u r n s out, however, tha t the CI expans ions are extremely slow convergent, i.e. t h e va lue
of in Eq. (2) is far above E (at least dozens of cm - 1) unless an as t ronomic (compu-
tat ional ly not achievable) n u m b e r of expansion terms, N, is used. Higher accuracy can
b e obta ined w h e n the depend not only on the individual electron coordinates b u t
also on interelectronic distances. T h e s e so-called e x p l i c i t l y c o r r e l a t e d funct ions de-
s c r i b e b e t t e r electron-electron Coulomb repulsions. Examples are the Kołos-Wolniewicz
f u n c t i o n |1] for the hydrogen molecule (one of the g r e a t e s t achievements of the Pol-
ish chemis t ry) and the Gauss ian-type funct ion introduced in the 60's by Boys [2] and
Singer [3|:

(4)

T h e f irst sum contains electron coordinates expressed as squared d i s tances b e t w e e n the
kth electron and the given point T h e second sum mixes the electron c o o r d i n a t e s

i n t r o d u c i n g explicit correlation of their movements. Because of the s y m m e t r y require-
ments, in a t o m s all the centers coincide usual ly with the posit ion of t h e nucleus and
need not to be determined, and in l inear molecules they lie on the molecular ax i s and
h a v e one component to be opt imized. A p a r t of these, w i t h each term the fol lowing
var ia t iona l p a r a m e t e r s are connected: one c i (linear), K (nonlinear) and K(K-l)

(nonlinear). Thi s t y p e of wavefunct ion has been tried for th i r ty years , genera l ly
y i e l d i n g s igni f icant ly worse resul t s than other explicitly correlated funct ions (e.g. the
Kołos-Wolniewicz expansion). An opinion that i t is in fe r ior—when very high accuracy
is d e s i r e d — h a s been commonly accepted. A few years ago a large p r o j e c t w a s s t a r t e d
in our group, which aimed at weakening this conviction and inves t iga t ing w h a t level of
accuracy can be reached when large expans ions with very careful ly opt imized nonl inear

pa rame te r s are used in conjunct ion with high-performance and efficiently p rogrammed
computers . It should be noted tha t almost all of today's quan tum chemical c o m p u t a -
tions are restr icted to the linear optimization because optimizing nonlinear variat ional
pa rame te r s is usually extremely expensive. As a part of the project we developed a
compute r program named C O R R E L which allows to optimize all the parameters in the
wavefunct ion of the type (4) for small a toms and molecules. The largest expansion used
so far by us has been a 2172-term wavefunction for the l i thium atom (N = 2172, K = 3).
As follows from above, it contains 2172 linear and 13032 nonlinear parameters , all of
them to be optimized. This already sheds some light on the difficulties arising from such
extensive calculations and explains the need of efficient programming.

1.2 Opt imiza t ion of the linear parameters

In case we would like to optimize only the linear parameters c i in (3), the problem is
not theoretically difficult and has a general solution. Pu t t ing (3) into the expression for

and c is an N x 1 vector of the parameters ct (see for example [5]).
Equa t ion of the type (5) is well-known in linear algebra as the g e n e r a l s y m m e t r i c

e i g e n v a l u e p r o b l e m . I ts solution presents no formal difficulties bu t becomes t ime-
consuming for large matrices since its cost goes as N 3 .

Unfor tunate ly , it is not possible to obtain a compact equation for the best nonl inear
pa ramete rs , analogous to (5). Instead we are forced to use some kind of nonl inear
opt imizat ion. There are many such techniques but most of them consist in changing
i teratively the values of the parameters according to some predefined strategy, tes t ing
the funct ion (in our case—energy) value after each step, and modifying the s t ra tegy
in order to move in the direction where the energy diminishes faster. T h e process
s tops when no modification of the parameters leads to fur ther energy improvement . In
the C O R R E L program we have implemented the so-called conjugate directions m e t h o d
in t roduced thir ty years ago by Powell [4] and still considered as one of the most efficient
despi te its simplicity.

