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Abstract: Strong shockwaves generate entropy quickly and locally. The Newton-Hamilton equations of motion, which
underly the dynamics, are perfectly time-reversible. How do they generate the irreversible shock entropy? What are the
symptoms of this irreversibility? We investigate these questions using Levesque and Verlet’s bit-reversible algorithm. In
this way we can generate an entirely imaginary past consistent with the irreversibility observed in the present. We use
Runge-Kutta integration to analyze the local Lyapunov instability of nearby “satellite” trajectories. From the forward
and backward processes we identify those particles most intimately connected with the irreversibility described by the
Second Law of Thermodynamics. Despite the perfect time symmetry of the particle trajectories, the fully-converged vectors
associated with the largest Lyapunov exponents, forward and backward in time, are qualitatively different. The vectors
display a time-symmetry breaking equivalent to Time’s Arrow. That is, in autonomous Hamiltonian shockwaves the largest
local Lyapunov exponents, forward and backward in time, are quite different.
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I. INTRODUCTION AND GOALS

Loschmidt’s Paradox contrasts the microscopic time-
reversible nature of Newtonian-Hamiltonian mechanics with
the macroscopic irreversibility described by the Second Law
of Thermodynamics [1, 2, 3]. A way out of this Time-
Reversibility Paradox has been charted through the use of
Gaussian isokinetic or Nosé-Hoover canonical thermostats to
model nonequilibrium steady states such as shear flows and
heat flows. Both these thermostating approaches control the
kinetic temperature with time-reversible frictional forces of
the form { Fthermal ≡ −ζp } .

With either Gaussian or Nosé-Hoover mechanics, a com-
pressible form of Liouville’s Theorem holds :

{q̇ = (p/m) ; ṗ = F (q)− ζp } −→
−→ (d ln f/dt) ≡ (∂ ln f/∂t)

+
∑

[ q̇ · (∂f/∂q) + ṗ · (∂f/∂p) ]/f =

= −
∑

[ (∂q̇/∂q) + (∂ṗ/∂p) ] =
∑

ζ > 0 .

In any stationary or time-periodic nonequilibrium state
the sums here (over thermostated degrees of freedom) must
necessarily have a nonnegative average value of (ḟ/f) to pre-
vent instability. This is because a persistent negative value
(with decreasing probability density) would correspond to an
ever-increasing ultimately-divergent phase volume. Thus the
Second Law of Thermodynamics becomes a Theorem when
either Gaussian isokinetic or Nosé-Hoover mechanics is used
to generate such a nonequilibrium state.

What can be done to reconcile Newtonian-Hamiltonian
mechanics with the Second Law in the absence of ther-
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mostats? Shockwaves, modeled with Levesque and Verlet’s
“bit-reversible” version of Newtonian mechanics [4, 5], pro-
vide a possible way forward. Despite the perfect time re-
versibility of the underlying mechanics the shock propaga-
tion and compression dynamics should somehow be more
“likely” than its time-reversed expanding image, in which en-
tropy would decrease with the shock running backwards. The
present work was inspired by Reference 5, and is an exten-
sion of our work in Reference 6. Here we investigate the
reversibility problem through detailed analyses of the largest
local Lyapunov exponent and its associated vectors, one for-
ward and one backward in time. At every phase-space point
the forward and backward “local” exponents and the two asso-
ciated vectors depend on time. A striking forward-backward
symmetry breaking is the observed result. This finding sug-
gests that purely Newtonian dynamics is enough for a clear
demonstration of the Second Law of Thermodynamics even
in the absence of thermostating forces.

In the following Section we describe the basic shockwave
geometry and its thermodynamic interpretation. Next, we
detail a method for accurate determination of the Lyapunov
exponents with a “bit-reversible” reference trajectory and a
Runge-Kutta satellite trajectory. Results from this hybrid al-
gorithm and the conclusions which we draw from them make
up the final Sections of the paper. An Appendix responds
to questions and comments raised by Pavel Kuptsov, Harald
Posch, Franz Waldner, and an anonymous referee.

