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I.  INTRODUCTION 
 
 Heart rate variability is usually studied through the 
analysis of numerical descriptors such as the spectral power in 
various frequency bands, descriptors of the Poincaré plot, 
nonlinear indices related to dynamical systems analysis, such 
as the correlation dimension, Lyapunov exponents or various 
kinds of entropy, or indices describing the complexity of 
strings which are the result of mapping the RR-time series 
onto a string consisting of a finite number of symbols as in the 
various approaches to symbolic dynamics [1-5]. 
 All the above are not always immediately under-
standable to a medical expert without an extensive 
mathematical preparation. However, one of the methods 
mentioned, namely the Poincaré plot, has also a visual 
aspect. The Poincaré plot forms a visual summary of the 
length of cardiac cycles time series derived from an ECG 
recording (or any other variable), which can be analysed by 
inspection and interpreted. 
 The cloud of points which forms the plot may cor-
respond to ECG recordings of various lengths – from 5 mi-
nutes to 24 hours, and possibly longer. The Poincaré plots 

constructed from longer recordings are sometimes difficult 
to interpret. Since there are thousands of points in the 
plotting area, there is a lot of overlap and the fine aspects 
of the plot are hidden. 
 To overcome this difficulty we have devised a compu-
tationally intensive, visual method of dynamic decomposi-
tion of the Poincaré plot, which can summarise both the 
resulting plot and the process which leads to its creation. In 
the present paper we apply this method to the multivariate 
time series of simultaneously recorded haemodynamic 
variables. Additionaly, the mathematical and algorhythmic 
aspects of both the univariate and multivariate dynamical 
Poincaré plot are derived and described for the first time. 
To demonstrate the utility of the method we apply it to the 
case of a patient with pheochromocytoma accompanied by 
repetitive rises and falls of systolic blood pressure (com-
pare the description of case [6]). The following time series 
are simultaneously analysed: interbeat interval (IbI), sys-
tolic blood pressure (SBP), stroke volume (SV) and total 
peripheral resistance (TPR). 
 A similar, univariate method was used to demonstrate 
the process of creation of the complex Poincaré plot shapes 
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of RR intervals only [7], the effect of various filters on the 
creation of Poincaré plots ([8] and the accompanying 
animations) and to show the stability of the position of the 
centroid of the Poincaré plot with respect to the identity 
line and its instability with respect to any line perpendicu-
lar to the line of identity ([9] and the accompanying 
animation). However, those papers presented a totally 
different aspect of the dynamic analysis (multivariate case 
study in the present paper vs. univariate process analysis in 
the earlier ones). Also, no mathematical and algorhytmic 
details were given there. 
 
 

II.  THE  CONSTRUCTION  
OF  THE  POINCARÉ  PLOT 

 
 The Poincaré plot is constructed from the vector 
holding the analysed time series  

  1 2 1= ( , , , ),Nx x x +x …  (1) 

where ix  is the i-th element of the time series and 1N +  is 
its length. 
 Let us define two auxiliary vectors:  
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 The Poincaré plot is the set of all ordered pairs:  

  = {( , ) : , , = 1, , },i i i iPP x x x x i N+ − + + − −∈ ∈x x …  (3) 

where +
ix  and −

ix  are elements of the respective vectors. 
 The basic Poincaré plot descriptors are defined as [2]:  

  1 = Var , 2 = Var .
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 Let us define the instantaneous Poincaré plot of length 
k  at position j  ( j

kPP ) as a Poincaré plot (3) based on the 
following vector:  
  1 1= ( , , , ).j

j j j kk x x x+ + −x …  (5) 

 We can also define the instantaneous Poincaré plot of 
length T  at time t ( t

TPP ) (that is the base our analysis on 
units of time, rather than beat number), as a Poincaré plot 
(5) based on the following vector:  

  1 1= ( , , , ),t
T j j j kx x x+ + −x …  (6) 

where  
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 The other expressions (2, 3 and 4) remain unchanged, 
but they use j

kx  or t
Tx  rather than .x  

 Dynamic decomposition of the Poincaré plot of length 
k  (or T ) of a time series consists of a list of all instantane-
ous Poincaré plots:  

  1 2 1= ( , , , ),N k
k k k kPP PP PP + −PP …  (7) 

or, using units of time rather than beats  
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where tott  is the total length of the recording (in units of 
time), it  is the time of the i th event, corresponding to ix , 
and the symbol x⎣ ⎦  stands for the integral part of .x  
 If all the instantaneous Poincaré plots are actually 
drawn and compressed into an animation, we get a tool 
which lets us analyse the time evolution of the instantane-
ous Poincaré plot. This method combines the static 
Poincaré plot method (note that in the definition (3) the 
ordering of the indices i  is irrelevant, as 1SD  and 2SD  
are strictly statistical measures), and the time dependent 
aspect of time evolution defined by the ordered, increasing 
indices in (7) or (8). Note also that the calculation of the 
descriptors, 1SD  and 2,SD  for all the instantaneous Poin-
caré plots results in a time series which keeps track of the 
changes of long and short term variability at the preselected 
beat or time scale k  or T  (compare (5), (6) and Section III). 
 