T h e whole algori thm of optimizing all the parameters in the wavefunct ion of t he
type (3) can be summarized as follows

1. Choose s ta r t ing values for the nonlinear parameters .

(5)

where H and S are N x N matrices defined by

(6)

(7)

1.3 Opt imiza t ion of bo th the linear and the nonlinear parame-
ters

9

(2) and assuming leads to

It should be also noted that Eq. (5) has N solutions defined by the pairs

each of them fulfilling the variational principle (2) for the / th quan tum s t a t e of the sys tem
(l=1 for the ground s ta te and for excited states).

2. C o m p u t e H and S matrices.

4. Stop condition fulfilled?

NO: change the values of the nonlinear parameters ; go to 2.

YES: stop.

As we can see, each (2,3,4)-loop i teration in the optimization of the nonl inear pa-
ramete rs involves the full linear opt imizat ion (step 3). In practice a number of these
i tera t ions which are necessary to reach convergence turns out to be of the order of 100
t imes the number of the nonlinear parameters . Turning back to our 2172-term example
l i thium function, it means tha t following tasks have to be completed over one million

times:

2 D e t a i l s of t h e a l g o r i t h m s

2.1 Inverse i teration. Theory

Solving the eigenvalue problem (5) is crucial for the efficiency of our program. Even if,
for some special cases, comput ing H and S matrices might be the slowest step, its t ime
grows only as N 2 . For high-accuracy quan tum chemical calculations, in which we are
u l t imate ly interested, N has to be large and N 3 -dependence of (5) will sooner or la ter
provide a bot t leneck.

We have used a method called inverse i teration [6], known as fast and numerically
s table. T h e vector c, being a solution of Eq. (5), is found as the following limit

• computa t ion of more than 2 millions matrix elements and each of t h e m
involving calls to several complicated procedures,

• solving generalized eigenvalue problem of the order N=2172.

It is wor th to say tha t doing the lat ter just once was itself a serious compu ta t iona l

challenge only some 10 years ago. It becomes clear that without clever and efficiently

p rog rammed algori thms our method would be hopelessly t ime-consuming.

(8)

(9)

(10)

where the sequence is defined by the recurrence relation

and c0 is an arb i t ra ry s ta r t ing vector. It can be proven [6] t h a t converges to

an eigenvector corresponding to this eigenvalue which is closest to the cons tan t

Therefore , the eigenvalue (energy) has to be known approximately at the beginning.

T h e exact value can be computed from the converged eigenvector:

In practice, for a reasonably chosen only a few i terat ions are needed to

ob ta in 15 significant digits of

3. Solve eigenvalue problem

2.2 Inverse i teration. Computa t iona l scheme

T h a t the computa t iona l effort involved in the inverse i teration procedure is propor t ional
to N3 comes from the necessity to solve (several times) the linear equations system (9).
Such systems, very common in numerical linear algebra, can be generally wr i t ten as

11

(11)

(12)

where the ma t r ix A and the vector b are known. In our case, we have to solve such a
sys tem once in each iteration, i.e. for each value of of k in (9). It can be also noted
t h a t changes from one i terat ion to another and has to be recalculated each

remains constant . This observation is very useful due to the t ime, whereas
following well-known facts. Firstly, if the matr ix in the linear equations system is e i ther
lower t r iangular L (has zeroes everywhere above the diagonal) or upper t r iangular U
(has zeroes everywhere below the diagonal)

then solving such a system requires only ~ N2 operat ions instead of ~ N3. Secondly,

every ma t r ix A can be decomposed with ~ N3 operat ions into a p roduc t of a lower

t r iangular ma t r ix L and an upper t r iangular matr ix U

what allows to express A x = b equivalently as

Lx = b or U x = b,

A = L U

L y = b

(13)

(14)

(15) U x = y.

Now it becomes clear tha t we can decompose A = H — at the beginning and in
subsequent i terat ions solve much less expensive systems (14) and (15) instead of (11).

