
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 19(1) ??—?? (2013)

An application of graphical numerical accelerators in simulations
of ion-transport through biological membranes

A. Górecki

Warsaw University of Life Sciences WULS-SGGW,
Nowoursynowska St. 159, 02-787 Warsaw, Poland

E-mail: adam_gorecki@sggw.pl

(Received: 27 October 2012; revised: 20 February 2013; accepted: 21 February 2013; published online: 28 February 2013)

Abstract: The modeling of ion-transport through biological membranes is important for understanding many life processes.
The transmembrane potential and ion concentrations in the stationary state can be measured in in-vivo experiments. They
can also be simulated within membrane models. Here we consider a basic model of ion transport that describes the time
evolution of ion concentrations and potentials through a set of nonlinear ordinary differential equations.
To reduce the computation time I have developed an application for simulation of the ion-flows through a membrane starting
from an ensemble of initial conditions, optimized for a Graphical Processing Unit (GPU). The application has been designed
for the CUDA (Compute Unified Device Architecture) technology. It is written in CUDA C programming language and runs
on NVIDIA TESLA family of numerical accelerators. The calculation speed can be increased almost 1000 times compared
with a sequential program running on the Central Processing Unit (CPU) of a typical PC.
Key words: biological membranes, electrochemistry, differential equations integration, CUDA, TESLA

I. INTRODUCTION

Every living cell has to exchange energy and mass with its
environment in a selective way. An animal cell is surrounded
by a lipid bilayer called as a biological membrane [1]. The
membrane includes special proteins (channels, transporters and
pumps) which enable selective transmission of ions. The ac-
tivity of these transmission devices is controlled by different
factors such as ion concentration, electric fields or the presence
of specific molecules.

Studies on ion-transport through biological membranes are
crucial for understanding the etiology of many diseases. Abnor-
mal ion transport is the cause of many serious health problems
and is responsible for toxicity of many chemicals. For example,
the malfunctioning of cystic fibrosis transmembrane conduc-
tance regulator (CFTR) channel that controls transport of chlo-
rine and bicarbonate ions in bronchial (lungs) epithelial tissue
causes cystic fibrosis [2]. Problems in ion transfer through
nervous cells are observed in some types of epilepsy [3]. The
mechanisms of many poisons or venoms such as charybdo-

toxin [4] or iberiotoxin [5] are based on blocking the activity of
important membrane channels. A recent review of important
protein channels has been presented in [6].

The time evolution of membrane potentials and ion con-
centrations can be modeled using differential equations [7],[8].
The variables of the models (potentials and concentrations)
can also be observed in in-vivo experiments. The comparison
between simulations and experiments allows for optimization
of model parameters to make them more realistic. In this paper
we present results of simulations of transmembrane potential
generated by the epithelial cell monolayer. The calculations are
based on a phenomenological model with a reduced number of
parameters.

Epithelial cells are external cells of organs contacting with
external environment. An epithelial cell membrane consists of
two parts:

• basolateral – contacting with the internal cells of the
organ, and

• apical – contacting with an external environment .

2 A. Górecki

Both parts of the cell membrane are covered by a solvent
which in a biological system is a water solution of ions at
physiological concentrations. The activity of membrane pro-
teins and their selectivity for specific ions define the stationary
state of the system. The bilayer is polarized with membrane
electric potential (so called resting potentials), which stops
effective ion currents. This potential can be measured using
special electrodes.
The most important ions contributing to the membrane trans-
port are:

• potassium K+

• sodium Na+

• chlorine Cl−

• bicarbonate HCO−
3

Fig. 1 The considered model of ion transport in epithelial cell
monolayer. The space around a cell is divided into apical(ap),
basolateral (bl) and cell interior (in) domains

II. THE SIMULATED SYSTEM

The model of the epithelial tissue considered below is illus-
trated in Figure 1. We assume that:

• the concentrations of ions in basolateral and apical re-
gions are constant in time,

• the basolateral area has reference electric potential
ϕbl=0 V.

Within our model the state of the system is fully represented
by the following variables:

• the apical potential ϕap,

• the cell interior potential ϕin,

• the ion concentrations in the cell interior XION,in,
where ION = K+, Na+, Cl−, HCO−

3

The apical potential is equivalent to the transmembrane poten-
tial because we have assumed ϕbl=0 V.
Potentials ϕap,ϕincharacterize the state of two capacitors cre-
ated by apical and basolateral sides of the membrane. The
currents charging these ‘capacitors’ are related to the total
flows of ions of different types. There are many models of ion
flows described in literature, for example [7],[8]. These mod-
els describe time-evolution with ordinary differential equa-
tions. The equations include many parameters characterizing
specific ion-channel activity. If a model contains too many pa-
rameters than usual, it is difficult to find their realistic values.
We proposed our model with a reduced number of parameters:

∂tϕap =

∑
IONS IION (in→ ap)

Cap

+

∑
IONS IION (bl→ in)

Cbl

∂tϕbl =

∑
IONS IION (bl→ in)

Cbl

∂tXION,in =
IION (in→ ap)− IION (bl→ in)

F · zION · V ol

where:

IION (bl→ in) – the electric current (positive
charges flow) measured in
amperes, A, corresponding
to flow of ions type ION
from the basolateral area to
the cell interior,

IION (in→ ap) – the electric current (positive
charges flow) measured in A,
corresponding to flow of ions
type ION from the basolat-
eral area to the cell interior,

Cbl – the basolateral membrane ca-
pacity measured in farads, F,

Cap – the apical membrane capac-
ity measured in F,

zION – the sign of ion type ION, di-
mensionless, zION = ±1
corresponding to ION charge

Vol – the volume of the cell, cubic
meters,

F – the Faraday constant,
F=96500 C/mol.