II. SHOCKWAVES

Steady shockwaves are arguably the most irreversible ther-
modynamic processes possible. In a typical shockwave cold
low-pressure, low-temperature, low-entropy fluid is violently
shocked into a high-pressure, high-temperature, high-entropy
state. This conversion takes place quickly, in just a few atomic
collision times. A high-speed collision of a right-moving cold
fluid with a fixed rigid wall generates a shockwave which
decelerates the fluid from its initial velocity, up , to zero. This
inelastic collision with the wall generates a shockwave mov-
ing to the left at speed us−up . The force on unit area of wall,
ρusup , is equal to the hot fluid pressure. The initial kinetic
energy of unit mass of fluid, (u2

p/2) , becomes converted to
the internal energy of the hot fluid. At the same time, the fluid
Entropy necessarily increases because the shock process is
patently irreversible (from the thermodynamic standpoint).

In molecular dynamics simulations the collision of cold
fluid with a wall is often modeled by simulating the collision
of a moving fluid with its mirror image. An alternative ap-
proach models a steady state with incoming cold fluid (from
the left, at speed us) colliding with the slower hot fluid (ex-
iting to the right, at speed us − up). See Figure 1 for these
alternative views of the shock transition. The present work
resembles the mirror approach. In the next Section we con-

sider a many-body system with particles to the left of center
moving right, at speed up , and particles to the right moving
left, at the same speed. As a result two shocks are generated
at the interface. They move to the left and right with speed
us − up . We emphasize that the dynamics here is ordinary
autonomous Hamiltonian (or Newtonian) mechanics, with no
external forces and no time-dependent boundary conditions.

Fig. 1 Shockwave generation. In the upper view two mirror-
image cold fluids collide with velocities ±up generating a pair
of shockwaves, moving at velocities ±(us − up) as they con-
vert the cold moving fluid to its hot (shaded grey) motionless
shocked state. The lower view shows a stationary shockwave :
cold fluid approaches the shockwave from the left, encounters
the hot slower fluid, and slows, [ us → us − up ] converting
a portion of its kinetic energy to internal energy. The simula-
tions discussed in the text and illustrated in the other Figures
correspond to the geometry of the upper view, with periodic
boundary conditions in both the x and y directions.

Computer simulations of shockwaves with molecular dy-
namics, continuum mechanics, and the Boltzmann equation
have more than a 50-year history [2]. Because the shock-
compression process is nonlinear it is natural to analyze it
from the standpoint of chaos and nonlinear dynamics. The
present work is devoted to exploring the microscopic mecha-
nism for the shock process from the standpoint of Lyapunov
instability. Some details of this work can be found in our
recent arχiv papers. See also Chapter 6 of our book on Time
Reversibility [2].

III. INTEGRATION ALGORITHM

Levesque and Verlet [4] pointed out that an integration
algorithm restricted to a coarse-grained (or finite-precision)
coordinate space can be made precisely time-reversible pro-
vided that the coordinates { q } and forces { F (q) } are
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rounded off in a deterministic way. Their algorithm is an
integer version of the Störmer-Verlet leapfrog algorithm :

{ q+ − 2q0 + q− = (F0∆t2/m) } .

Both the lefthand and righthand sides are evaluated as (large,
here nine-digit) integers. It is quite feasible to use 126-bit
integers with the gfortran double-precision compiler.

Given the present and past values of the coordinates,
{ q0, q− }, such an integer algorithm can generate the fu-
ture, or the past, for as many steps as one can afford. Accurate
determinations of local instability require relatively long tra-
jectories, as is detailed in the Appendix. It is evident, for a
finite phase space, that the entire history and future make up
(in principle) a single deterministic periodic orbit in the phase
space. Of course the time required to achieve this periodicity
can be tremendous. The Birthday Problem suggests that the
Poincaré recurrence time is proportional to the square root
of the number of phase-space states, reaching the age of the
Universe for a system size of only a few atoms [2]

Our interest here is to examine the relative stability of
the forward and backward dynamics in order better to un-
derstand the irreversible nature of the shockwave process.
Stability is best discussed in terms of the Lyapunov instability
in { q, p } phase space. In order to use that analysis for this
integer-valued coordinate problem it is useful to define the
momentum p at each timestep with an algorithm with a formal
third-order accuracy :

p0 ≡ (4/3)

[
(q+ − q−)

2∆t

]
− (1/3)

[
(q++ − q−−)

4∆t

]
'

'(4/3)[ q̇ + (∆t2/6)(d3q/dt3) + (∆t4/120)(d5q/dt5) ]

−(1/3)[ q̇ + (4∆t2/6)(d3q/dt3)

+(16∆t4/120)(d5q/dt5) ] = q̇ − (∆t4/30)(d5q/dt5) .

