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Abstract: Hamiltonian trajectories are strictly time-reversible. Any time series of Hamiltonian coordinates { q } satisfying
Hamilton’s motion equations will likewise satisfy them when played “backwards”, with the corresponding momenta changing
signs : { +p } −→ { −p } . Here we adopt Levesque and Verlet’s precisely bit-reversible motion algorithm to ensure that
the trajectory reversibility is exact, with the forward and backward sets of coordinates identical. Nevertheless, the associated
instantaneous Lyapunov instability, or “sensitive dependence on initial conditions” of “chaotic” (or “Lyapunov unstable”)
bit-reversible coordinate trajectories can still exhibit an exponentially growing time-symmetry-breaking irreversibility ' eλt.
Surprisingly, the positive and negative exponents, as well as the forward and backward Lyapunov spectra , { λforward(t) }
and { λbackward(t) }, are usually not closely related, and so give four differing topological measures of “local” chaos. We
have demonstrated this symmetry breaking for fluid shockwaves, for free expansions, and for chaotic molecular collisions.
Here we illustrate and discuss this time-symmetry breaking for three statistical-mechanical systems, [i] a minimal (but still
chaotic) one-body “cell model” with a four-dimensional phase space; [ii] relatively small colliding crystallites, for which the
whole Lyapunov spectrum is accessible; [iii] a near-continuum inelastic collision of two larger 400-particle balls. In the last
two of these pedagogical problems the two colliding bodies coalesce. The particles most prone to Lyapunov instability are
dramatically different in the two time directions. Thus this Lyapunov-based symmetry breaking furnishes an interesting
Arrow of Time.
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I. INTRODUCTION

The goal we pursue here is improved microscopic un-
derstanding of the thermodynamic irreversibility described
by the Second Law of Thermodynamics [1]. Unlike the mi-
croscopic mechanics which underlies it, the Second Law is
strictly irreversible, and applies to macroscopic thermody-
namic descriptions of macroscopic processes in which fluctu-
ations are ignored. In Clausius’ formulation the Law states
that the entropy of an isolated system cannot decrease. The
size of the “isolated system” can be anywhere in the range
from atomistic to astrophysical so long as the entropy concept
makes sense for it. There is no reason to imagine that quantum
effects or relativistic effects or gravitational effects are cru-
cial to the Law. Accordingly, we limit ourselves to classical
nonrelativistic atomistic models, with short-ranged attractive

and repulsive forces, obeying Hamilton’s (or, equivalently,
Newton’s) time-reversible equations of motion. In particular
we emphasize a many-body process for which the apparent
irreversibility is especially clearcut. In this example two simi-
lar crystalline bodies undergo an inelastic collision in which
their kinetic energy is converted to heat. The colliding bodies
start out with minimum internal energy and with classical
entropy minus infinity. The bodies collide and form a single
oscillating liquid drop. Then these oscillations equilibrate.
Ultimately the equilibrated drop’s internal energy is given by
the initial kinetic energy of the two colliding bodies in the
frame of the full system’s center of mass.

Gibbs’ statistical mechanics provides the conceptual ba-
sis for thermodynamics, through Liouville’s Theorem and
Hamiltonian mechanics [2]. In that mechanics, access to
all those coordinate-momentum phase-space { q, p } states
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consistent with the initial conditions is typically provided
by chaos. Chaos is the sensitive, exponentially-growing
time dependence of any small perturbation, either forward
in time, ∝ eλtf , or backward in time, ∝ eλtb . There are
two phase-space directions and two Lyapunov exponents for
each mechanical degree of freedom. Sets, indicated by braces
{ . . . }, of both “local” [ time-dependent, indicated by (t) ]
and “global” [ time-averaged, indicated by 〈 . . . 〉 ] Lyapunov
exponents can be used to describe this chaos, with

{ λglobal ≡ λ ≡ 〈 λ(t) 〉 ≡ 〈 λlocal 〉 } .

Details of this exponentially-diverging chaos became avail-
able with the advent of fast computers enabling low-cost
numerical solutions of the atomistic motion equations. The
usual procedure was, and is, to generate a “reference trajec-
tory” and one or more “satellite trajectories”, keeping track of
the tendency of the satellite trajectories to diverge away from
or approach closer to the reference [3, 4, 5]. To distinguish
this reference trajectory, ( q0 , qdt , q2dt , . . . ) from its re-
verse, ( . . . , q2dt , qdt , q0 ) we will sometimes term these
the “primary” and “reversed” coordinate sets.

The separations of the satellite trajectories from the ref-
erence define an orthogonal set of “offset vectors” in the
phase space, { δ(t) ≡ (q, p)sat − (q, p)ref } . The underlying
“molecular dynamics” simulations require five ingredients:
forces, initial conditions, boundary conditions, integrators,
and diagnostics. Good choices of these five ingredients can
give insight into the symmetries and the broken symmetries
of Hamiltonian chaos. In what follows we will emphasize
“important” particles, those particles making above-average
contributions, ( δq2 + δp2 ) to the offset vector which mea-
sures the most rapid divergence of the satellite trajectory from
the reference.