An application of graphical numerical accelerators in simulations of ion-transport through biological membranes 3

The currents of ions are given by equations:

IION (bl→ in) = GION,bl · (−ϕin

− ϕNernst(T, zION , XION,bl, XION,in))

IION (in→ ap) = GION,ap · (ϕap − ϕin

− ϕNernst(T, zION , XION,in, XION,ap))

where:
ϕNernst(T, zION , XION,src, XION,trg) is the Nernst equi-
librium potential for ION and flow direction of src trg, where
src and trg denote source and target compartments of space.
In the considered case both src and trg can mean apical (ap),
cell interior (in), or basolateral (bl) areas.
GION,ap, GION,bl are effective electric permeabilities (recip-
rocal resistance measured in reciprocal ohms, Ω−1) of the
apical and basolateral side of membrane, respectively.
The positive value of IION (src→ trg) means non-zero cur-
rent of positive charges from src to trg.
The Nernst resting potential [9] is defined as:

ϕNernst(T, zION , XION,src, XION,trg) =

=− RT

FzION
· ln
(
XION,src

XION,trg

)
where T is the temperature of solvent.
When the potential difference between the sides of membrane
src, trg is equal to Nernst potential, there is no effective cur-
rent of ion of type ION.

III. IMPLEMENTATION

The simulation program is written in CUDA C language and
designed to work on NVIDIA TESLA family of graphical
accelerators [10].
The general idea of our approach is to perform the same op-
erations on different data in parallel: it is a so called Single
Instruction Multiple Data approach. For our applications (the
same algorithm, many data sets, small amount of required
operational memory) we need many instances of simple scalar
calculations. The NVIDIA GPU accelerator is perfectly suited
for such a task, because we can perform separate simulations
on different cores. In our application the GPU accelerator
works as a computer farm executing separate instances of the
same program, so we have not used advanced CUDA environ-
ment features, such as dedicated numerical libraries or texture
processing. In the considered problem the maximum speedup
is expected if the number of separate tasks does not exceed the
maximum number of threads allowed to run in parallel. The
graphical illustration of subsequent operations executed on
the host PC and on the TESLA GPU accelerator is presented
in Figure 2. The operations are marked with the same number
that is used in the comments on the attached source code. The
source code includes three files:

1. main.cu – the main program code containing the int
main(int argc,char **argv) function called by oper-
ating system, and controlling communication between
host PC and GPU accelerator

2. my_defs.h – header file with data type definitions,

3. kernel.cu – parallel code of computations executed
as multiple GPU threads.

The program starts on the host PC CPU (step 1), with alloca-
tion of the input and output data arrays in the host computer
memory (2). Next, copies of input and output data arrays are
allocated in GPU accelerator memory (3). This is done by call-
ing the cudaMalloc function from the CUDA library. The
input arrays are filled with data on the host computer (4) and
the data are transferred (5) into GPU using the cudaMemcpy
function. Before GPU computation starts, the threads have
to be synchronized using the cudaThreadSynchronize
function (6).

The individual parallel tasks are launched on separated
GPU threads using the

myKernel<<<dimGrid,dimBlock>>>\\
(data_gpu_in, data_gpu_out,no_of_records);

instruction (7). Here myKernel is the name of the func-
tion called in parallel on the GPU accelerator in many
copies. A slow data transfer between the host computer
and the GPU accelerator is a bottleneck of the data pro-
cessing. In order to achieve the best performance myKer-
nel refers to the data arrays allocated on the GPU acceler-
ator (data_gpu_in, data_gpu_out) instead of using
original arrays in the host computer memory (data_in,
data_out). GPU threads in our code are enumerated
with 4-dimensional index:(blockIdx.x , blockIdx.y,
threadIdx.x, threadIdx.y). The dimGrid describes
the maximum values of blockIdx.x and blockIdx.y.
The dimBlock sets the maximum values of threadIdx.x
and threadIdx.y. The myKernel function maps the 4-
dimensional thread index into one dimensional index of input
data array using the following formula:

int index = (gridDim.x*blockDim.x*blockDim.y)

*blockIdx.y + (gridDim.x*blockDim.x)

*threadIdx.y + blockDim.x*blockIdx.x+
threadIdx.x;

If the index does not exceed the size of the input array, then
myKernel launches the computations for the corresponding
element of data_gpu_in array. Otherwise, the thread remains
idle.
The numerical integration of differential equations is calcu-
lated on GPU with a forth-order Runge-Kutta integration
scheme [11] (see the code of the calc_evolution func-
tion). After completing the required number of time steps
the final values of intermembrane potentials are written into
the data_gpu_out array on the GPU accelerator. Thread
synchronization (9) is required before collecting data obtained

4 A. Górecki

Every non idle thread accesses
single data_gpu_in element
of index <index>,
then performs nsteps
of Runge-Kutta forth order
integration scheme,
then stores data corresponding
element of data_gpu_out array.

data_in

data_out

data_gpu_in

data_gpu_out

(10) copying calculation results
back to host memory

No of threads > no of data recordsN
so some threads remains idle.