For simplicity, our particles have unit mass.
By keeping the Levesque-Verlet coordinates at five suc-

cessive times ,

{ q−− , q− , q0 , q+ , q++ } −→ p0 ,

it is possible to use the corresponding { q, p } states to carry
out accurate Runge-Kutta integration forward (or backward)
from t0 to t±∆t so as to find “local” (time-dependent) Lya-
punov exponents. To avoid programming errors it is best to
start out with a one-dimensional harmonic oscillator problem
and to convert the resulting code to deal with the shockwave
problem. In our implementation we have mapped both the
coordinate space and [ (F∆t2/m) ] onto the integer interval
from { 1 . . . 109 }. The timestep we used was either 0.01
or 0.005 . With these choices the truncation errors from the
nine-digit time integration are the same order as the equation
of motion errors incurred by the leapfrog algorithm. This bit-
reversible computer algorithm is exactly time-reversible [4].

IV. RESULTS

We have carried out a variety of shockwave simula-
tions, with different aspect ratios, compression ratios, and
forcelaws. For definiteness we describe here calculations
for the twofold compression of a zero-pressure square lattice
(nearest-neighbor spacing of unity in two space dimensions)
using the very smooth pair potential

φ(r < 1) = (1− r2)4 .

Consider a 40×40 periodic system with the leftmost half mov-
ing to the right at speed 0.875 and the rightmost half moving
to the left at the same speed. We add random thermal veloc-
ities corresponding to an initial temperature of order 10−5.
This arrangement generates a pair of shockwaves traveling at
approximately the same speed, us−up ' up = 0.875 , to the
right and left. These two shockwaves pass entirely through
the sample in a time of about 20/1.75 , leaving behind a hot
high-pressure fluid, compressed twofold and occupying half
the periodic container.
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Fig. 2 Kinetic (dashes) and Potential energies for a 1600-
particle bit-reversible system as functions of time. Max-
imum compression, about twofold, occurs at a time of
12.3 . All the velocities are precisely reversed at times of
{ 30, 70, 110, 150, . . . } so that maximum compression oc-
curs again at time (60− 12.3 = 47.7) . The velocity reversal
times correspond to the tick marks on the abscissa.

In order to study the effect of time reversal on the local
stability of the shock propagation process we reverse the time,
( +∆t → −∆t ) which reverses also the momenta and the
time ordering of the coordinates ,

{ q−− , q− , q0 , q+ , q++ } −→
−→ { q++ , q+ , q0 , q− , q−− } ,

at equally-spaced intervals—see Figure 2—and verify that
the resulting time-periodic series of configurations is repeated
to machine accuracy. We verified also that the results con-
verge to a local limit independent of the time-reversal interval
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for sufficiently long intervals. We then compare the forward
and backward Lyapunov exponents at corresponding times
by integrating a Runge-Kutta satellite trajectory constrained
to lie within a fixed distance of the bit-reversible reference
trajectory. We verified also that reducing the fixed distance
corresponds numerically to a well-defined limit. Thus all the
numerical work is straightforward and well-behaved.

The forward and backward local Lyapunov exponents do
converge to machine accuracy after a few forward/backward
integration cycles. Each cycle begins and ends with a time
reversal. The forward and backward exponents at correspond-
ing times (same coordinates and opposite momenta) turn out
to be quite different. Figure 2 shows the periodic behavior of
the kinetic and potential energies induced by the time rever-
sals for this shockwave problem. Figure 3 shows a portion of
the Lyapunov-exponent history for this same problem. Note
in the Figure that the reversed trajectory briefly shows inter-
vals with λ1 negative (so that the satellite trajectory shows an
occasional tendency to approach the reference trajectory).
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Fig. 3 Largest Lyapunov exponents going forward in time
(from 260 to 270) and going backward (dashes) in time (from
280 to 270) are shown as two curves, at corresponding times.
Note that the reversed exponent has brief episodes in which it
is negative.