T h e slowest s t ep—mat r ix decomposi t ion—remains proport ional to N3, bu t i t has to be

done jus t once. T h e final scheme of the inverse i terat ion procedure reads as follows.

1. Calcula te A = H —

2 . F ind the decomposit ion: A = L U .

3.

4. Choose the s ta r t ing vector ck .

5. Calcula te

6. Solve

7. Solve

8.

9. Calcula te the eigenvalue

10. Stop condit ion fulfilled?
changed negligibly between last two iterations?)

NO:
YES: stop.

go to 5.

2.3 U p d a t i n g algorithms: A clue to the efficiency

Although we chose a very good procedure to solve the general eigenvalue problem (5), it
still requires ~ N3 operat ions and has to be invoked thousands or millions t imes to get
t he opt imized nonlinear pa ramete r s (see Sec. 1.3). Fortunately, the only N 3 - d e p e n d e n t
s tep (matr ix decomposit ion A = L U) has some very convenient proper ty which we will
now employ to reduce dramatical ly the optimizat ion cost. Namely, elements of t he kth
row of L (and the kth column of U) are funct ions of elements of the first k rows and
columns of A but do not depend of whatever is in rows (columns) k + 1, k + 2, . . . , N

of A. Let us now figure t h a t we have to decompose some sequence of matr ices A1 A 2 ,
. . . , An which differ only in the last row and column. Since rows 1, 2, . . . , up to k - 1
of L and columns 1 , 2 , . . . , up to k - 1 of U do not depend on wha t is in the last row
and column of A, they will be the same along the whole sequence. As a consequence,
only the first ma t r ix requires the full decomposit ion and ~ N3 operations. For the o ther
matrices, only one single row of L and one single column of U remain to be calculated,
which is of course much faster and depends on N as N2. This is an example of w h a t
is called u p d a t i n g in numerical linear algebra, namely using informat ion accumula ted
dur ing the solution of a problem to solve faster the same problem slightly modified, or
perturbed.

12

How can we ensure tha t the matr ix does not change dur ing the opt imiza-

tion process except in the last row and column? First of all, only pa ramete r s belonging
to a single te rm of expansion (3) may change simultaneously in one i tera t ion (one pass
t h rough steps 2, 3, 4 in Sec. 1.3 is meant here as the i terat ion). In other words, we
opt imize one te rm while keeping the rest fixed. Then, only term i + 1 is opt imized

and so on. Bu t the mat r ix should have changed at the end, not somewhere in the mid-

dle, shouldn ' t it. Here the solution is very simple. Before we s ta r t to opt imize the i t h

te rm, we formally renumber the terms—this can always be done wi thout changing the

solut ions of (5)—so tha t the i t h and the last t rade their places. Opt imiza t ion of a single

t e rm typically requires a few dozens i terations. However, only the first i terat ion involves

the s t anda rd , N 3 -dependent inverse i terat ion procedure. All the remain ing ones can be

done considerably faster thanks to the updat ing.

Opt imiz ing only a single function has one more advantage: We do not need to

r ecompute the whole H and S matr ices (see step 2 in Sec. 1.3), since only one row and
column change from one i tera t ion to another . On the other hand, such an opt imiza t ion
is less flexible: T h e parameters in the i th term, no ma t t e r how carefully they were
obta ined, are opt imal only with respect to the current fixed values of t he others. They
are not opt imal as soon as the next term is released and modified. Therefore , going once
f rom i-1 to i=N is not sufficient. In our program dozens or hundreds of such cycles are
r epea ted until a sat isfactory convergence is reached.

3 P r a c t i c a l i m p l e m e n t a t i o n

3.1 Genera l remarks

T h e inverse i terat ion algori thm described in Sec. 2.2, with u p d a t i n g capabil i t ies added ,
has been coded in For t ran 77 as a procedure named SOLVE, a pa r t of our C O R R E L
program. Runn ing C O R R E L on different p la t forms we have always taken care of tun ing
this crucial procedure to the par t icular hardware and software environment . I t was soon
realized t h a t SOLVE can be a good test of comput ing performance for vector problems.