(11) Saving data to file

data_out

(7) Starting GPU threads
executing calculation kernel

(Host process waits for GPU threads)

(1) Program start - OS calls main function:
int main(int argc, char **argv)

Device: operations on TESLA GPU coresHost: operations on main CPU of host PC

data_gpu_in

data_gpu_out

(2) Allocating arrays for input
and output data in host memory:

(3) Allocating analogous arrays
for input and output
in TESLA accelerator memory:

Device:Host:
data_in

data_out

length(data_in) = length(data_out) = length(data_gpu_in) = length(data_gpu_out) = no of data records N

(4) Initializing input data Device:Host:

(5) Copying input data
to TESLA memory

data_in

data_out

data_gpu_in

data_gpu_out

Device:Host:

(6) Threads synchronization Device:Host:

Device:Host:

Device:
Host:

(8) Calculations on GPU threads

(9) Threads synchronization Device:Host:

Host: Device:

Host: Device:

index

0

0

N-1

N-1

index

data_gpu_in

data_gpu_out

Fig. 2 GPU optimization of multiple identical scalar calculations for different initial data. The most important numerations
are numbered. The same enumeration is used in source code comments. The host process reads initial data and parameters,
distributes these values in the GPU device memory, and launches appropriate number of GPU device threads. Each GPU
thread performs simulation for a single initial data set.

An application of graphical numerical accelerators in simulations of ion-transport through biological membranes 5

on different threads. The results are copied back to the host
memory with the cudaMemcpy function (10) and the results
are saved to an output file (11).

IV. RESULTS

The example results illustrating potential ϕap-ϕin between
the apical side and the cell interior are shown in Figures 3-
9. The calculated potential can be considered as a function
of four variables – concentrations of ions K+, Na+, Cl−,
HCO−

3 at apical side:
φap − φin = f(XK+,ap, XNa+,ap, XCl−,ap, XHCO−

3 ;ap;

other parameters), where other parameters are fixed parame-
ters of the system (for example ion permeabilities).

6 8 10 12 14

K+ apical concentration [mM]

Apical membrane Voltage [V]

20

40

60

80

100

120

140

N
a+

 a
pi

ca
l c

on
ce

nt
ra

tio
n

[m
M

]

Fig. 3 The potential between cell interior and apical side as
a function of concentrations of K+ and Na+ ions at apical
side. Concentrations of Cl−, HCO−

3 remains constant and are
equal: XCl−,ap=100 mM, XHCO−

3 ,ap=24 mM.

We have calculated this potential on slices of this 4-
dimensional space corresponding to a selected pair of con-

centration varying, with the remaining ion concentrations
constant. Figures 3-8 show contour plots of potentials values
of the six available slices. All the slices contain common
point
XK+,ap=10 mM, XNa+,ap=100 mM
XCl−,ap=100 mM, XHCO−

3 ,ap=24 mM,
with the potential value ϕap-ϕin = -0.048 V.
Figure 9 shows the isosurface plot of the mentioned poten-
tial as a function of 3 variables: concentrations of K+, Na+,
Cl− ions, with concentration of HCO3treated as a constant
parameter XHCO−

3 ,ap=24 mM.

Tab. 1 Membrane flow model parameters used to obtain results
shown in Figures 3-9.

Parameter Value Unit
Simulated ion concentrations at apical side
XK+−,ap 5-15, step 1 mM
XNa+,ap 10-140, step 10 mM
XCl−,ap 10-140, step 10 mM
XHCO−

3 ,ap 20-28, step 1 mM
Common reference point of simulated ion concentra-
tions at apical side
XK+−,ap 10 mM
XNa+,ap 100 mM
XCl−,ap 100 mM
XHCO−

3 ,ap 24 mM
Initial ion concentrations in cell interior
XK+,in 100 mM
XNa+,in 10 mM
XCl−,in 10 mM
XHCO−

3 ,in 20 mM
Temperature
T 300 K
Apical side permeability (reciprocal resistance)
GK+,ap 5 ·10−4 Ω−1

GNa+,ap 5 · 10−6 Ω−1

GCl−,ap 5 · 10−5 Ω−1

GHCO−
3 ,ap 5 · 10−5 Ω−1

Apical side capacity
Cap 10−6 F
Cell volume
V ol 10−9 m3

Over 20 different values of each concentration were used
to make a plot, see Table 1. As we can see, potassium ions
have the biggest contribution to the mentioned potential value,
as a result of big permeability of membrane ions used in our
simulation. The effective permeability of membrane for K+

ions was selected 100 times bigger than for Na+ ions, and 10

6 A. Górecki

times bigger than for Cl− and HCO3
−. The average time of

calculations on NVIDIA TESLA C870 graphics accelerator
was about 3 seconds, compared to about 40 minutes for a
scalar computation and the program compiled by Free Pascal
Compiler on AMD Athlon 2 GHz. The GPU-optimized ver-
sion of the program was tested on a PC with Intel Pentium D
940 3.2 GHz 64-bit processor and the TESLA C870 acceler-
ator installed. Other tests were done on hosts with different
types of CPU. They have shown that the host CPU has no
influence on the execution time of the listed program because
all numerical operations were performed on the TESLA card.
The host processor controlled only input/output operations.
I have obtained a speed improvement of the order of 1000
compared to the scalar program. Such speed-up is related
to the large number of independent kernels as well as better
computational performance and communication with local
memory of NVIDIA GPU cores compared to conventional
CPU. I have performed speed scalability tests on the TESLA
C1060 accelerator that allows for double precision for floating
point variables. Figure 10 shows the total execution time of
the GPU optimized program as a function of the number of
calculated records (measured by the time command line tool).
In this example the range of input Na+ and K+ concentrations
was identical whereas the densities of probing were differ-
ent. The number of time simulation steps for all records was
constant and equal to 10000. As we can see, the calculation
times are almost equal if the number of points does not exceed
4000. If the number of records is larger the time is growing
linearly. It is the result of limit for the GPU threads running
simultaneously on one TESLA C1060 accelerator.