The vectors corresponding to the forward and backward
Lyapunov exponents are quite different. For the problem de-
scribed here the numbers of particles making above average
contributions to λforward

1 and to λbackward
1 differ by roughly

a factor of 2. Forward in time the important particles are
localised within the shocked material. Backward in time
there are more of these particles and they are distributed more
nearly homogeneously, as is shown in Figure 4. See also
Reference 6.

< Expansion >< Expansion >< Expansion >

> Compression <> Compression <> Compression <

Fig. 4 Particle positions at time 10.0 , after 1000 timesteps
with ∆t = 0.01 . The motion is precisely reversed at times of
30, 70, 110, . . . . The kinetic energy reaches a minimum at a
time of 12.3 , corresponding to maximum compression. In the
reversed expanding motion the minimum occurs at a time of
47.7 . After four periodic reference cycles, each of duration
80 , the nearby satellite trajectory has converged to machine
accuracy. The larger open circles in the top view enclose the
101 particles making above-average contributions to λforward

1 .
The more numerous particles (212) making above-average
contributions in the reversed motion are shown in the bottom
view with open circles.
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V. SUMMARY AND CONCLUSIONS

The results shown here indicate that despite the time-
reversible and symplectic nature of Hamiltonian mechanics
there is a phase-space symmetry breaking (in the stability of
sufficiently irreversible processes) which distinguishes for-
ward and backward trajectories. In the forward-in-time shock-
wave problem the Lyapunov instability is narrowly concen-
trated at the shockfronts. In the reversed motion the instability
is much more widespread, throughout the expanding fluid.

These findings suggest that the dissipative Second Law
of Thermodynamics has a purely-mechanical analog and that
Loschmidt’s Paradox can be answered by symmetry breaking.
A quantitative relation linking the Lyapunov vectors to en-
tropy and irreversibility is still missing, but the present work
suggests that such a connection is a worthy goal.

Because the first “covariant vector” (in either time direc-
tion) and the corresponding exponents are evidently identical
to the first (most-positive) Gram-Schmidt exponents used
here, these results hold also in the “covariant” case. The
time-symmetry breaking found here is evidently generic for
systems sufficiently far from equilibrium.
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APPENDIX

In mid-June of 2012 an anonymous referee requested a
clear definition of the local Lyapunov exponents. To pro-
vide it consider a very long trajectory segment r(t) with
−τ < t < +τ . No doubt a rigorous approach would re-
quire that τ approach infinity. Here r(t) represents the 4N -
dimensional phase-space trajectory of a (two-dimensional)
N -body system. We denote it rr(t), the “reference” trajectory.
Next consider a “satellite” trajectory constrained to maintain
a fixed small separation (infinitesimal in a rigorous approach)
from the reference by a Lagrange multiplier λ. Hamilton’s
equations of motion, denoted here by D, govern both the

reference and the satellite trajectories :

ṙr = D(rr) ; ṙs = D(rs)− λ(t)(rs − rr) .

The additional Lagrange multiplier λ(t), applied to the satel-
lite trajectory, is chosen to maintain the separation |rr − rs|
constant.

Suppose that the separation is small enough and that the
time interval is long enough that λ does not depend upon
the initial choice of rs(−τ) . Then λ(t = 0) is the “local”
Lyapunov exponent at time zero. If the reference trajectory is
stored and processed backward in time, starting with a nearby
satellite trajectory starting at rs(+τ) the corresponding La-
grange multiplier is the “backward” Lyapunov exponent. It is
worth pointing out that the trajectory reversal can be carried
out in either of two ways: (1) reverse the sign of ∆t in the
integration algorithm; or (2) reverse the momenta and the or-
dering of the coordinates. The two approaches give identical
results.

It is easy to show that reversing the sign of the Lagrange
multiplier along with the time gives +λforward = −λbackward.
The exponent measured invariably has a positive average
value, indicating the tendency toward exponential divergence
of nearby trajectories. For a short time it is usual to observe
this simple sign change for Hamiltonian systems. We have
found in the present work that if the past is sufficiently differ-
ent to the future then this symmetry is broken. It is usual to
check numerical results with finite precision by using differ-
ent algorithms with different timesteps. We have done so in
the present work. Likewise simulations with different offsets
|rr − rs| can be compared with results in which the equations
of motion for the satellite trajectory are evaluated by lineariz-
ing the reference motion equations D(rr). For an expanded
discussion see References 2 and 7.