Here we select two special Hamiltonian problem types:
the dynamics of a single soft disk [6] and the inelastic col-
lision of two many-particle solid bodies [7, 8]. Our interest
in the single-particle problem is primarily pedagogical, es-
pecially for its apparent ergodicity and for the simplicity of
its offset-vector structure. The single-disk “cell-model” prob-
lem has only one pair of chaotic offset vectors, a system
particularly easy to analyze. Both problem types reveal two
interesting aspects of Hamiltonian chaos. First the local Lya-
punov exponents have a tendency to pair, corresponding to the
forward-backward time reversibility of Hamiltonian motion.
The single-disk cell model dynamics apparently illustrates
pairing all of the time, once the transient behavior from the ini-
tial conditions has decayed. The inelastic collision problems
illustrate pairing only most of the time. During the collision
process pairing is destroyed.

There is a second consequence of chaos present in both
problem types. These Lyapunov exponent pairs illustrate sym-
metry breaking — for both types, the one-body cell-model
problem and the collisional many-body problems. This is

because the forward and backward sets of exponent pairs ,

{ ±λbackward(t) } ← { q(t) } → { ±λforward(t) } ,

can be quite different along exactly the same trajectory (both
the primary and the reversed orderings) and at exactly the
same configuration. This difference reflects the difference
between the “past” and the “future”. From the qualitative
standpoint past and future are about the same for the one-body
cell model. Past and Future can and do differ substantially (as
described by the Second Law) for the colliding many-body
systems treated here.

Demonstrating instantaneous pairing is a numerical chal-
lenge. Pairing appears to be present all the time in the simple
cell-model problem, with

λforward
i (t) = −λforward

5−i (t)

and

λbackward
i (t) = −λbackward

5−i (t) .

On the other hand our numerical work on many-body prob-
lems shows that the tendency toward pairing can be defeated
by strong localized events. We find that pre-collision pair-
ing is destroyed by energetic collisions of small crystallites,
but can apparently recur as the coalesced body equilibrates.
We will see clearly that Lyapunov-exponent pairing can be
destroyed during the collision process. We also find that a
single trajectory’s stability can be quite different, forward and
backward in time. Forward and backward stabilities, for the
same configuration but reversed momenta can and do differ
qualitatively. This is a bit surprising. If similar trajectories
separate, when propagated forward in time, they correspond
to approaching trajectories in the reversed motion. In an ideal-
ized perfectly time-reversible situation the first most-positive
time-averaged Lyapunov exponent would correspond to the
last most-negative exponent if all the geometric data were
processed “backward”, in the opposite order.

In fact, things are not so simple. Typically λforward
1 (t)

doesn’t correspond to any of the backward exponents. The
exponents from a forward processing of coordinate data are
not simply related to those from a backward processing. The
many-body inelastic-collision problem clearly illustrates this
symmetry-breaking exponent pairing. The forward and back-
ward exponent pairs are quite different for exactly the same
configuration. In addition there is a qualitative distinction
to be seen in the phase-space separation vectors associated
with the largest (and smallest) Lyapunov exponents. And the
offset-vector differences forward in time don’t resemble those
with time reversed. These seemingly odd differences invari-
ably emerge when time-reversible Hamiltonian mechanics
is applied to highly nonequilibrium situations. We will see
that the “important particles” going forward in time can be
quite different to those in the reversed motion at the same
configuration and with reversed momenta. This symmetry-
breaking, with { λforward } very different to { λbackward } as
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well as the transient nature of the pairing, { +λ } = { −λ },
both forward and backward, surprised us and prompted us
to write this paper. A second motivation was the relatively-
long delay in publication of our manuscript [arχiv:1112.5491]
“Time’s Arrow for Shockwaves; Bit-Reversible Lyapunov and
Covariant Vectors ; Symmetry Breaking”, submitted to the
Journal of Physics A in December of 2011 and finally with-
drawn and published in Computational Methods in Science
and Technology in early 2013! [9]

This paper is organized as follows. We fix ideas by be-
ginning with the simplest possible one-body Hamiltonian
problem. We describe this chaotic problem in Section II,
and use it to illustrate Lyapunov instability, the forward-
backward pairing of the local exponents, and symmetry break-
ing. We follow a simplification suggested by Romero-Bastida
et alii [10], using Levesque and Verlet’s bit-reversible leapfrog
algorithm [11] to generate arbitrarily-long perfectly-time-
reversible trajectories, both forward and backward in time.