20 40 60 80 100 120 140

Na+ apical concentration [mM]

Apical membrane Voltage [V]

20

22

24

26

28

H
C

O
3-

 a
pi

ca
l c

on
ce

nt
ra

tio
n

[m
M

]

Fig. 4 The potential between cell interior and apical side as a
function of concentrations of Na+ and HCO3

− ions at apical
side. Concentrations of K+, Cl− remains constant and equal
XK+,ap=10 mM, XCl−,ap=100 mM.

20 40 60 80 100 120 140

Na+ apical concentration [mM]

Apical membrane Voltage [V]

20

40

60

80

100

120

140

C
l-

ap
ic

al
 c

on
ce

nt
ra

tio
n

[m
M

]

Fig. 5 The potential between cell interior and apical side as a
function of concentrations of Na+ and Cl− ions at apical side.
Concentrations of K+, HCO3

− remains constant and equal
XK+,ap=10 mM, XHCO3−,ap=24 mM.

6 8 10 12 14

K+ apical concentration [mM]

Apical membrane Voltage [V]

20

40

60

80

100

120

140

C
l-

ap
ic

al
 c

on
ce

nt
ra

tio
n

[m
M

]

Fig. 6 The potential between cell interior and apical side as a
function of concentrations of K+ and Cl− ions at apical side.
Concentrations of Na+, HCO3

− remains constant and equal
XNa+,ap=100 mM, XHCO3−,ap=24 mM.

An application of graphical numerical accelerators in simulations of ion-transport through biological membranes 7

6 8 10 12 14

K+ apical concentration [mM]

Apical membrane Voltage [V]

20

21

22

23

24

25

26

27

28

H
C

O
3-

 a
pi

ca
l c

on
ce

nt
ra

tio
n

[m
M

]

Fig. 7 The potential between cell interior and apical side as a
function of concentrations of K+ and HCO3

− ions at apical
side. Concentrations of Na+, Cl− remains constant and equal
XNa+,ap=100 mM, XCl−,ap=100 mM.

20 40 60 80 100 120 140

Cl- apical concentration [mM]

Apical membrane Voltage [V]

20

21

22

23

24

25

26

27

28

H
C

O
3-

 a
pi

ca
l c

on
ce

nt
ra

tio
n

[m
M

]

Fig. 8 The potential between cell interior and apical side as a
function of concentrations of Cl− and HCO3

− ions at apical
side. Concentrations of K+, Na+ remains constant and equal
XCl−,ap=100 mM, XHCO3−,ap=24 mM.

Fig. 9 the isosurface plot of potential between cell interior and
apical side as a function of concentrations of k+, na+and cl−

ions at apical side. three isosurfaces of ϕap-ϕin potential val-
ues corresponding to -0.050 v (blue, bottom), -0.045 v (green,
middle) and -0.040 v (red, top) are shown. concentrations of
hco3

− remains constant and equal xhco3−,ap=24 mm.

0 4000 8000 12000 16000

Number of calculated records

0

4

8

12

16

20

T
o

ta
l
p

ro
g
ra

m
 e

x
e
c
u

ti
o

n
 t

im
e

 [
s
]

11 x 14 = 154 points: time = 3.05s

101 x 14 = 1414 points: time = 3.36 s

101 x 27 =2727 points: time = 4.33 s

101 x 66 = 6666 points: time = 8.63 s

101 x 131 = 13231 points: time = 16.2 s

Fig. 10 Tests of scalability of calculations on the TESLA
C1060 accelerator with double precision

8 A. Górecki

V. CONCLUSIONS

We have developed a tool for modeling membrane ion flows
working on NVIDIA graphics accelerators. The program in-
creases the speed of calculations over 1000 times if compared
with our previous approach running on a scalar CPU.

Our GPU program may be very useful for membrane model
parameterization and its experimental verification. Thanks to
its speed we can optimize model parameters like membrane
permeabilities and capacities using a large number of exper-
imental data. Moreover, the code can be easily modified to

other forms of differentials equations.
The model reported above treats the membrane as a single
entity without focusing on particular ion channels. It can be
easily generalized for a specific type membrane by modifica-
tion of IION (src → trg) terms. We can consider different
current-voltage characteristics of specific protein channels by
selecting an appropriate IION (src→ trg) term form.
The speed achieved on GPU accelerators seems to be suffi-
cient for the non-local model of membrane transport. In such
models channels of different types are spatially distributed on
the membranes and the equilibration process involves local
currents flowing inside the cell.

Acknowledgments

The work was supported by the Ministry of Science and Higher Education Grant No 1828/B/PO1/2010/39.

References

[1] L. Stryer, Biochemistry. W. H. Freeman, StateplaceNew York, 1981.
[2] D. C. Gadsby, P. Vergani, L. Csanády, The ABC protein turned chloride channel whose failure causes cystic fibrosis.

Nature 7083, 477–83 (2006).
[3] I. Scheffer, S. Berkovic, Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical

phenotypes. Brain 120, 479–90 (1997).
[4] S. A. Goldstein, C. Miller, Mechanism of charybdotoxin block of a voltage gated K+ channel. Biophysical Journal 65,

1613–1619 (1993).
[5] S. Candia, M. L. Garcia, R. Latorre, Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-

activated K+ channel.Biophysical Journal 63, 583–590 (1992).
[6] R. Toczylowska-Maminska, K. Dolowy, Ion transporting proteins of human bronchial epithelium. Journal of Cellular

Biochemistry 113, 426-432 (2012).
[7] C. V. Falkenberg, E. Jakobsson, A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the

Human Bronchial Epithelium. Biophysical Journal 98,1476–1485 (2010).
[8] Y. Sohma, M. A. Gray, Y. Imai, B. E. Argent, HCO3

− Transport in a Mathematical Model of the Pancreatic Ductal
Epithelium. Journal of Membrane Biology 176,77–100 (2000).