On the contrary, we have used a module generat ing ma t r ix elements (6) and (7) to
measure scalar performance, which will be discussed later.

For each p la t form we have prepared, whenever possible, three different versions of

t he SOLVE procedure:

1. containing only s t andard For t ran 77 s ta tements and intrinsic funct ion calls, com-
piled with max imum scalar opt imizat ion but without using vector or pipel ining
capabil i t ies

2. conta ining only s t andard For t ran 77 s ta tements and intrinsic funct ion calls, com-
piled with max imum scalar and vector (or pipeline) opt imizat ion

3. conta ining calls to hardware-opt imized library routines

Paral lel izat ion of SOLVE on mult iprocessor machines requires special p rog ramming

techniques and is beyond the scope of this paper . All the tests described here were run

on a single processor.

3.2 Tes ted s y s t e m s and compi ler opt ions

These are the systems on which we ran SOLVE, the compilers used and the compiler
opt ions, chosen af te r a number of tests. The first options line gives the invocation of the
compiler for version 1 of SOLVE, the second one for 2 and 3.

• Cray Y-MP EL 33 MHz

Compiler : Cray CF77 Version 6.0 (6.49)

cf77 -dp -Oscalar3 -OvectorO

cf77 -dp -Oscalar3 -Ovector3

Remarks : All inner loops have been vectorized wi thout need to change the source

code

• Silicon Graphics Power Challenge L (processor MIPS R8000 75 MHz)
Compiler: M l P S p r o F77 6.0
f77 -64 -mips4 - 0 3 -sopt - S W P : = O F F
f77 -64 -mips4 - 0 3 -sopt - S W P : = O N
Remarks : Linking version 3 requires -lblas option

• Hewlet t -Packard 715 50 MHz

Compiler : HP-UX For t ran /9000 09.16

f77 + 0 4 + OP4 +Onopipe l ine

f77 + 0 4 + O P 4

Remarks : Version 3 has been not prepared (BLAS and matr ix libraries unavailable)

• Microway N u m b e r Smasher XR-860 (processor Intel i860 40 MHz)
Compiler: Microway N D P Fortran-860 4. Id for DOS

mf860n -on
mf860n -on -vast
Remarks : Vectorizing preprocessor Pacific Sierra Research VAST-2 was used for
version 2. All inner loops have been vectorized wi thout need to change the source
code

13

• PC Pen t ium (p rocessor Intel Pent ium 90 MHz)
Compiler: Microway N D P Fortran-486 4.2.0 for DOS
mf486 -n2 -n3 -on -486 -4861ib

Remarks : An older version of NDP compiler without Pentium-specific opt imiza-
tions was used. SOLVE versions with pipelining or optimized libraries unavailable.

3.3 Hardware-spec i f ic libraries

In three cases (Cray, Power Challenge and Number Smasher) we have used l ibraries
conta ining rout ines callable from Fortran. Most of linear algebra rout ines available on
different sys tems belong to the following classes:

1. B L A S l (Basic Linear Algebra Subroutines Level 1): vector-vector operat ions

2. BLAS2: matr ix-vector operat ions

3. BLAS3: mat r ix-mat r ix operat ions

4. LINPACK: high-level s t anda rd procedures such as mat r ix decomposit ion or solving
linear sys tems of equations; invoke BLASl and BLAS2 routines

5. LAPACK: a modern package of routines developed to replace LINPACK; invoke
mostly BLAS3 routines

General ly speaking, a user program should call machine-specific rout ines of the highest

possible level to get best efficiency (one can imagine a whole user program wr i t t en

directly in the machine language as the limiting case). Therefore, when possible BLAS3

should be preferred to BLAS2 or BLASl and LAPACK is more efficient than LINPACK.