In Section III we consider two larger but still quite man-
ageable problems. In both of them we analyze the inelastic
collision of two similar cold crystals. The minimal N = 14-
body simulation of two colliding seven-body hexagons char-
acterizes the stability of the motion in a 56-dimensional
{ x, y, px, py } phase space. Describing any 14-body tra-
jectory in that space involves solving 56 ordinary differen-
tial equations. Evaluating the stability of that motion (the
56-dimensional response to perturbations in 56 directions)
requires solving 562 more differential equations, giving 3192
in all. A more detailed study, following the collisions of
two (4 + 5 + 6 + 7 + 6 + 5 + 4 = 37)-particle hexagonal
crystallites in their 4× 74-dimensional phase space involves
solving 297× 296 = 87, 912 ordinary differential equations.
These describe the motion of 296 orthogonal 296-dimensional
“offset vectors”. The vectors are made orthonormal at the con-
clusion of every timestep, with a typical collision analysis
requiring a few million timesteps.

The interesting topological features connecting an in-
elastic collision’s local Lyapunov spectrum to the phase-
space offset vectors can be illustrated by generating a ref-
erence trajectory in either of two different ways, [i] bit-
reversibly [9, 10, 11] or [ii] (slightly) irreversibly, with a
highly-accurate fourth-order Runge-Kutta integration. The
excellent agreement furnished by these two quite different
approaches supports the use of both algorithms. In either case
the 4N orthonormalized satellite trajectories are generated
with the classic fourth-order Runge-Kutta integrator along
with the Gram-Schmidt orthonormalization algorithm.

In Section IV we consider an 800-body problem, where
the evolution of the inelastic-collision dynamics takes too long
(a few sound-traversal times) for accurate time-reversal using
double-precision Runge-Kutta integration. The alternative
bit-reversible technique allows us to identify the “important
particles” [above-average contributors to λ1(t)] for this highly
irreversible process, and provides a clear distinction between

the stabilities of the forward and backward (primary and re-
versed) dynamics. Section V is our Conclusion and Summary,
relating all these time-reversible model results to the irre-
versibility inherent in the Second Law of Thermodynamics
and to microscopic Lyapunov instability.

Fig. 1 Sample cell-model trajectory segment for a total time
interval 0 < t < 200 and dt = 0.001.

II. ONE-BODY CELL MODEL DYNAMICS

This simplest chaotic problem is the dynamics of a soft
Hamiltonian disk with two degrees of freedom, confined
within a periodic square lattice of similar soft-disk scatter-
ers. “Cell models” of this type were studied early in the last
century. The corresponding one-particle partition-function
models provided semiquantitative “free-volume” estimates
for the many-body partition functions characterizing the then-
somewhat-mysterious liquid state [12]. The dynamics for
this cell-model system occupies a three-dimensional constant-
energy volume in the four-dimensional { x, y, px, py } phase
space. See Figure 1 for a configuration-space view of the
dynamics. For this problem, with its periodic boundaries, no
attractive forces are necessary. Accordingly, we use a purely-
repulsive potential energy (with numerical integration errors
minimized by choosing a pair potential with three continuous
derivatives at the cutoff distance of unity) :

φ(r < 1) = (1− r2)4 −→ F (r < 1) = 8r(1− r2)3 .

Punctuation of the free-flight regions, by very smooth col-
lisions, enhances the accuracy of the numerical work. For
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definiteness (so that a diligent reader can reproduce our results
in detail) the initial velocity is (0.6,0.8) with the initial coordi-
nates (0,0) in the center of a square-lattice periodic cell. The
periodic boundary conditions, ( −1 < x, y < +1 ), are im-
posed by adding or subtracting, if necessary, the cell width 2
at the end of every timestep. Because the spacing between the
centers of the fixed nearest-neighbor scatterers is 2, the mov-
ing particle interacts with at most one of the fixed particles.
For definiteness we choose the initial four offset vectors paral-
lel to the four Cartesian phase-space directions: (x, y, px, py) .
With fourth-order Runge-Kutta integration, the calculation
is insensitive to changes of the timestep, dt = 0.001, and
the length of the offset vectors, |δ| = 0.00001 . The results
described below are obtained by following the dynamics of
five separate trajectories, the “reference” trajectory along with
four nearby “satellite” trajectories, with the differences defin-
ing the four offset vectors { δ1 . . . δ4 } .

To avoid the divergence of the offset vectors that would
accompany exponential growth it is usual either [i] to rescale
them [3, 4] or [ii] to measure their virtual rates of increase [5],
which can be expressed in terms of Lagrange multipliers con-
straining satellite trajectories to remain at a fixed separation
from a reference trajectory. Additional multipliers constrain
the directions of the satellite trajectories to remain orthogonal.
Numerical work indicates that the positive Lyapunov exponent
λforward
1 (+t) is accurately paired to its mostly-negative twin
λforward
4 (+t) . Typically this pair of instability exponents,

forward in time, is not at all similar to the corresponding pair
of “reversed” or “backward” exponents { λbackward

1 and 4 (−t) },
if the same coordinate trajectory is followed “backward” in
time.