[9] S. H. Wright, Generation of resting membrane potential.Advances in Physiology Education 28, 139-142 (2004).
[10] NVIDIA corporation, 2012. CUDA C Programming Guide Available from: http://developer.NVIDIA.com/

NVIDIA-gpu-computing-documentation Accesed: Jul 11, 2012
[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, chapter 16.1 in Numerical Recipes in C: The Art of

Scientific Computing, Cambridge University Press, 1993.

SUPPLEMENTARY MATERIALS

Listing 1 Listing of source file main.cu
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <time.h>
#include <string.h>

#include <cutil_inline.h>

#include "my_defs.h"

using namespace std;

///////////////////////
// Data configuration

An application of graphical numerical accelerators in simulations of ion-transport through biological membranes 9

///////////////////////
// DATA_N - number of independent data records
const int DATA_N = 100000;

// Input data size in bytes
const int DATA_SZ = DATA_N * sizeof(InputData);

// Output data size in bytes
const int RESULT_SZ = DATA_N * sizeof(OutputData);

//Ion concentrations in mM (milimoles/litre)
//K = K+, Na = Na+, Cl = Cl-, Bi = HCO_3-
// ap - apical, in - cell interior, bl -

basolateral
const double K_in = 140.;
const double K_bl = 5.;

const double Na_in = 5.;
const double Na_bl = 140.;

const double Cl_ap = 110.;
const double Cl_in = 10.;
const double Cl_bl = 110.;
const double Bi_ap = 24.;
const double Bi_in = 20.;
const double Bi_bl = 24.;

// Selected ion concentration are varying in some
range

// Here variables are K+ and Na+ on apical side
const double K_ap_begin = 5.;
const double K_ap_end = 15.;
const double K_ap_step = 0.1;

const double Na_ap_begin = 10.;
const double Na_ap_end = 140.;
const double Na_ap_step = 1.;

const double T = 300.; // K, temperature

const double dt = 1.e-3; // time step
const double nsteps = 10000; // no of steps

///////////////////////
// (1) OS calls main function: int main(int argc,

char **argv)
///////////////////////
int main(int argc, char **argv){

InputData *data_in, *data_gpu_in;
OutputData *data_out, *data_gpu_out;

int i= 0;
// (2) Allocating arrays for input and output

data in host memory:
printf("...allocating CPU memory.\n");
data_in = (InputData *)malloc(DATA_SZ);
data_out = (OutputData *)malloc(RESULT_SZ)

;
// (3) Allocating analogous arrays for input and

output in TESLA accelerator memory:

printf("...allocating GPU memory.\n");
cudaMalloc((void **)&data_gpu_in, DATA_SZ);
cudaMalloc((void **)&data_gpu_out, RESULT_SZ);

printf("...generating input data in CPU mem.\n
");

for(i = 0; i < DATA_N; i++){
data_in[i].initialized = false;

}

i = 0;
// (4) Initializing input data

for(double K_ap_var = K_ap_begin;
K_ap_var <= K_ap_end;

K_ap_var += K_ap_step) {
for(double Na_ap_var = Na_ap_begin;

Na_ap_var <= Na_ap_end;
Na_ap_var += Na_ap_step) {
if (i >= DATA_N) break;
data_in[i].initialized = true;

data_in[i].K_ap = K_ap_var;
data_in[i].K_in = K_in;
data_in[i].K_bl = K_bl;
data_in[i].Na_ap = Na_ap_var;
data_in[i].Na_in = Na_in;
data_in[i].Na_bl = Na_bl;
data_in[i].Cl_ap = Cl_ap;
data_in[i].Cl_in = Cl_in;
data_in[i].Cl_bl = Cl_bl;
data_in[i].Bi_ap = Bi_ap;
data_in[i].Bi_in = Bi_in;
data_in[i].Bi_bl = Bi_bl;

data_in[i].T = T;
data_in[i].tmax = tmax;
data_in[i].dt = dt;
data_in[i].nsteps = nsteps;

i++;
}

}

int no_of_records = i;

//

printf("...copying input data to GPU mem.\n");
cudaMemcpy(data_gpu_in, data_in, DATA_SZ,

cudaMemcpyHostToDevice);
printf("Data init done.\n");

dim3 dimBlock(8, 8);
dim3 dimGrid(16, 16);

printf("Executing GPU kernel...\n");
//

cudaThreadSynchronize() ;
//
myKernel<<<dimGrid, dimBlock>>>(data_gpu_in,

data_gpu_out, no_of_records);
cudaThreadSynchronize();

printf("Reading back GPU result...\n");
//
cudaMemcpy(data_out, data_gpu_out, RESULT_SZ,

cudaMemcpyDeviceToHost);

10 A. Górecki

printf("Shutting down...\n");

cudaFree(data_gpu_in);
cudaFree(data_gpu_out);

//
ofstream outfile("results.txt");

outfile << "# K_ap Na_ap V_ap-V_in V_ap
V_in" << endl;

for(int j=0; j< DATA_N; j++) {
if (data_in[j].initialized) {

outfile
<< data_in[j].K_ap
<< " "
<< data_in[j].Na_ap
<< " "
<< data_out[j].V_ap - data_out[j].V_in
<< " "
<< data_out[j].V_ap
<< " "
<< data_out[j].V_in

<< endl;
}

}
outfile.flush();
outfile.close();
free(data_in);
free(data_out);
cudaThreadExit();

}

Listing 2 Listing of source file my_defs.h
typedef struct {
bool initialized;
double K_ap,K_in,K_bl;
double Na_ap,Na_in,Na_bl;
double Cl_ap,Cl_in,Cl_bl;
double Bi_ap,Bi_in,Bi_bl;
double T;
double tmax;
int nsteps;
double dt;