T h e list below contains library routines used in Cray version 3 of SOLVE

Decomposes a symmetr ic positive definite matr ix into t r iangular matr ices wi th the
Cholesky method .

Solves a system of linear equat ions using tr iangular matrices generated by S P O T R F .

. S P O T R F (LAPACK)

• S P O T R S (LAPACK)

• SSYMV (BLAS2)
Multiplies a symmetr ic mat r ix by a vector.

• S T R M V (BLAS2)
Multiplies a t r iangular mat r ix by a vector.

• S D O T (BLASl)
Compu te s a scalar p roduc t of two vectors.

• SSCAL (BLASl)
Multiplies a vector by a scalar.

• S C O P Y (BLASl)
Copies a vector into another vector.

14

Analogous routines are available for Number Smasher. We have used CLASSPACK
package from Kuck & Associates, probably the best libraries for Intel i860 processor.

At the t ime of our tests, we had access only to BLASl and BLAS2 rout ines for the
Power Challenge machine. They are linked to a user program with -lblas option.

No linear algebra libraries for Hewlett-Packard and Pent ium machines were available
to us dur ing the tests.

4 R e s u l t s of t h e t e s t s

4.1 T i m i n g s from the vector test

Tables 1 and 2 contain C P U times required to find the lowest root of the general sym-
metr ic eigenvalue problem with different versions of the SOLVE procedure on different
machines. Times in parentheses concern solving the same problem using updat ing .

As it could be expected, the vectorized (pipelined) versions are always faster t h a n
scalar ones but inferior to those calling library routines. Cray, a typically vector ma-
chine, benefi ts most from non-scalar optimization techniques: The slowest in scalar
mode becomes the fastest with specialized libraries and large matrices (N = 1 0 0 0) , b u t —
surprisingly enough—loses with Power Challenge for smaller values of N. As can be
seen, the speed-up resulting from the upda t ing technique grows with the mat r ix size
and for N=1000 amounts to more than one order of magnitude.

4.2 T i m i n g s from the scalar test

T h e scalar test has consisted in comput ing the full lower triangles of t he symmet r i c

matr ices H and S, defined by (6) and (7), for a 300-term expansion of the H2 molecule

wavefunct ion, i.e. 45150 matr ix elements h i j and s i j . T h e relevant module of the

C O R R E L program contains long sequences of ar i thmetic floating point operat ions, calls

15

to the intr insic exponential funct ion and no loops. T h e best times from each machine

(additionally, a P C / 4 8 6 system has been tested) are summarized in Table 3. T h e last

place of Cray Y - M P EL may be perhaps somewhat shocking for a non-specialist bu t it

confirms once more tha t the power of Cray comes from its vector archi tecture.

4 .3 S u m m a r y of the t e s t s

We have jus t seen t h a t the relative performance of various computer systems depends
significantly on the na tu r e of the problem (vector or scalar). This effect can be expressed
semi-quant i ta t ively by introducing the "vector character" of a system, defined by

16

where t s is the best t ime of solving the scalar problem on the par t icular sys tem and

tv is the best t ime to solve the eigenvalue problem for N=1000 using u p d a t i n g on the

s ame system. T h e values of ts/tv are normalized so tha t the lowest possible value of

is 1. T h e larger is the faster is the system when crunching vector problems compared

(16)

to its speed doing only scalars. It must be stressed tha t we have defined this quant i ty
only for the purpose of our present discussion and it is not strict because someone else
t ak ing other vector and scalar tests would obtain a little different values. Nevertheless,
t he conclusions would be the same. Again, as we can see in Table 4, Cray tu rns out to

because we d idn ' t have the relevant libraries which would speed-up the vector c o m p u t a -
tions. At least in the Pent ium case it would hardly change our conclusions quali tat ively
because this processor does not seem to benefit from the pipelining so much as typical
RISC chips.