-35

-25

-15

-5

 5
ln(dq) and ln(dp)

0 < time < 50

λ = 0.7λ = 0.7

Fig. 2 Growth of small perturbations in the coordinate q and
momentum p with time.

Despite the pairings, λ1+λ4 ' λ2+λ3 ' 0 , the primary
exponents, measured in the forward time direction, reflect the
past rather than the future. The reversed exponents, measured
for the other “backward” time direction, are different. The
backward exponents anticipate the “future” rather than re-

flecting the past. For a typical numerical trajectory segment,
which can be followed either forward or backward, see Figure
1. In Figure 2 we see the near-perfect exponential divergence
of a small perturbation ,

(x, y)t=0 = (10−16, 0) .

The slope gives an estimate of the largest Lyapunov exponent,
λ1 ' 0.7. By symmetry the smallest exponent is −0.7 so that
the time-averaged Lyapunov spectrum is

{ 〈 λ 〉 } = { +0.7, 0.0, 0.0, −0.7 } ,

in the four-dimensional phase space of the Hamiltonian mo-
tion.

The simplest algorithm characterizing the disk’s Lyapunov
instability in this space follows the dynamics of a single time-
reversible reference trajectory along with four nearby satellite
trajectories. The reference-to-satellite vectors { δi } are con-
strained to remain orthogonal at the end of each timestep,
maintaining the constant length δ ≡ 0.00001. The Gram-
Schmidt orthonormalization algorithm first rescales δ1 and
then removes the projection of δ2 in the direction of δ1 :

δ2 −→ δ2 − δ1[ δ1 · δ2 ]/δ2 .

The rescaling operation gives the local value of the Lyapunov
exponent λ1 :

λ1(t) = (1/dt) ln( δ1/δ ) .

Then δ2 is rescaled [giving the second local Lyapunov expo-
nent λ2(t)] and the projections of δ3 in the directions of δ1
and δ2 are removed :

δ3 −→ δ3 − δ1[ δ1 · δ3 ]/δ2 − δ2[ δ2 · δ3 ]/δ2 .

Finally δ3 is rescaled, giving λ3(t) and δ4 is similarly
made orthogonal to { δ1, δ2, δ3 } and rescaled to give λ4(t).
In the end four orthogonal vectors { δi(t) } and four local
Lyapunov exponents { λi(t) } result.

-8

 0

 8
{ λ }

0 < time < 15

Fig. 3 The four local Lyapunov Exponents for the cell model
illustrating exponent “pairing”.
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After a transient time of order ( 1/λ1 ) both the sets of
Lyapunov vectors (forward and backward) for the cell model
are observed visually to “pair”, with about six-figure numeri-
cal accuracy :

λ1(t) + λ4(t) ' λ2(t) + λ3(t) ' 0 .

See Figure 3 for a sample sequence obtained with Runge-
Kutta timestep dt = 0.002 and with the orthogonal vector
length |δ| = 0.00001. Again, the results are not at all sensitive
to either of these choices. Because Hamiltonian mechanics is
strictly time-reversible, with all the rates changing sign in a
time-reversed simulation, exact pairing, as suggested by our
numerical cell-model results, is certainly a plausible property
of cell-model trajectories. Nevertheless, we will be consid-
ering three other chaotic Hamiltonian systems which clearly
violate this pairing property, at least some of the time, in the
next two Sections.

There is a set of first-order ordinary differential equations
equivalent to the Gram-Schmidt procedure just described in
the small timestep limit [5], dt −→ 0 :

δ̇1 = D · δ1 − λ11δ1 ;

δ̇2 = D · δ2 − λ21δ1 − λ22δ2 ;

δ̇3 = D · δ3 − λ31δ1 − λ32δ2 − λ33δ3 ;

δ̇4 = D · δ4 − λ41δ1 − λ42δ2 − λ43δ3 − λ44δ4 .

Here the matrix D describes the effect of the perturbations
{ δ } on the unconstrained motion of the vectors. The ten La-
grange multipliers { λi≥j } vary with time so as to maintain
the ten orthonormality constraints, { δi · δj ≡ δ2δij } . The di-
agonal Lagrange multipliers in these differential equations are
identical to the local Lyapunov exponents, λii ≡ λi(t). It is
easy to show that the differential equations are perfectly time-
reversible (in the sense that the coordinates are unchanged
while the momenta and Lagrange multipliers change sign).
This apparent but illusory time symmetry is broken, even for
simple systems such as our one-particle cell model. It is also
easy to show that exactly the same ten Lagrange multipliers re-
sult if the basis vectors are used to describe the virtual growth
rates of a two-trajectory length, a three-trajectory equilateral
triangle, and a four-trajectory regular tetrahedon.