} InputData;

typedef struct {
double V_ap,V_in;
double tfin;
bool calculated;

} OutputData;

__global__ void myKernel(InputData *data_in,
OutputData *data_out, int elementN);

Listing 3 Listing of source file kernel.cu
#include "my_defs.h"

// number of independent variables of the model
const int NVARS = 14;
const double Faraday = 9.65e+4; //{ C/mol,

Faraday constant }
const double R = 8.31; //{ J/(mol*K), gas constant

}

typedef struct {
double T;

} Params;

// helper inline function for calculating the
Nernst potential

// __device__ means that the function can be
launched only from GPU

inline __device__ double V_Nernst(double T, int
z_ion, double c_Source, double c_Target)

{
return -R*T/Faraday/z_ion * log((c_Source/

c_Target));
}

// declaration of function processing single data
record

__device__ void calc_evolution(const InputData&
data_in, OutputData& data_out, double* y,
double* y_fin);

// declaration of function calculating derivatives
(right sides of equation)

inline __device__ void four_ions_flow(double t,
double *y,
Params& params,
double *yprime);

// declaration of the calculation kernel
// __global__ attribute means that this function

can be launched from host PC
// in multiple instances on GPU accelerator

threads
__global__ void myKernel(
InputData *data_in,
OutputData *data_out,
int elementN)

{
// Single GPU thread obtains single input data

record
// - element of data_in array of index

determined by variable index.
// The following formula defines unique mapping

of multidimensional thread index
// (blockIdx.x,blockIdx.y,threadIdx.x,threadIdx.

y)
// to array index:
int index = (gridDim.x*blockDim.x*blockDim.y)*

blockIdx.y
+ (gridDim.x*blockDim.x)*threadIdx.y
+ blockDim.x*blockIdx.x
+ threadIdx.x;

// The results of calculations will be stored in
element of data_out array

// of index determined by variable index.

double y[NVARS],y_fin[NVARS];

data_out[index].calculated = true;

// (8) If the number of threads is greater than
number of data records,

// some threads remain idle
if (index<elementN) {
// selected threads will process data_in[index

] to data_out[index]
calc_evolution(data_in[index], data_out[index

], y, y_fin);

An application of graphical numerical accelerators in simulations of ion-transport through biological membranes 11

}

}

// definition of calc_evolution function
__device__ void calc_evolution(const InputData&

data_in, OutputData& data_out,
double* y, double*

y_fin)
{
// additional validating if data record was

initialized
if (! data_in.initialized) return;

Params params;
params.T = data_in.T;
int nsteps = data_in.nsteps;
double dt = data_in.dt;

double y_aux[NVARS]; // auxiliary arrays for
Runge-Kutta algorithm

double a[NVARS];
double b[NVARS];
double c[NVARS];
double d[NVARS];

// Model variables - initial values (time = 0 s)
y[0] = 0.0f; // Electric potential of cell

interior V_in
y[1] = 0.0f; // Electric potential of apical

side V_ap
y[2] = data_in.K_ap; // Ion concentrations
y[3] = data_in.K_in;
y[4] = data_in.K_bl;
y[5] = data_in.Na_ap;
y[6] = data_in.Na_in;
y[7] = data_in.Na_bl;
y[8] = data_in.Cl_ap;
y[9] = data_in.Cl_in;
y[10] = data_in.Cl_bl;
y[11] = data_in.Bi_ap;
y[12] = data_in.Bi_in;
y[13] = data_in.Bi_bl;

double t=0;
// performing nsteps of time simulations
for(int i = 0 ; i < nsteps; i++) {

// implementation of 4th order Runge-Kutta
(RK4) integration

t = t + dt;
four_ions_flow(t, y, params, a); //{ a = fp(x,

y) }
for(int j=0; j<NVARS; j++) {

a[j] *= dt;
}

for(int j=0; j<NVARS; j++) {
y_aux[j] = y[j] + 0.5*a[j];

}

four_ions_flow(t + dt/2, y_aux, params, b); //
{ b = fp(x + dt / 2, y + a / 2);}

for(int j=0; j<NVARS; j++) {
b[j] *= dt;

}

for(int j=0; j<NVARS; j++) {

y_aux[j] = y[j] + 0.5*b[j];
}

four_ions_flow(t + dt/2, y_aux, params, c); //
{ c = dt * fp(x + dt / 2, y + b / 2);}

for(int j=0; j<NVARS; j++) {
c[j] *= dt;

}

for(int j=0; j<NVARS; j++) {
y_aux[j] = y[j] + c[j];

}

four_ions_flow(t + dt, y_aux, params, d); //{
d = fp(x, y + c); }

for(int j=0; j<NVARS; j++) {
d[j] *= dt;

}

for(int j=0; j<NVARS; j++) {
y[j] = y[j] + a[j]/6. + b[j]/3. + c[j]/3.

