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Abstract: The present work investigates the propagation of harmonic plane waves in an isotropic and homogeneous 
elastic medium that is rotating with uniform angular velocity by employing the two-temperature generalized 
thermoelasticity, recently introduced by Youssef (IMA Journal of Applied Mathematics, 71, 383-390, 2006). Dispersion 
relation solutions for longitudinal as well as transverse plane waves are obtained analytically. Asymptotic expressions of 
several important characterizations of the wave fields, such as phase velocity, specific loss, penetration depth, amplitude 
coefficient factor and phase shift of thermodynamic temperature are obtained for high frequency as well as low 
frequency values. A critical value of the two-temperature parameter for the low frequency case is obtained. Using 
Mathematica, numerical values of the wave fields at intermediate values of frequency and for various values of the two-
temperature parameter are computed. A detailed analysis of the effects of rotation on the plane wave is presented on the 
basis of analytical and numerical results. An in-depth comparative analysis of our results with the corresponding results 
of the special cases of absence of rotation of the body and with the case of generalized thermoelasticity is also presented. 
The most significant points are highlighted. 
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 I. INTRODUCTION 
 

A lot of attention has been paid in recent years to the 
theory of thermoelasticity with two-temperatures. It must 
be recalled that this theory was first formulated by Chen 
and Gurtin [1] and Chen et al. [2] and it proposes that the 
heat conduction on a deformable body depends upon two 
different temperatures: the conductive temperature and the 
thermodynamic temperature, the difference between these 
two-temperatures being proportional to the heat supply. In 
the absence of heat supply the two-temperatures are equal 
for the time-independent situation. However, for time-
dependent cases, these two temperatures are in general 
different, regardless of the heat supply [2]. Prior to this, 

Gurtin and Willium [3] pointed out that “there are no 
a priori grounds for assuming that the second law of 
thermodynamics for continuous bodies involves only 
a single temperature and that it is more logical to assume 
a second law in which the entropy contribution due to heat-
conduction is governed by one temperature, and that of the 
heat supply by another”. They assumed the Clausius-Duhem 
inequality (second law of thermodynamics) in the form 

 

. ,
B B B

d q n rsdv dA dv
dt ϕ θ∂

≥ − +∫ ∫ ∫   

where q is the heat flux vector, r is the heat supplied per 
unit volume from an external source, s is the entropy per 
unit volume, ϕ  is the conductive temperature and θ is the 
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thermodynamic temperature. The key element that makes 
this theory different from the classical theory of 
thermoelasticity is the material parameter α (> 0) and in the 
limiting case when 0, ,α ϕ θ→ →  so that this theory redu-
ces to the classical theory. The uniqueness and reciprocity 
theorems for the two-temperature thermoelasticity theory 
[2] in case of a homogeneous and isotropic solid are given 
by Iesan [4]. Subsequently, several investigations (see 
Warren and Chen [5], Warren [6], Amos [7], Chakrabarti 
[8], Ting [9], Colton and Wimp [10] and the references 
therein) have been pursued by employing the linearized 
version of this theory. This two-temperature thermo-
elasticity theory, also known as 2TT is being revisited once 
again during the last few years. The existence, structural 
stability, convergence and spatial behavior in 2TT have 
been discussed in detail by Quintanilla [11]. The propaga-
tion of harmonic plane waves in the same theory is 
discussed by Puri and Jordan [12]. Youssef [13] has 
introduced the modification of 2TT in the form of two 
generalized thermoelasticity theories, namely Lord-Shul-
man theory [14] and the Green-Lindsay theory [15], by 
introducing thermal relaxation parameters into the govern-
ing equations. Magana and Quintanilla [16] studied the 
uniqueness and growth of solutions for the equations under 
Youssef’s theory [13]. Several research works [17-27] have 
been carried out very recently on the basis of this theory 
and indicated some significant features of the theory. 

In the present work we propose to investigate the 
propagation of harmonic plane waves in an infinite rotating 
elastic medium under the theory proposed by Youssef [13]. 
It is worth mentioning that the propagation of harmonic 
plane waves in elastic medium have been the subject of 
interest for several years due to its great applications in 
engineering science. Chadwick and Sneddon [28] and 
Chadwick [29] studied the propagation of plane waves in 
classical thermoelasticity. The propagation of plane waves 
in the context of generalized thermoelasticity with one 
relaxation time introduced by Lord and Shulman [14] is 
discussed by Nayfeh and Nemat-Nasser [30] and later on 
by Puri [31]. The propagation and stability of harmonically 
time-dependent thermoelastic plane waves in temperature-
rate-dependent thermoelasticity theory developed by Green 
and Lindsay [15] is reported by Agarwal [32]. Investigation 
on plane waves in the context of the thermoelasticity theory 
without energy dissipation (Green–Naghdi [33]) is discus-
sed by Chandrasekharaiah [34]. In a recent work, Puri and 
Jordan [35] have investigated the propagation of plane 
waves in the context of the GN-III thermoelasticity theory 
[36]. Wave propagation in an infinite rotating elastic solid 
medium was investigated by Schenberg and Censor [37] 
and later on by several other researchers like Puri [38], 

Chandrasekharaiah and Srikantiah [39], Roychoudhuri 
[40], Roychoudhuri and Bandyopadhyay [41], Chandrasek-
haraiah [42, 43], Othman [44], Auriault [45], Sharma and 
Othman [46].  