For relatively short times solutions of this simple dynam-
ical system can be generated with Runge-Kutta integration.
The longtime irreversibility of such Runge-Kutta integrations
is due to the cumulative growth of single-timestep errors.
These local errors are proportional to dt5 times the fifth time
derivative of the phase-space variables. To avoid the resulting
longtime irreversibility the dynamics can instead be gener-
ated as an ordered series of coordinate values { ( xt, yt ) }
using a somewhat less accurate but completely “bit-reversible”
integer algorithm for the reference trajectory. Among them,
Levesque and Verlet’s third-order algorithm [10, 11] is cer-
tainly the simplest :

{ qt+dt − 2qt + qt−dt ≡ [ Ftdt
2/m ]Integer } .

Rather than the phase variables { qt, pt } two sets of adja-
cent coordinate values { qt, qt±dt } are required to start the
Levesque-Verlet algorithm. Here the coordinates and their
second differences are all evaluated as (large) integers. The
resulting bit-reversible reference trajectory can be extended
infinitely far into the future or the past without any need to
store the trajectory. A set of momenta corresponding to the
coordinates ,

{ . . . , pt−dt , pt , pt+dt , . . . , } ,

and, like the coordinates, with third-order accuracy in dt , can
be defined as follows [9] :

pt ≡ ( 4/3 )[ qt+dt − qt−dt ]/( 2dt )

− ( 1/3 )[ qt+2dt − qt−2dt ]/( 4dt ) .

The nearby satellite trajectories are generated with the
usual Runge-Kutta integration. By using 16-byte integers the
accuracy of the integer-algorithm’s reference trajectory can
be made to match that of a double-precision floating-point
simulation.

A practical approach uses bit-reversible integration for the
reference trajectory and fourth-order Runge-Kutta integration
for the four nearby satellite trajectories. At the end of each
timestep we use Gram-Schmidt orthonormalization, keeping
the lengths of the four “offset vectors” fixed { |rs−rr| = δ }
and their directions orthogonal. The accuracy of the Lyapunov
spectrum depends (relatively weakly) upon the timestep dt
and the vector length δ . A convenient initial condition ,

{ x, y, px, py } = { 0.0, 0.0, 0.6, 0.8 } ,

with total energy E = K + Φ = ( 1/2 ) ≥
∑
φ , guarantees

that the moving particle can get no closer to any of its four
fixed neighbors than a distance rmin =

√
(1− (1/2)1/4) =

0.3988779. At the end of each timestep the periodic boundary
conditions are applied to ensure that the moving disk stays
within its periodic cell. A million timestep simulation using
the classic fourth-order Runge-Kutta integrator for the refer-
ence trajectory with dt = 0.0002 exhibits an energy loss less
than one part in 1013 .

Long time energy loss can be avoided entirely, and the
numerical trajectory can be made precisely time-reversible,
by using Levesque and Verlet’s bit-reversible integrator. That
algorithm requires a pair of subroutines mapping the floating-
point interval { −2 < float < +2 } onto the integer interval
{ −M < int < +M } :

int = float ∗ M/2.0d00←→ float = 2.0d00 ∗ int/M .

We choose M = 1016 so that the precision of the bit-
reversible simulation is comparable to that of a typical double-
precision fourth-order Runge-Kutta simulation.
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0.0

0.5

1.0
Time-Averaged Largest Lyapunov Exponent

0 < time < 50

{ dt } = { 0.0001, 0.0002, 0.0004, 0.0008 }

Fig. 4 Dependence of the local Lyapunov exponent on the
timestep dt.

Two initially different offset vectors come to agree — to
six-figure accuracy — after propagating for a time of order 20.
Figure 4 shows the early stages of convergence of the nonzero
Lyapunov exponent for four different timesteps, 0.0001,
0.0002, 0.0004, and 0.0008. From the visual standpoint the
results are identical until a time of order 40, where Lyapunov
instability causes the four trajectories to separate. This long-
time-averaged Lyapunov spectrum, { +0.7, 0, 0, −0.7 } is,
as we would expect, perfectly consistent with the two-system
offset vector calculation documented in Figure 2.

The more complicated simulation of Figure 3, giving the
whole spectrum, involves solving 20 ordinary differential
equations – four of them describing the reference trajectory
and 16 more describing its four satellite trajectories. This
one-body cell-model problem is an excellent warmup exercise
for the many-body problems described in what follows in the
next two Sections. These upcoming many-body examples are
more complex, in that exponent pairing is a transient (and
therefore only approximate) phenomenon. The loss of pair-
ing is evidently associated with dynamical events that appear
irreversible, brought about by the choice of inhomogenous
out-of-the-ordinary initial conditions.