Tak ing into account the collected da t a we can formulate the opt imal appl icat ion
areas of these systems:

• HP 715/50: an ideal workstat ion for extensive scalar computat ions ,

• Pen t ium: a low-cost system for scalar computa t ions ; very good pe r fo rmance /p r i ce

rat io,

• Power Challenge: a universal tool with very well balanced vector and scalar power;

ideal for mixed problems,

• N u m b e r Smasher: a low-cost system for vector computa t ions ; offers one- third of
the vector power of Cray Y-MP EL for $4000!

• Cray Y-MP EL: ideal for large-scale vector problems; u s e d for sca lar a p p l i c a -
t i o n s o n l y by barbar ians ; i t can be done faster on a PC!

5 C o n c l u s i o n s

We spen t indeed a lot of t ime making C O R R E L more and more efficient, and finally
let us say a few words about prof i ts—from the physicist and chemist 's point of view,
not the p rogrammer ' s . C O R R E L has been employed so far to investigate the following
systems:

17

be " the most vector" of all the tested machines. W h a t does the value mean in

pract ice? Imagine tha t someone asks the following question: "How many times is Cray
Y - M P EL faster t han Hewlet t-Packard 715/50?" His friends take their p rograms and
make the tests. Depending on what programs they use, their answers can differ by a
factor of forty!

Str ict ly speaking, the calculated values of for HP and Pent ium sys tems are too low

• 2-electron: g round [7] and several excited s ta tes of H 2 , ground s t a t e s of H e H + [8]
and H3

+

• 3-electron: H3 [9], He2
+ [10], Li

• 4-electron: LiH [9], Be, He 2

It is suff icient to say that in each case we obtained lower (i.e. more accurate) energies
than prev ious ly reported variat ional results. The result for the ground s t a t e of H 2

is b e t t e r than those obta ined wi th the Kołos-Wolniewicz function and represents in
fact the highest level of accuracy ever reached in molecular q u a n t u m c o m p u t a t i o n s
(except for t r iv ia l one-electron cases). These facts change dramat ica l ly the r e p u t a t i o n
of the Gauss ian- type explicit ly correlated wavefunct ions (4) in q u a n t u m chemis t ry (see
Sec. 1.3).

In conclusion let us s u m m a r i z e w h a t can be learnt from our experience w i t h devel-
o p i n g the C O R R E L program.

• Efficient p r o g r a m m i n g allows to reduce drast ical ly t ime needed to get the resul t s ,
o f ten even m a k i n g the given approach applicable.

• I m p o r t a n c e of various elements of the efficient p r o g r a m m i n g can be ranked as
fol lows

• T h e r e is no such notion as speed of a computer sys tem. Instead, we should talk
a b o u t the speed of the sys tem applied to the part icular problem.

A c k n o w l e d g m e n t s
T h i s work w a s s u p p o r t e d by the KBN grant 8 T 1 1 F 010 08p01. T h e author wishes also
to thank Poznań S u p e r c o m p u t i n g and Networking Center for the computer t ime.

R e f e r e n c e s

[1] W. Kołos, L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).

[2] S. F. Boys, Proc. Roy. Soc. A 2 5 8 , 402 (1960).

[3] K. Singer, Proc. Roy. Soc. A 2 5 8 , 412 (1960).

[4] M. J. D. Powell, Comput. J. 7, 155 (1964).

¡5) W. Kołos, Chemia kwantowa, P W N Warszawa, 1986 (in Polish).

[6] A. Kiełbasiński, H. Schwetlick, Numeryczna algebra liniowa. Wprowadzenie do

obliczeń zautomatyzowanych, W y d a w n i c t w a Naukowo-Techniczne, W a r s z a w a 1992
(in Polish).

[7] J. Rychlewski , W. Cencek, J. Komasa, Chem. Phys. Lett. 2 2 9 , 657 (1994).

[8] J. Rychlewski , Int. J. Quant. Chem. 49, 477 (1994).

[9] W. Cencek, J. Rychlewski , J. Chem. Phys. 98, 1252 (1993).

[10] W. Cencek, J. Rychlewski , J. Chem. Phys. 102, 2533 (1995).