In the present work, we consider a homogeneous and 
isotropic rotating elastic medium and employ the linear 
theory of two-temperature generalized thermoelasticity. 
After obtaining the dispersion relation solutions of both the 
longitudinal and transverse plane waves, we find the 
asymptotic expansions of several qualitative characteriza-
tions of the wave fields, such as phase velocity, specific 
loss, penetration depth, amplitude coefficient factor and 
phase shift of the thermodynamic temperature for the high 
and low frequency values. It should be mentioned here that 
in earlier studies concerning plane waves only the behavior 
of the phase velocity, specific loss, penetration depth, etc., 
are discussed on the basis of the asymptotic expressions for 
the high and low frequency values. However, being 
motivated by the work reported by Puri and Jordan [12] we 
also make an attempt to observe the behavior of the above-
mentioned quantities for intermediate values of frequency 
with the help of computational work. For this, the nume-
rical values of wave characterizations for intermediate 
values of frequency and for various values of rotational 
angle are computed, and the analytical results are exa-
mined. The results are shown in several graphs. A detailed 
analysis of the results highlighting the effects of rotation on 
various wave fields is presented. The basic differences in 
the behavior of wave characterizations under generalized 
thermoelasticity reported by Lord and Shulman [14] and 
the two-temperature generalized thermoelasticity introdu-
ced by Youssef [13] are highlighted in a detailed way, 
which have not been investigated till date.  
 
 

II.  BASIC  GOVERNING  EQUATIONS  
AND  PROBLEM  FORMULATION 

 
We consider a linear homogeneous isotropic thermally 

conducting elastic medium that is rotating uniformly with 
the angular velocity 0Ω ,Ω p=  where p is the unit vector 
that represents the direction of the axis of rotation. The 
displacement equation of motion in the rotating frame of 
reference involves two additional terms: the centripetal 
acceleration ( )× ×Ω Ω u due to the time-varying motion 
only and the coriolis acceleration 2 × ,Ω u  where u is the 
displacement vector. The equations governing the displace-
ment and thermal fields in the absence of body forces and 
heat sources under the two-temperature generalized thermo-
elasticity theory (Youssef [13]) with usual indicial nota-
tions are therefore taken as follows:  
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Stress-strain temperature relations:  

  2 .ij kk ij ij ije eσ λ δ μ γθδ= + −   (1)  

Strain-displacement relations: 

  ( ), ,
1 .
2ij i j j ie u u= +    (2) 

Heat conduction equation without heat source: 

 
2 2

, 1 0 12 2 .ii E kkK c e
t tt t
θ θϕ ρ τ γ ϕ τ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂= + + +⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠
  (3) 

The stress equation of motion in a rotating medium 
without body force: 

  
( ) ( )

( )

2

2 .

λ μ μ γ θ

ρ

+ ⋅ + − =

= ⎡ ⎤⎣ ⎦

u u

u +Ω× Ω× u + Ω× u

∇ ∇ ∇∇

  
(4) 

The thermodynamic temperature, θ  is related to the 
conductive temperature, ϕ  as 

  .ϕ θ α ϕ2− = ∇   (5)  

In the above set of Eqs. (1-5), u is the component of 
displacement vector, ijσ  and ije

 
are the

 
components of 

stress tensor, and strain tensor, respectively. θ and ,ϕ  
respectively, are the thermodynamic temperature and 
conductive temperature measured from a constant reference 
temperature 0.ϕ  ,λ μ  are Lame’s elastic constants, ρ is the 
mass density, K is thermal conductivity of the material, 1τ  
is the thermal relaxation parameter and Ec  is the specific 
heat at constant strain. γ  = ( )3 2 ,tλ μ α+  where tα  is the 
coefficient of linear thermal expansion. The comma nota-
tion is used to represent the partial derivatives with respect 
to the space variables, the over-headed dots denote partial 
derivative with respect to time variable, t and the bold 
faced notations are used to denote the vector quantities. 

0,α >  (a scalar), is the two-temperature parameter.  
Now, using Eq. (5), we write the equation of motion (4) 

in the form  

  
( ) ( ) ( )

( ) 2 .