III. INELASTIC COLLISIONS OF TWO COLD
HEXAGONAL CRYSTALLITES

Thermodynamic irreversibility occurs whenever mechani-
cal energy is dissipated into heat. We wish to see how such
thermodynamic irreversibility is reflected in the Lyapunov in-
stability of atomistic simulations of conservative Hamiltonian
mechanics. To begin we will consider a simple demonstration
of irreversible behavior, the inelastic collision of two cold
seven-atom crystallites to form a single hotter 14-body drop.
Our first experience with this general problem type, in 1990,
was intended to measure the “coefficient of restitution” for
two bouncing balls. But the balls refused to bounce, instead
fusing, so as to form a single ball, just as in the present work.
The earlier two-ball work is mentioned, and illustrated, in

Reference 7. A recent four-ball analog appears on page 96
of (the second [2012] edition) of Reference 1. This same
combination of the many-body embedded-atom potential with
the repulsive core potential is useful for modeling surfaces
and other lattice defects, as well as the dynamics of plastic
flows [13]. For the problems considered here the vapor pres-
sure of the coalesced balls is so low that no special spatial
boundary conditions are required to contain all the particles.

Each particle has unit mass. In addition to the repulsive
pair forces derived from the (1−r2)4 pair potential, we add on
a longer-range attractive smooth-particle potential based on
the deviations of the individual particle densities from unity,
as calculated from Lucy’s smooth-particle weight function [1],
with a range h = 3.5:

Φ({ ρ }) ≡
14∑
i=1

(1/2)(ρi − 1)2 ; ρi =

14∑
j=1

w( | ri − rj | ) ;

wLucy( r < h = 3.5 ) = ( 5/πh2 )[ 1 + 3z ][ 1− z ]3 ;

z ≡ ( r/h ) .

Lucy’s weight function is normalized to reflect the local den-
sity, with ∫ h

0

2πrw(r) ≡ 1 .

The contribution of the smooth-particle potential to the equa-
tions of motion is

r̈i =
∑
j

[ ( 1− ρi )∇iwij + ( 1− ρj )∇iwij ] =

=
∑
j

( 2− ρi − ρj )∇iwij .

Figure 5 shows a series of snapshots of two colliding 7-
particle hexagons with the time reversed at t = 100.

Important Particles Forward and Backward
t = 20

Important Particles Forward and Backward
t = 20

Important Particles Forward and Backward
t = 20 t = 40t = 40t = 40 t = 60t = 60t = 60

t = 80t = 80t = 80 t = 100t = 100t = 100 t = 80t = 80t = 80

t = 60t = 60t = 60 t = 40t = 40t = 40 t = 20t = 20t = 20

Fig. 5 Important particles in a 14-particle inelastic collision
time-reversed at t = 100.
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Important Particles Forward in Time
t = 10

Important Particles Forward in Time
t = 10

Important Particles Forward in Time
t = 10 t = 20t = 20t = 20 t = 30t = 30t = 30

t = 40t = 40t = 40 t = 50t = 50t = 50 t = 60t = 60t = 60

t = 70t = 70t = 70 t = 80t = 80t = 80 t = 90t = 90t = 90

Fig. 6 Important particles are emphasized in the collision of
two 37-particle crystallites.

Important Particles Backward in Time
t = 10

Important Particles Backward in Time
t = 10

Important Particles Backward in Time
t = 10 t = 20t = 20t = 20 t = 30t = 30t = 30

t = 40t = 40t = 40 t = 50t = 50t = 50 t = 60t = 60t = 60

t = 70t = 70t = 70 t = 80t = 80t = 80 t = 90t = 90t = 90

Fig. 7 Same as Figure 6 but with the bit-reversible trajectory
processed backward in time.

Figures 6 and 7 show similar series of snapshots for two
37-particle hexagons. Just as before, the initial velocities
are px = +0.1 for those particles in the left hexagon and
px = −0.1 for those at the right. In these figures particles
making an above-average contribution to the local Lyapunov
exponent λ1(t) are distinguished by an extra circular ring
for emphasis. Note particularly that in the forward-in-time
motions the leading-edge particles contribute most to insta-
bility. In the reversed collision, with the drop separating into
two hexagons, the cooperative motion of the interior particles
is more important to the stability. In the initial least-energy
cold configuration for Figure 5 the nearest-neighbor spacing
is 0.8611 2127 0463 and the seven-body crystal’s comoving
energy is 0.6390 2960 9388. The energy is positive due to the
contribution of the attractive potential, which vanishes at a
density of unity, not zero. In Figures 6 and 7 we have chosen
a stronger repulsive pair potential, 10(1 − r2)4 rather than
(1− r2)4, in order to compensate somewhat for the layering
tendency of the embedded-atom interaction.

We began by investigating such two-hexagon collisions
with the classic fourth-order Runge-Kutta integrator. Al-
though the energy changes can be made negligible for elapsed
times of several hundred, Lyapunov instability eventually

spoils the details of a “reversed” Runge-Kutta trajectory, and
in a much shorter time, of order 25. See again Figure 4.
Quadruple precision would simply double this time, to 50.
Energy conservation provides no hint of this trajectory irre-
versibility. Choosing a timestep of dt = 0.001 conserves the
energy to an accuracy of twelve digits over the course of a
600,000 timestep run. But the time reversibility is effectively
destroyed much sooner, at about 25,000 timesteps.