Harald Posch was bothered by the symmetry-breaking
demonstrated here because the formal equations for the local
Lyapunov exponents are precisely time-reversible [7]. This
same objection could be made for thermostated open systems.
In the case of steady-state open systems (thermostated shear
flows and heat flows are the simplest examples) the precisely
time-reversible theory shows that the phase-space volume as-
sociated with the flow must either shrink or expand on average.
Because expansion is ruled out (provided the occupied phase
space is bounded) the flow must shrink, with a negative sum
of Lyapunov exponents. Thus, for open systems, a bounded
steady flow implies symmetry breaking [8].

For Hamiltonian systems (such as our shockwave prob-
lem) Liouville’s Theorem implies a vanishing sum of Lya-
punov exponents :

(d ln f/dt) ≡ −
∑

λi ≡ 0 .

The sum includes all 4N exponents in the two-dimensionalN -
particle shockwave problem. The symmetry breaking demon-
strated here closely resembles that found in open systems
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though there is not yet a formal proof of this to provide neces-
sary or sufficient conditions.

Accordingly, the reader may appreciate a physical anal-
ogy. Imagine passengers in a speedy automobile, on a road
with long straightaways and occasional sharp curves. The pas-
sengers are jostled by the curves and recover on the straight-
aways. In this analogy the reference trajectory corresponds
to the auto and the satellite trajectory to the passengers. Thus
the response of the satellite (to the past in the usual forward
time direction), can be quite different if the road is traveled in
the opposite (backward) direction. The delayed response is
reminiscent of Green and Kubo’s linear-response theory.

Dr. Posch suggested to us that a satellite trajectory, just
as the reference trajectory, could be followed with a bit-
reversible algorithm, ruling out any symmetry breaking. The
exponential growth of perturbations rules out this approach.
The time required for the convergence of the Lyapunov vec-
tors is considerably greater than (1/λ1). For the shockwave
problem the local Lyapunov exponents converge visually in a
time of order 10 and to machine accuracy in a time of a few
hundred.

In our earlier work [6] on the shockwave model we sim-
ulated both the reference and the satellite trajectories with
Runge-Kutta integration. The results were similar to those
reported here. But Runge-Kutta calculations could not be
carried to much longer times (of order thousands) with confi-
dence, due to the irreversibility ( a local error of order ∆t5 )
of the Runge-Kutta algorithm. The present bit-reversible al-
gorithm was developed in order to confirm that the results
do converge as the trajectory time between time reversals is
increased. The symmetry breaking is real and the results do
not depend upon the initial choice of the satellite trajectory.
The perfect time symmetry of the bit-reversible reference tra-
jectory makes it plain that the forward and backward local
Lyapunov exponents computed here are equally valid descrip-
tions of the trajectory’s chaos. Evidently these two choices
correspond to the two sets of adjoint covariant vectors recently
described by Kuptsov and Parlitz [9].

We felt the need for simpler Hamiltonian models to il-
lustrate this novel symmetry breaking. Accordingly we have
carried out preliminary simulations, corroborating the symme-
try breaking, by following the motion of a two-dimensional
anharmonic and chaotic diatomic molecule in a gravitational
field and by considering the collision of two relatively-small
37-particle drops. We expect to report on the latter simulations
(for which we can characterize the complete local Lyapunov
spectrum) in the very near future. It is tantalizing to imagine
the insights into irreversible processes which the exploration
of such Hamiltonian symmetry-breaking will soon reveal.

We wish to point out a technical “fly-in-the-ointment”.
Careful investigation reveals that the numerical values of

the local Lyapunov exponents have multifractal distribu-
tions [10, 11]. Thus the exact details of the local Lyapunov
exponents do depend upon the chosen reference trajectory in
a singular way.

As a postscript, the anonymous referee was still unsatis-
fied in January of 2013, leading us to publish this work in
Computational Methods in Science and Technology rather
than the Journal of Physics A (which had the manuscript un-
der inconclusive review for 13 months, as of January 29, 2013,
when we chose to withdraw the manuscript).
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