λ μ μ γ ϕ α ϕ

ρ

2+ ⋅ + − − ∇ =

= ⎡ ⎤⎣ ⎦

u u

+Ω× Ω×u + Ω×u

∇ ∇ ∇2∇

u
  (6) 

      From Eqs. (3) and (5), we get  

( )

2
2

1 2

2

1 0 1 2

E

E

K c
t t

c
t t

αρ τ ϕ

ρ ϕ τ ϕ γϕ τ

⎡ ⎤⎛ ⎞∂ ∂+ + ∇ =⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞∂ ∂= + + + ⋅⎜ ⎟∂ ∂⎝ ⎠

u∇

  (7) 

Now, we use the following dimensionless quantities 
and notations: 

2 2
0 1 0 1 0

0
, , , ' ,x c x c t c t ϕη τ ητ η ϕ

ϕ
′ ′ ′= = = = 0' ,u c uη=  

( )2
0

2
,c

λ μ
ρ
+

=  ,Ec
K

ρη =  2
0

,
c η
ΩΩ = ( )

0
1 ,

2
a γϕ

λ μ
=

+
  

2 = ,a
K
γ
η

2 2
0 ,cα η α′ =   1 ,

2
μμ

λ μ
=

+ 1 11 .λ μ= −  

Equations (6) and (7) then transform to the dimension-
less forms (after dropping the primes for convenience) as  

  
( ) ( )

( )
1 1 1

2 ,

aλ μ ϕ α ϕ2⋅ + − − ∇ =

=

u u

u +Ω× Ω×u + Ω×u

∇ ∇ ∇2∇
  (8) 

  

2
2

1 2

2 2

1 2 12 2

1

.

t t

a
t tt t

α τ ϕ

τ ϕ τ

⎡ ⎤⎛ ⎞∂ ∂+ + ∇ =⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂= + + + ⋅⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠

u∇

  (9)  

 
 

III.  PLANE  HARMONIC  WAVES  SOLUTIONS  
AND  DISPERSION  RELATIONS 

 
In order to study the propagation of plane harmonic 

waves, the solutions of Eqs. (8) and (9) are assumed in the 
form 

  
( ) ( ) ( ), , exp ,b i t xϕ ω η= − ⋅⎡ ⎤⎣ ⎦nu a

 
 (10)  

where , ba are arbitrary constants not both zero, ω  is the 
dimensionless angular frequency, η  is the wave number of 
the wave and n  is the unit vector along the direction of 
propagation of the wave. ω  is assumed to be a positive 
real and ,,b ηa  are allowed to be complex. In order to 
ensure the bounded amplitudes, Im[ ] 0η ≤  must hold.  

Substituting (10) into the Eqs. (8) and (9), we get 

  
( ) ( )

( ) ( ) ( )
2 2 2 2

0 1 1

2
12 1 ,i ia b

ω μ η η

ω η

λ

αη

+ Ω −

⋅ − × = −

− ⋅ +

− +Ω Ω Ω a

a a n n

a n
  (11) 

 
( ) ( )

( ) ( )

2 2 2
1

2 1

1

1 .

i b

a i

η αη ω τ ω

ηω τ ω

⎡ ⎤− + + − + =⎣ ⎦
= +⋅a n   

(12)  

Here, 0Ω = Ω  is the magnitude of Ω.  We note that if 
0,=a  then Eq. (11) yields 0,b =  but a  and b both cannot 

vanish together for the waves of the desired type to occur. 
Therefore, we take a  to be a non-zero vector. Now we 
will analyze purely shear waves and purely dilatational 
waves on the basis of Eqs. (11) and (12). 
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Case 1: Shear waves 

For purely shear waves, we have 0,⋅ =a n  and Eqs. 
(11) and (12) become 

 
( ) ( ) ( )

( )2

2 2 2
0 1

1

2

1 ,

i

ia b

ω μ η ω

η αη

+ Ω − ⋅ − ×

= − +

− Ω Ω Ω aa a

n
  (13)  

 
( ) ( )2 2 2

11 0.i bαη ω τ ω η⎡ ⎤+ − + − =⎣ ⎦   (14) 

From Eq. (14) it is evident that the thermal field is 
uncoupled with purely shear waves. Taking a scalar pro-
duct with a  of Eq. (13), we obtain the following secular 
equation for purely elastic shear waves in the presence of 
the rotation of the body: 

  2 2
1 0,ω μ ηΓ − =   (15)  

where 2 21 sin withq φΓ = +
2

2 0
2 ,q

ω
Ω=    (16) 

and φ  is the angle between the directions of Ω  and .u  In 
the absence of the rotation of the body, i.e., when 0 0,Ω =  
the Eq. (15) reduces to that which holds in the case of a 
non-rotating body. We further find that when the axis of 
the rotation of the body is aligned with the direction of the 
displacement vector, i.e., when 0φ =  or ,π  Eq. (15) be-
comes identical to the corresponding equation of the non-
rotating body and thus no effect of rotation will be 
observed in this case.  