To maintain precise time reversibility in our Lyapunov
computations, we used the Levesque-Verlet bit-reversible in-
tegrator. Figures 5-7 are based on bit-reversible reference
trajectories with Runge-Kutta satellite trajectories orthonor-
malized at each timestep. For the same number of force
evaluations per unit time the bit-reversible timestep could be
made four times smaller:

dtbitrev = (1/4)dtRK4 = 0.00025 .

But for simplicity we have used dt = 0.001 for both integra-
tors.
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Fig. 8 Exponential growth of kinetic energy error after time-
reversal at time 100.
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Fig. 9 Exponential growth of Lyapunov exponent error after
time-reversal at time 100.
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Fig. 10 Variation of Kinetic energy (initially 37× 2× 0.005)
during the bit-reversible inelastic collision of two 37-particle
crystallites.
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Fig. 11 Lack of pairing relationships between the first and last
Lyapunov exponents during the bit-reversible simulation of a
74-body inelastic collision.

Figures 8 and 9 compare the Runge-Kutta and bit-
reversible calculations of energy and the largest Lyapunov
exponent for the 37 + 37 particle problem. Note again that
the local Lyapunov exponent is a much more sensitive test of
trajectory accuracy than is the energy. The comparison also
shows that either algorithm, Runge-Kutta or bit-reversible,
can be used for simulations that are not too long. Figure
10 shows the thermalization of the kinetic energy as the two
hexagons merge to form a warm ball. At about time 30 the
coalescence is complete. The remaining dynamics consists
of relatively featureless thermal motion. In Figure 11 we
show a portion of the time-dependence of the 1-296, and
2-295 pairs of local Lyapunov exponents, both forward and
backward in time. From the visual standpoint simulations us-
ing a bit-reversible reference trajectory are indistinguishable
from those using Runge-Kutta integration, with time reversed,
+dt→ −dt, at a time of 25. These results show very clearly
that pairing is not a general phenomenon. The more negative

exponents react earlier, and more strongly, to the collision
process than do the more positive ones.

During the progress of the collision we can locate the “im-
portant” particles, those making above average contributions
to the length of the instability offset vector δ1(t) . As one
might expect, the particles on the leading edges of the crys-
tallites are the first to feel the collision. In the time-reversed
motion other particles become important. This is interesting!
We will detail this lack of time symmetry in a larger and more
complex coalescence problem in the next Section.

IV. INELASTIC COLLISION
OF TWO LARGER CRYSTALLITES

In two dimensions problems with a few hundred parti-
cles are already large enough to suggest continuum flows.
Figures 12 and 13 show a series of forward and reversed snap-
shots from the collision of two cold 400-particle crystallites
with the same repulsive pair potential and the same attractive
embedded-atom potential as in the 74-particle problem of
the last Section. The initial state uses two copies of a 400-
particle crystallite generated by the relaxation of a 20 × 20
square structure. The relaxation providing initial conditions
for all these problems is easily carried out by including vis-
cous forces, { −(p/τ) } , in the dynamics. For simplicity,
coordinates and velocities for a second crystallite were chosen
to satisfy inversion symmetry relative to the first :

{ xleft(i) + xright(i) = 0 = yleft(i) + yright(i) } ;

{ pleftx (i) = +0.10 ; prightx (i) = −0.10 ;

plefty (i) = 0.00 = prighty (i) } .

Just as in the smaller cases this 800-particle problem ex-
hibits two different local Lyapunov spectra, one going forward
in time and the other going backward. The “important par-
ticles” are indicated by central dots in the figures. Here the
reference trajectory is bit-reversible so that the forward and
backward particle coordinates agree to the very last bit. The
local exponents and vectors at a time t can be determined
accurately by analyzing the trajectory segment from t− 30 to
t+ 30 .

Figure 12 shows that forward in time the important par-
ticles are located in the collision region, where the two crys-
tallites first deform. Backward in time (Figure 13) a complex
collective synchronized motion of the crystallites is required
to regain the zero-temperature structures. This “unlikely” mo-
tion is localized in the necking region of the coalesced crytals.
This symmetry-breaking provides an “Arrow of Time” for
the coalescence problem. The geometric features of the Lya-
punov instability, given by the offset vectors, are qualitatively
different in the forward and reversed time directions.
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Forward Times 10 to 90 ; dt = 0.001
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Fig. 12 Important particles (black) during the collision of two 400-particle crystallites.