+ d[j]/6.;
}

}

// collecting interesting variable values after
simulation

data_out.V_ap = y[0];
data_out.V_in = y[1];
data_out.tfin = t;
data_out.calculated = true;

}

// definition of function calculating derivatives
inline __device__ void four_ions_flow(double t,

double *y, Params& params, double *yprime) {
// Some model parameters are hardcoded, but it

is easy to move them to params record
// Membrane permeabilities for selected ions
const double G_K_ap = 5.e-6; //{ S/cm^2}
const double G_Na_ap = 5.e-8; //{ S/cm^2}
const double G_Cl_ap = 5.e-7; //{ S/cm^2}
const double G_Bi_ap = 5.e-7; //{ S/cm^2}

const double G_K_bl = 5.e-6; //{ S/cm^2}
const double G_Na_bl = 5.e-8; //{ S/cm^2}
const double G_Cl_bl = 5.e-7; //{ S/cm^2}
const double G_Bi_bl = 5.e-7; //{ S/cm^2}

// Membrane areas
const double S_ap = 1.; //{cm^2}
const double S_bl = 10.; //{cm^2}

#include "my_defs.h"

// number of independent variables of the model
const int NVARS = 14;
const double Faraday = 9.65e+4; //{ C/mol,

Faraday constant }
const double R = 8.31; //{ J/(mol*K), gas constant

}

typedef struct {
double T;

} Params;

12 A. Górecki

// helper inline function for calculating the
Nernst potential

// __device__ means that the function can be
launched only from GPU

inline __device__ double V_Nernst(double T, int
z_ion, double c_Source, double c_Target)

{
return -R*T/Faraday/z_ion * log((c_Source/

c_Target));
}

// declaration of function processing single data
record

__device__ void calc_evolution(const InputData&
data_in, OutputData& data_out, double* y,
double* y_fin);

// declaration of function calculating derivatives
(right sides of equation)

inline __device__ void four_ions_flow(double t,
double *y,
Params& params,
double *yprime);

// declaration of the calculation kernel
// __global__ attribute means that this function

can be launched from host PC
// in multiple instances on GPU accelerator

threads
__global__ void myKernel(
InputData *data_in,
OutputData *data_out,
int elementN)

{
// Single GPU thread obtains single input data

record
// - element of data_in array of index

determined by variable index.
// The following formula defines unique mapping

of multidimensional thread index
// (blockIdx.x,blockIdx.y,threadIdx.x,threadIdx.

y)
// to array index:
int index = (gridDim.x*blockDim.x*blockDim.y)*

blockIdx.y
+ (gridDim.x*blockDim.x)*threadIdx.y
+ blockDim.x*blockIdx.x
+ threadIdx.x;

// The results of calculations will be stored in
element of data_out array

// of index determined by variable index.

double y[NVARS],y_fin[NVARS];

data_out[index].calculated = true;

// (8) If the number of threads is greater than
number of data records,

// some threads remain idle
if (index<elementN) {
// selected threads will process data_in[index

] to data_out[index]
calc_evolution(data_in[index], data_out[index

], y, y_fin);
}

}

// definition of calc_evolution function
__device__ void calc_evolution(const InputData&

data_in, OutputData& data_out,
double* y, double*

y_fin)
{
// additional validating if data record was

initialized
if (! data_in.initialized) return;

Params params;
params.T = data_in.T;
int nsteps = data_in.nsteps;
double dt = data_in.dt;

double y_aux[NVARS]; // auxiliary arrays for
Runge-Kutta algorithm

double a[NVARS];
double b[NVARS];
double c[NVARS];
double d[NVARS];

// Model variables - initial values (time = 0 s)
y[0] = 0.0f; // Electric potential of cell

interior V_in
y[1] = 0.0f; // Electric potential of apical

side V_ap
y[2] = data_in.K_ap; // Ion concentrations
y[3] = data_in.K_in;
y[4] = data_in.K_bl;
y[5] = data_in.Na_ap;
y[6] = data_in.Na_in;
y[7] = data_in.Na_bl;
y[8] = data_in.Cl_ap;
y[9] = data_in.Cl_in;
y[10] = data_in.Cl_bl;
y[11] = data_in.Bi_ap;
y[12] = data_in.Bi_in;
y[13] = data_in.Bi_bl;

double t=0;
// performing nsteps of time simulations
for(int i = 0 ; i < nsteps; i++) {

// implementation of 4th order Runge-Kutta
(RK4) integration

t = t + dt;
four_ions_flow(t, y, params, a); //{ a = fp(x,

y) }
for(int j=0; j<NVARS; j++) {

a[j] *= dt;
}

for(int j=0; j<NVARS; j++) {
y_aux[j] = y[j] + 0.5*a[j];

}

four_ions_flow(t + dt/2, y_aux, params, b); //
{ b = fp(x + dt / 2, y + a / 2);}

for(int j=0; j<NVARS; j++) {
b[j] *= dt;

}

for(int j=0; j<NVARS; j++) {
y_aux[j] = y[j] + 0.5*b[j];

}

An application of graphical numerical accelerators in simulations of ion-transport through biological membranes 13

four_ions_flow(t + dt/2, y_aux, params, c); //
{ c = dt * fp(x + dt / 2, y + b / 2);}

for(int j=0; j<NVARS; j++) {
c[j] *= dt;

}

for(int j=0; j<NVARS; j++) {
y_aux[j] = y[j] + c[j];

}

four_ions_flow(t + dt, y_aux, params, d); //{
d = fp(x, y + c); }

for(int j=0; j<NVARS; j++) {
d[j] *= dt;

}

for(int j=0; j<NVARS; j++) {
y[j] = y[j] + a[j]/6. + b[j]/3. + c[j]/3.