The positive root of Eq. (15) is given by  

 
s

1
.η ω

μ
Γ=   (17) 

Therefore the phase velocity of shear wave is given by 

  
[ ]

1 .
ReS

s
V ω μ

η
= =

Γ
  

(18)

 

 

Equation (17) clearly indicates that due to rotation of 
the body, the velocity of shear wave reduces by factor .Γ   
 
Case 2: Dilatational waves 

For purely dilatational waves u  and n  have the same 
directions, so that a⋅a n = where a = a  In this case, Eqs. 
(11) and (12), on taking the scalar product with ,n  become 

  ( ) ( )2 2
1

21 0,a ia bω η η αηΓ − + + =   (19) 

 

( )
( ) ( )

2 1

2 2 2
1

1

1 0

a i a

i b

ηω τ ω

η αη ω τ ω

+ +

⎡ ⎤− − + + − + =⎣ ⎦ ,  (20) 

where
 
Γ  is given by Eq. (16).

 

Equations (19) and (20) clearly imply that the thermal 
field is coupled with the elastic dilatational wave.  

For a non-trivial solution, the determinant of the coeffi-
cient matrix in the above system of Eqs. (19) and (20) must 
be zero, i.e. 

( )
( ) ( ) ( )

2 2 2
1

2 2 2
2 1 1

1
0.

1 1

ia

a i i

ω η η αη

ηω τ ω αη ω τ ω η

Γ − +
=

+ − + − + +   
(21) 

Therefore, we have a bi-quadratic dispersion relation  

 

( )
( ) { }

( )

4 2
1

2 2 4 2 3
1 1

4 3
1

1

0.

h i h

h i h

i

η ω τ α ωα

η ω ω τ α ω τ ω ω α

ω τ ω

− + +

⎡ ⎤− − Γ + − − Γ +⎣ ⎦

+ − Γ =
  

(22) 

   On setting /Z η ω=  and simplifying, Eq. (22) reduces to
 
 

 ( ) ( )
( )

4 2
1

2 2 2
1 1

1

1

1

0.

Z h i h

Z h i h

i

ω τ α ωα

ω ω τ α ωτ ω α

ω ωτ

⎡ ⎤− + +⎣ ⎦
⎡ ⎤− Γ − + − − Γ +⎣ ⎦

+ Γ − =
  

(23) 

Now, multiplying the above equation throughout by 
( )2

11 ,h i hω τ α ωα⎡ ⎤− +⎣ ⎦  we arrive at the simplified form of 
the following dispersion relation equation for dilatational

 waves in a rotating body in the context of the two-
temperature generalized thermoelasticity theory: 

 

( ) [ ]

( )

24 2 4 2
1 1

2 2 4
1 1

1

0,

Z A h Z P iQ

h h i

ω ω τ α

τ α ω τ α ω ω

⎡ ⎤+ + − − +⎣ ⎦
⎡ ⎤+ Γ − − − =⎣ ⎦

  
(24) 

where we have used the notations 

 ( )23 5
2 3 1 ,P A A hω ω τ α ω= + + Γ

  

 
2 ,Q h αε ω= + Γ 1 2 ,a aε = 1 ,h ε= +  

( )2
1 12 ,A h hα ατ= −  2

2 1 ,A h hτ α= Γ + −  

( ) ( )2 2
3 1 11A h h hατ α τ α= −Γ + − + Γ . 

 
 

IV.  EXPRESSIONS  FOR  ATTENUATION 
COEFFICIENT  AND  WAVE  NUMBER 

 
 The roots of Eq. (22) can be obtained as 1η±  and 2 ,η±  
where 

  ( ) ( ) ( )
( )

2
21,2

1,2 22 4
1 12 1

P iQ D
Z

A h

η ω
ω ω ω τ α

− ±
= =

⎡ ⎤+ +⎣ ⎦  

 (25) 
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with 

( ) ( )( )
( ) ( )( )

( ) ( ) ( ){ }
( ) ( ){ } ( ) ( )

2 2 2
2 1

2 2 4
2 3 1 1 1

2 2 2 2 6
3 2 1 1 1 1 1

2 3 4 28 4 10
3 1 1 1

Re 2 4

2 4 4

2 4 4

2 2

D h A h h

A A h A h

A A h A h h h

A h h h

ω αε τ α ω

αε τ α τ α ω

τ α τ α τ α τ α ω

ω τ α τ α τ α ω

= − + − Γ − − Γ +⎡ ⎤⎣ ⎦

+ − Γ + Γ − Γ − +

+ + + Γ + − Γ +

+ Γ + Γ + Γ
 

and  

    

( ) ( )
( )

( )( )

2
3

2 3 1

2 5 2 3 7
3 1 1

Im[ ] 2 4

2 2 4

2 2 2 .