Backward Times 10 to 90 ; dt = 0.001

t = 10 t = 20 t = 30

t = 40 t = 50 t = 60

t = 70 t = 80 t = 90

Fig. 13 Important particles during the (bit-reversibly reversed) collision of Figure 12. Note the qualitative difference to Figure
12 with precisely identical coordinates at corresponding times.
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This same symmetry-breaking is exactly the same for
the recently-popularized “covariant vectors” [10], which are
a modified approach to describing phase-space instability.
The first and last covariant vectors correspond to the forward
and reversed versions of our δ1(t) vectors. Prediction of
symmetry-breaking, both of the positive and negative mem-
bers of each exponent pair, as well as the symmetry-breaking
distinguishing the offset vectors forward and backward in
time, requires a nonlinear analysis, as all of the equations
for the reference and satellite trajectories are strictly time-
reversible.

V. CONCLUSION AND SUMMARY

The observed irreversibility of simple nonequilibrium pro-
cesses includes many examples from gas theory as well as
both transient and steady flows of condensed matter. Our
coalescence problems are good examples of irreversible pro-
cesses. Deterministic time-reversible microscopic models are
available to simulate many such problems. How does time-
reversible microscopic mechanics give rise to this variety of
irreversible nonlinear macroscopic behavior?

Boltzmann’s H Theorem answers this question for dilute
gases [14]. He showed that the Maxwell-Boltzmann velocity
distribution is the overwhelmingly probable result of “uncor-
related” collisions, collisions with randomly-chosen impact
parameters. The thermostatted forms of reversible mechan-
ics developed in the 1970s and 1980s provided a different
explanation [8], useful for understanding condensed matter
simulations of nonequilibrium steady states. With the new
forms of mechanics the irreversibility of nonequilibrium flows
could be traced to their extreme (fractal) rarity and to their
stability, relative to their time-reversed twins, in phase space.
Thus the entropy of nonequilibrium macroscopic states, as
measured by the (logarithm of) the number of corresponding
microscopic phase-space states, is both singular and diver-
gent [8]. This fractal character is well-established for many
simple model systems [1, 2]. In modelling a typical station-
ary time-reversible flow (like thermostatted plane Couette
shear flow or steady Fourier heat conduction) a fractal at-
tractor forms in phase space, with a negative Lyapunov sum
giving the exponential rate of phase-volume collapse. The
time-reversed repellor, with its unstable (positive) Lyapunov
sum, provides the source for phase-space probability flow to
the fractal sink, a strange attractor. The fractal nature of such
flows corresponds to the extreme rarity of nonequilibrium
steady states. All such thermostatted simulations require a
nonHamiltonian dynamics in order to generate and account
for the concentration of phase-space probability on a fractal.

The present examples are quite different. There are nei-
ther statistical collisions nor fractal distributions, though there
is certainly a coarse-grained macroscopic entropy increase,
invisible according to Liouville’s Theorem, from minus infin-

ity in the cold crystallites, to a positive equilibrium value in
the resulting equilibrated coalesced state. Where does Time’s
Arrow come in? The futures and the histories of the forward
(or primary) and reversed flows are (almost) exactly the same
from the standpoint of configurations { q }. The “almost” re-
minds us of the difficulty in constructing a primary trajectory
in the direction that violates the Second Law! Regardless,
two kinds of pairing, [i] with any positive Lyapunov exponent
paired to a corresponding negative one, and [ii] with any for-
ward Lyapunov exponent paired to a corresponding backward
one, are both consistent with the time-reversible Hamiltonian
equations of motion. But the stabilities of the time-reversed
motion equations are complicated, in their model dependence
and in their time dependence. For flows which are relatively
simple, like the cell model, the motions in the two time direc-
tions can fail to distinguish the Lyapunov instability’s depen-
dence on the past from its symmetry with the future. More
complex flows, like the colliding crystallites, or shockwaves,
come instead to reflect the past rather than the future. In these
cases knowledge of δ1 automatically gives the direction in
which the flow is developing.

We have seen that the Lyapunov instabilities inherent in
the dynamics always reflect the past rather than the future.
The delay between cause and effect is the same as that ob-
served in atomistic shockwave simulations where the stress
lags the strainrate and the heat flux lags the temperature gra-
dient [9, 15]. The forward-backward symmetry of the mi-
croscopic motion equations does not carry through to the
macroscopic diagnostics of the motion.

Although the dynamics is symmetric in the time the stabil-
ity of that dynamics is not. The morphology of the exponents
provides a clue as to whether or not we are looking at an
equilibrium system. Whenever the past is quite different to
the future this lack of symmetry can be seen in the local Lya-
punov spectrum. The lack of pairing and the inhomogeneity
of the local Lyapunov exponents needs to be related to macro-
scopic entropy production. Liouville’s Theorem shows that
the Lyapunov spectrum, which sums to zero with Hamiltonian
mechanics, is inconsistent with macroscopic entropy change.
On the other hand systems like our colliding crystallites, man-
ifesting a failure of the past and future to pair, may come to
suggest new metrics for the separation from equilibrium and
its evolution.
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