+ d[j]/6.;
}

}

// collecting interesting variable values after
simulation

data_out.V_ap = y[0];
data_out.V_in = y[1];
data_out.tfin = t;
data_out.calculated = true;

}

// definition of function calculating derivatives
inline __device__ void four_ions_flow(double t,

double *y, Params& params, double *yprime) {
// Some model parameters are hardcoded, but it

is easy to move them to params record
// Membrane permeabilities for selected ions
const double G_K_ap = 5.e-6; //{ S/cm^2}
const double G_Na_ap = 5.e-8; //{ S/cm^2}
const double G_Cl_ap = 5.e-7; //{ S/cm^2}
const double G_Bi_ap = 5.e-7; //{ S/cm^2}

const double G_K_bl = 5.e-6; //{ S/cm^2}
const double G_Na_bl = 5.e-8; //{ S/cm^2}
const double G_Cl_bl = 5.e-7; //{ S/cm^2}
const double G_Bi_bl = 5.e-7; //{ S/cm^2}

// Membrane areas
const double S_ap = 1.; //{cm^2}
const double S_bl = 10.; //{cm^2}

// Membrane capacities per area unit
const double c_ap = 1.; //{uF/cm^2}
const double c_bl = 1.; //{uF/cm^2}
// Volume of cell layer
const double Vol = 1.e-9; //{m^3}
// Ion signs (charges in elementary charge e

units)
const int z_K = 1;
const int z_Na = 1;
const int z_Cl = -1;
const int z_Bi = -1;

double Temp, phi_ap, phi_in ;

double K_ap,K_in,K_bl,Na_ap,Na_in,Na_bl;
double Cl_ap,Cl_in,Cl_bl,Bi_ap,Bi_in,Bi_bl;

double J_K_in2ap,J_Na_in2ap,J_Cl_in2ap,
J_Bi_in2ap;

double J_K_bl2in,J_Na_bl2in,J_Cl_bl2in,
J_Bi_bl2in;

double delta_phi_in2ap,delta_phi_bl2in;

Temp = params.T;

phi_ap = y[0];
phi_in = y[1];

K_ap = y[2];
K_in = y[3];
K_bl = y[4];
Na_ap = y[5];
Na_in = y[6];
Na_bl = y[7];
Cl_ap = y[8];
Cl_in = y[9];
Cl_bl = y[10];
Bi_ap = y[11];
Bi_in = y[12];
Bi_bl = y[13];

//Calculation of ion current from cell interior
to apical side, In -> Ap}

J_K_in2ap = S_ap*G_K_ap *(phi_in-phi_ap -
V_Nernst(Temp,z_K, K_in,K_ap));

J_Na_in2ap = S_ap*G_Na_ap*(phi_in-phi_ap -
V_Nernst(Temp,z_Na, Na_in,Na_ap));

J_Cl_in2ap = S_ap*G_Cl_ap*(phi_in-phi_ap -
V_Nernst(Temp,z_Cl, Cl_in,Cl_ap));

J_Bi_in2ap = S_ap*G_Bi_ap*(phi_in-phi_ap -
V_Nernst(Temp,z_Bi, Bi_in,Bi_ap));

//Calculation of ion current from basolateral
side to cell interior , Bl -> In}

J_K_bl2in = S_bl*G_K_bl *(-phi_in - V_Nernst(
Temp,z_K, K_bl,K_in));

J_Na_bl2in = S_bl*G_Na_bl*(-phi_in - V_Nernst(
Temp,z_Na, Na_bl,Na_in));

J_Cl_bl2in = S_bl*G_Cl_bl*(-phi_in - V_Nernst(
Temp,z_Cl, Cl_bl,Cl_in));

J_Bi_bl2in = S_bl*G_Bi_bl*(-phi_in - V_Nernst(
Temp,z_Bi, Bi_bl,Bi_in));

// Ion flow causes change of charging states of
membrane

// (charging of capacitors); 1.e6 coefficient
due to c_ap in microfarads

delta_phi_in2ap = 1.e6*(J_K_in2ap+J_Na_in2ap+
J_Cl_in2ap+J_Bi_in2ap)/S_ap/c_ap;

delta_phi_bl2in = 1.e6*(J_K_bl2in+J_Na_bl2in+
J_Cl_bl2in+J_Bi_bl2in)/S_bl/c_bl;

// Vbl = 0 V (reference potential)
// Vap = potential on basolateral membrane +

potential on apical membrane
yprime[0] = delta_phi_in2ap + delta_phi_bl2in;
// Vin = potential on basolateral membrane
yprime[1] = delta_phi_bl2in;

// Ion concentrations speed - only concentration
in cell interior are changing

// (we are assuming infinite volume of apical
and basolateral side)

// K+
yprime[2] = 0.; // Ap, apical side

14 A. Górecki

yprime[3] = (J_K_bl2in - J_K_in2ap)/Faraday/z_K/
Vol; // In, cell Interior

yprime[4] = 0.; // Bl, basolateral side

// Na+
yprime[5] = 0.; // Ap, apical side
yprime[6] = (J_Na_bl2in - J_Na_in2ap)/Faraday/

z_Na/Vol; // In, cell Interior
yprime[7] = 0.; // Bl, basolateral side

// Cl-

yprime[8] = 0.; // Ap, apical side
yprime[9] = (J_Cl_bl2in - J_Cl_in2ap)/Faraday/

z_Cl/Vol; // In, cell Interior
yprime[10] = 0.; // Bl, basolateral side

// HCO_3-
yprime[11] = 0.; // Ap, apical side
yprime[12] = (J_Bi_bl2in - J_Bi_in2ap)/Faraday/

z_Bi/Vol; // In, cell Interior
yprime[13] = 0.; // Bl, basolateral side

}

Adam Górecki, Ph.D., was born in Warsaw, Poland in 1978. He studied physics
at the Faculty of Physics, Warsaw University, where he received his M.Sc. degree
in theoretical physics in 2002. In the years 2002-2008 he was a PhD student at the
Division of Biophysics, Institute for Experimental Physics, Warsaw University and
received the degree in computational biophysics in 2008. He is an assistant professor
at the Department of Physics, Faculty of Wood Technology, Warsaw University for
Life Sciences -SGGW (http://kf.sggw.pl) since October 2010. He is interested in
applications of computational methods of biophysics. His present fields of research are
numerical models of biological membranes and CUDA programming.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 19(1) ??—?? (2013)