D A h

A A h A

A h h

ω ω

αε ω

α ε τ α ω τ α ε ω

= − + Γ +

+ − Γ − + Γ +

+ − Γ + Γ − Γ
 

Now, out of the four roots of η  as given by Eq. (24) or 
(25), we are interested in only those two roots which have 
negative imaginary parts, as only these two roots yield the 
negative values of the decay coefficient, Im[ ]η  for the 
desired waves. These two roots can be obtained from Eq. 
(25) and by employing the theorem of complex analysis 
(see Ref. [47]). These two roots correspond to two different 
modes of the dilatational wave. One of these is pre-
dominately elastic and the other is predominately thermal 
in nature. Let the value of η  associated with the former 
one be denoted by 1η  and the other one by 2.η  It should be 
mentioned here that in the absence of rotation (i.e., when 

0 0),Ω =  the dispersion relation (23) reduces to the cor-
responding relation as reported by Kumar and Mukho-
padhyay [24]. Furthermore, when 0φ =  or ,π  this 
equation becomes identical with the dispersion relation 
obtained by Kumar and Mukhopadhyay [24]. If we assume 

1 0τ =  and 0 0,Ω =  then the reduced dispersion relation 
corresponds to the relation under the two-temperature 
thermoelasticity theory without any relaxation parameter 
and it is obtained by Puri and Jordan [12]. 

 
 
 

V.  THERMODYNAMIC  TEMPERATURE: 
MODULUS  AND  ARGUMENT 

 
Using Eqs. (10) and (5), we can write the thermodyna-

mic temperature as 

  
( ) ( )2

2

, (1 ) exp

(1 ) ( , ) exp( ) ( , ),

x t b i t x

x t M i x t

θ αη ω η

αη ϕ ψ ϕ

= + − ⋅ =⎡ ⎤⎣ ⎦

= + =

n
  (26)

 

where
 

21 ,M αη= +  ( )2Arg 1 .ψ αη= +  
Here, .  and [ ]Arg .  denote the modulus and the 

principal value of the argument, respectively, of a complex 
quantity. 

We assume  

 
2

, 1,21E TM αη= +
 
and ( )2

, 1,2Arg 1 .E Tψ αη= +
  

(27) 

Therefore EM and ,Eψ  respectively, can be termed as 
the amplitude coefficient factor and the phase-shift of the 
elastic mode dilatational wave associated with the thermo-
dynamic temperature. TM  and ,Tψ  respectively, are the 
amplitude coefficient factor and the phase-shift associated 
with the thermal mode dilatational wave for the thermo-
dynamic temperature. 

 
 

VI.  ANALYTICAL  RESULTS 
 

In this section, two different cases which correspond to 
the waves of small frequency and waves of high frequency 
will be considered to analyze two different dilatational 
waves as mentioned above. In order to analyze the effects 
of rotation on both waves, we consider the important 
quantities, like phase velocity, specific loss, and penetra-
tion depth which are of importance in the study of harmo-
nic plane waves. The phase velocity, specific loss, and 
penetration depth for elastic mode and thermal mode 
dilatational wave are given by  

  , 1,2
1,2ReE TV V ω

η
= =

⎡ ⎤⎣ ⎦
,  

 

1,2

, 1,2 1,2

Im
4

ReE T

W W
W W

η
π

η
⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞ ⎣ ⎦= =⎜ ⎟ ⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎝ ⎠ ⎣ ⎦

  

and ,
1,2

1 ,
ImE Tδ

η
=

⎡ ⎤⎣ ⎦  

 respectively [12].   (28-30) 

In the above formulae, ,EV  ( )/ EW WΔ and Eδ  denote 
the phase velocity, specific loss, and penetration depth, 
respectively associated with the elastic mode dilatational 
wave and ,TV  ( )/ TW WΔ

 
and Tδ  denote the phase veloci-

ty, specific loss, and penetration depth, respectively asso-
ciated with the thermal mode dilatational wave.  

 
1. High frequency asymptotics  

We consider 1ω >> . Therefore expanding the expres-
sions for 1,2η  from Eq. (25) in powers of 1ω−

 and 
neglecting the higher powers for smallness, we obtain, after 
a long and straight forward algebraic manipulations, the 
asymptotic expressions for 1,η  2η  and the quantities as 
defined by Eqs. (27)-(30) as follows: 
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(a) For the elastic mode dilatational wave 

 

1
1 2 2 3

1 1
1 1 ,

22 2
i

h hh h
ε ε τ εη ω

ατ α ω τ α ω
⎡ ⎤Γ ⎛ ⎞≈ − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
  

 
2

1
1 ,

2E
hV

h
ε

τ α ω
⎡ ⎤

≈ +⎢ ⎥Γ ⎣ ⎦   

1
3 2 2

1 1

2 1 1 ,
22E

W
W hh h

πε ε τ ε
αω τ α τ α ω

⎛ ⎞Δ⎛ ⎞ ⎛ ⎞≈ + −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠  

 

2 2 3/2
1 12 1 ,

2E
h

h
ω τ α τ εδ

αε
⎛ ⎞

≈ +⎜ ⎟Γ ⎝ ⎠
  (31-36) 

2

2
1

11 ,E
hM

h h
α ω ε

α τ αω
⎡ ⎤⎛ ⎞Γ≈ + −⎢ ⎥⎜ ⎟Γ⎝ ⎠⎣ ⎦

 
 0,Eψ →  

  

 ( ).ω → ∞
 
 (b) For the thermal mode dilatational wave: 

 

1/22 3

2 3 2 2
11 1

2 2
11

1 1 1 2 3

1 2 31 ,
2

hh

i
h

ε εη
τ αα ω τ α τ

ε
τ αω τ

⎡ ⎡ ⎤⎛ ⎞ ⎛ ⎞− +⎢ ⎢ ⎥≈ + − +⎜ ⎟ ⎜ ⎟⎢ ⎢ ⎥Γ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣
⎤⎡ ⎤⎛ ⎞+− − − ⎥⎢ ⎥⎜ ⎟
⎥⎢ ⎥⎝ ⎠⎣ ⎦⎦

  

( ) ( )
1/22 3

4
2 2
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( ).ω → ∞  

2. Low-frequency asymptotics 
We consider 1.ω <<  Then expanding the expressions 

for 1,2η  from Eq. (25) in powers of ω  and neglecting the 
higher powers for smallness, we obtain, after a long but 
straight forward algebraic manipulations, the asymptotic 
expansions for 1,2η

 
and for different wave characterizations 

of elastic mode and thermal mode dilatational wave as 
defined by Eqs. (27)-(30) for the case of

 
low frequency 

values as follows: 
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is obtained as the critical value of 

the two-temperature parameter .α  Clearly, the critical va-
lue depends on the thermoelastic coupling constant as well 
as the magnitude of rotation. 

 
 

VII.  NUMERICAL  RESULTS 
 

Now, in order to examine the behavior of phase 
velocity, specific loss, penetration depth, amplitude 
coefficient factor and phase shift of the thermodynamic 
temperature due to rotation for intermediate values of 
frequency and to illustrate the asymptotic results obtained 
in the previous section, we carry out computational work 
by using the computational tool, Mathematica. We 
assume  = 0.0168 ε (Puri and Jordan [12]) and we consider 
the case when the frequency of motion is equal to the 
rotational frequency of the body, i.e., we take 1.q =  Using 
the formulae given by (27)-(30), we compute the values 
of the quantities directly from Eq. (25) for various values 
of frequency, ω and the rotational angle, ( . ., fori eφ  

0, / 4, /2).φ π π= For the purpose of examining the 
influence of the critical value of the two-temperature 
parameter on the wave fields, we compute the values of the 
wave characterizations for various values of two-tempera-
ture parameter, namely 0, *α α α= = and α = 0.071301. 
Clearly, the case when 0α = corresponds to the case under 
the generalized thermoelasticity theory (Lord-Shulman 
theory) and the analytical results for this case are discussed 
by Puri [38] and Chandrasekharaiah and Srikantiah [39]. 
The cases when 0α ≠ correspond to the case under two-
temperature generalized thermoelasticity. We have plotted 
the results in different figures. In all the figures, the solid 
lines, the dashed line and the dotted lines represent the 
variations for 0,φ =  /4φ π=

 
and /2,φ π=

  
respectively. 

The thick black lines, thin black lines and the gray lines 
show the nature of variations for the cases when 

0, *α α α= = and 0.071301,α =  respectively.  
 

Phase Velocity 

Figures 1(a-f) display the variation of phase velocity of 
the elastic mode and thermal mode dilatational waves with 

respect to ω for different values of two-temperature para-
meter and for different values of .φ

 
Figs. 1(a-c) reveal that 

the variation of phase velocity of the elastic mode wave 
( EV ) is affected by the variation of .α  This implies that 

EV  shows a different behavior under generalized thermo-
elasticity (Lord-Shulman model) as compared to two-
temperature generalized thermoelasticity (Youssef-model). 
Although under both theories EV  shows constant limiting 
values when 0ω →  as well as whenω → ∞  and the 
limiting values being the same when 0ω → , but they are 
different when .ω → ∞  Furthermore, this field shows two 
stationary values (one minimum value followed by one 
maximum) under the Youssef-model, whereas under the 
Lord-Shulman model no such stationary value is observed. 
In the absence of rotation, a similar behavior was observed 
by Puri and Jordan [12] under the two-temperature 
thermoelasticity theory and by Kumar and Mukhopadhyay 
[24] under the two-temperature generalized thermo-
elasticity theory (Youssef-model). The effect of rotation on 
this wave field is very much pronounced in all cases. The 
phase velocity decreases with the increase of angle of 
rotation .φ  For both the high and low frequency values the 
limiting values of EV  is /h Γ which is clearly influenced 
by rotation. This is in complete agreement with our theore-
tical results (see Eqs. (32, 44)).  

The effect of rotation on the thermal mode dilatational 
wave is depicted in Figs. 1(d-f) which indicate that the 
effect of rotation on phase velocity of thermal mode wave 
is significant for the case when *α α=  as compared to the 
other two cases. Moreover, the effect of rotation is more 
prominent for lower frequency values (see Figs. 1(c, d)). It 
is clear from these figures that this wave field is an 
increasing function of ω under the Youssef-model (i.e., 
for 0.071301 and ),α α α∗= =  whereas it reaches to a con-
stant limiting value as ω → ∞  under the Lord- Shulman 
model (see Fig. 1(f)). This fact is in agreement with the 
analytical prediction given by (38). 
 
Specific Loss 

       Figures 2(a, b) display the variation of specific loss of 
the elastic mode wave. A significant difference between the 
specific loss profiles under the Youssef-model and those 
under the Lord- Shulman model is observed from these two 
figures. In the former case, three stationary values, two 
maxima separated by one minimum, are met. However, in 
the later case, only two stationary values, one maximum 
and one minimum, are seen for all values of rotational 
term. A similar behavior is reported for the case of a non-
rotating body under the two-temperature thermoelasticity 
theory as well as under the Youssef-model as described by 
Puri and Jordan [12] and by Kumar and Mukhopadhyay  
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[24], respectively. For low frequency values, the effect of 
rotation is pronounced for all three values of ,α  but for 
high frequency values the effect is negligible in the case 

when 0.071301.α =  Specific loss decreases with the in-
crease of angle .φ  In the case when α α∗=  a similar trend 
of variation of specific loss with φ  is observed for high
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Fig. 1(a). VE vs. ω for φ = 0 
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Fig. 1(c).

 

VE vs. ω for φ = π/2 

 

 

Fig. 1(d). VE vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 
dotted line for φ = π/2 
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Fig. 1(e). VT vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 
dotted line for φ = π/2 

 

Fig. 1(f). VT vs. ω for α = 0. Solid line for φ = 0; dashed line for 
φ = π/4; dotted line for φ = π/2 (all lines merged together) 
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Fig. 2(a). (ΔW/W)E vs. ω: Solid line for φ = 0; dashed line for  

φ = π/4; dotted line for φ = π/2 
 
 

Fig. 2(b). (ΔW/W)E vs. ω: Solid line for φ = 0; dashed line for 
φ = π/4; dotted line for φ = π/2 
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Fig. 2(c). (ΔW/W)T vs. ω: Solid line for φ = 0; dashed line for 

φ = π/4; dotted line for φ = π/2 
 
 

Fig. 2(d). (ΔW/W)T vs. ω: Solid line for φ = 0; dashed line for 
φ = π/4; dotted line for φ = π/2 
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Fig. 3(a). δE vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 
dotted line for φ = π/2 

 

Fig. 3(b). δE vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 
dotted line for φ = π/2 

 
 

and low frequency ranges. However, the trend is reversed 
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Fig. 3(c). δΤ vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 
dotted line for φ = π/2 

 
 

Fig. 3(d). δΤ vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 
dotted line for φ = π/2 
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Fig. 4(a). ΜΤ vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 

dotted line for φ = π/2 
 
 

Fig. 4(b). ΜΤ vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 
dotted line for φ = π/2 
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Fig. 4(c). ΨΤ vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 

dotted line for φ = π/2 
 

Fig. 4(d). ΨΤ vs. ω: Solid line for φ = 0; dashed line for φ = π/4; 
dotted line for φ = π/2 

 

 
rapidly approaches to zero as compared to the other two 
cases. The nature of specific of the thermal mode wave can 
be observed in Fig. 2(c,d) which indicates that the effect of 

rotation on specific loss of the thermal mode dilatational 
wave is significant for α α∗= but it is negligible in other 
two cases. It is clear from the theoretical as well as 
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numerical results (see Eq. (39) and Fig. 2(c,d)) that this 
field is an increasing function of ω under two-temperature 
generalized thermoelasticity. However, it shows a constant 
limiting value under the Lord-Shulman theory (see Puri 
[38] and Chadrasekharaiah and Srikantiah [39]). 
 
Penetration Depth 

The variation of penetration depth profile of elastic 
mode wave is displayed in Figs. 3(a, b). From these figures 
we note that the effect of rotation on this wave field is very 
much pronounced for all three values of .α  A significant 
difference between the results predicted by the Lord-
Shulman model and the Youssef-model is observed for this 
profile, too. It approaches to infinity asω → ∞  under two-
temperature thermoelasticity. However, in the context of 
the Lord-Shulman theory it decreases rapidly and 
approaches to its constant limiting value which is depen-
dent on the rotational term. Moreover, the penetration 
depth increases with the increase of rotational angle under 
the Lord-Shulman theory, whereas under the Youssef  
theory (for α = 0.071301), the opposite is true. This is in 
complete agreement with our theoretical result given by 
Eq. (34) and the result as reported by Puri [38] and 
Chadrasekharaiah and Srikantiah [39]. 

Figures 3(c,d) shows that the penetration depth, like 
other two wave fields, related to the thermal mode 
dilatational wave is affected due to rotation only in the case 
when .α α∗=  Under both theories, this field decreases 
rapidly and finally reaches its limiting values as ω → ∞  
(see Eq. (40)). 

 
Amplitude coefficient factor and phase shift 

Variations of the amplitude coefficient factor and phase 
shift profiles ( ,TM  Tψ ) of the thermal mode dilatational 
wave associated with thermodynamic temperature with ω  
are depicted in Figs. 4(a-c) which reveal a prominent effect 
of rotation on both profiles only for the case when α α∗=  
and the effect is more significant for low frequency values. 
The value decreases as the angle of rotation decreases. 
Furthermore, Figs. 4(a-c) indicate that ,TM b b< which 
implies that

 
the thermodynamic temperature exhibits a less-

er magnitude as compared to conductive temperature and it 
has a phase shift 0Tψ <  where lim Tω

ψ π
→∞

= −  (see Eq. 
(42) and Fig. 4(d)).  

 
 

VIII.  CONCLUSIONS 
 
Harmonic plane waves propagating in a rotating elastic 

medium under two-temperature thermoelasticity with the 

thermal relaxation parameter are investigated. The trans-
verse wave is observed to be unaffected due to thermal 
field where as the dilatational wave is coupled with the 
thermal field. Analytical expressions for high and low 
frequency asymptotics for different wave characterizations 
for longitudinal elastic (predominated) and thermal waves 
(predominated) are found out. The numerical values of 
these wave fields for intermediate values of frequency and 
for various values of rotational term are computed. 
Detailed analysis of the results highlighting the effects of 
rotation on the waves propagating inside the medium is 
presented on different graphs. An analysis concerning the 
differences in the results predicted by the two-temperature 
generalized thermoelasticity theory (Youssef-theory) as 
compared to the generalized thermoelasticity theory (Lord-
Shulman theory) is also presented. We summarize the 
following important facts: 
1. All waves are dispersive in nature. 
2. There exists a critical value of two-temperature para-

meter α  given by 2 3
1* ( )/h hα ε τ= Γ +

 
and

 
this critical 

value clearly depends on the thermoelastic coupling 
constant, thermal relaxation parameter as well as the 
two-temperature parameter and it is influenced by 
rotation.  

3. The wave characterizations show qualitatively different 
behavior under the Youssef-theory as compared to the 
Lord-Shulman theory. 

4. Effects of rotation on shear wave and elastic mode 
dilatational wave is very much prominent for all three 
values of .α   

5. Phase velocity decreases and the specific loss increases 
with the increase of the angle between the axis of rota-
tion and the displacement vector.  

6. The penetration depth related to the elastic mode 
dilatational wave approaches to infinity asω → ∞  and 
it shows a minimum value under the Youssef-theory. 
However, it decreases rapidly and approaches to its 
constant limiting value under the Lord-Shulman theory. 
The effect of rotation is pronounced in all cases. Due to 
the increase of rotational angle, the penetration depth 
increases under the Lord-Shulman theory, where as 
opposite is true under the Youssef-theory.  

7. The wave fields corresponding to the thermal mode 
longitudinal wave is not effected significantly due to 
rotation for the cases when *.α α≠  However, all the 
wave fields are affected significantly due to rotation for 
the case when *.α α=  The effect is more prominent 
for lower values of frequency. 

8. The thermodynamic temperature θ  exhibits a lesser 
magnitude as compared to the conductive temperature 
and it experiences a negative phase shift.

 
Both the 
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amplitude coefficient factor and the phase shift related 
to the thermal mode wave is affected due to rotation 
only for critical value of the two-temperature para-
meter. 
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