 

III.  INTERPRETATION  OF  THE  POINCARÉ 
PLOT  AND  ITS  DESCRIPTORS 

 
 An example Poincaré plot is presented in Fig. 1. The 
reference line for all the points of the Poincaré plot is the 
line of identity. Above this line, the elements of the 
Poincaré plot (3) have the following property: ( < )i ix x+ −  
or, using the original vector (1) 1( < )i ix x + , below this line 
we have ( > )i ix x+ −  or 1( > )i ix x + , and on the line of 
identity ( = )i ix x+ − , or 1( = )i ix x + . If we focus our attention 
on a specific time series, say, the interbeat interval series 
(IbI), we can conclude that all the prolongations of the IbI 
are depicted above the identity line, all shortenings are 
below this line, and the points on the line correspond to two 
equal consecutive IbIs [8]. 
 The descriptors 1SD  and 2SD  defined by (4) measure 
the dispersion of points belonging to the Poincaré plot – 

1SD  measures the dispersion across the line of identity and 
2SD  measures dispersion along this line. It is believed that 
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1SD  corresponds to short-term variability, and 2SD  to 
long-term variability [2]. 
 
 

 
Fig. 1. An example Poincaré plot of interbeat intervals from 
a 5 min recording of a healthy person with the basic descriptors 
                    and the line of identity (the dashed line) 
 
 
 

IV.  MATERIALS  AND  METHODS 
 

 For the decomposition of the Poincaré plot of multi-
variate cardiovascular time series we used data from 
a 52-year-old woman with pheochromocytoma, i.e. a neuro-
endocrine tumor usually localised in the medulla of the 
adrenal glands. Pheochromocytoma cells can secrete ex-
cessive amounts of catecholamines, usually epinephrine 
and norepinephrine, causing dramatic cardiovascular oscil-
lations. The patient experienced repetitive blood pressure 
changes which were accompanied by symptoms of hyper-
tensive crisis (SBP >  300 mmHg) or cardiogenic shock 
(SBP <  50 mmHg) [9]. Beat-to-beat finger blood pressure 
waveform was recorded with Portapres-2 (FMS, the 
Netherlands) for 346 minutes. SBP and IbI were obtained 
from the original pulse pressure curve whereas the values 
of SV and TPR were reconstructed with the use of the 
Modelflow algorithm [10]. 
 To avoid the inclusion of potential artifacts, premature 
beats and post-ectopic compensatory pauses, we applied 
filters based on the IbI time series removing haemo-
dynamics for the following types of beats:  

•  IbI < 300 ms  and IbI > 2000 ms,  

•  1IbI / IbI > 0.3n n+ , 1IbI / IbI > 0.3.n n+  

 Corresponding data points from the other three time 
series were also removed with the use of the methods 
described in [8]. 
 The software for Poincaré plot decomposition was 
written in Matlab (MathWorks, USA). Each frame of the 
animation was exported to disc as a png file and then all 
frames were compressed into a single file with the use of 
the Linux application mencoder (the result in various 
formats may be downloaded from [11]). 
 
 

V.  ANIMATION 
 

     We use an 800-beat sliding window1 along the IbI-, SBP-, 
TPR- and SV-grams (see Fig. 2). The instantaneous Poin-
caré plot s ( 800

kPP ) for each segment with values of ,SD  
1SD  and 2SD  for all normalised variables (i.e. divided by 

the respective means) are shown on the right. 
 The variables used in Poincaré plot decomposition were 
normalised by their respective total (from the whole 
recording) means and presented in relative units to make it 
possible to compare the variability of the component 
signals between one another. The IbI-, SBP-, TPR- and SV-
grams are presented in the original units. 
 The simultaneous analysis reveals that the alterations of 
TPR usually lead the remaining haemodynamic changes, 
with the slowest and most delayed response in SV. The 
highest range of changes is found in TPR and the smallest 
in IbI. The shapes of the plots are different for all 
haemodynamic time series: they are cigar-like for SBP and 
TPR, more elliptic for IbI and the widest for SV. 
 Visual inspection of the recorded and decomposed 
cardiovascular signals (Fig. 2 and the animations [11]) 
helps understand clinical manifestations of the disease. 
Pheochromocytoma secretes various substances, including 
catecholamines and their metabolites which act on the 
cardiovascular system [6, 12]. In case of the described 
patient, the tumor was periodically releasing large amounts 
of norepinephrine and epinephrine (blood concentrations of 
both hormones were way out of normal range, i.e. nore-
pinephrine was 7924 pg/mL (upper normal limit to 
374 pg/mL) and epinephrine was 85.4 pg/mL (upper 
normal limit of 48 pg/mL). Hypersecretion of these 
catecholamines is responsible for clinical manifestations of 
pheochromocytoma like episodic headache, sweating, 
                                                 
1 The selection of the length of the window (800 beats) deserves some 
explanation. We noticed by experimenting with various lengths that if 
more beats are selected many fine details of the animation are lost. On the 
other hand, if the window is shorter, the plot becomes a collection of 
separate points rather than a well-defined shape. We do not believe that a 
single length can be established for every recording; rather, it is necessary 
to adjust it to the specific case under consideration. 



J. Piskorski, P. Guzik 184

tachycardia and rapid increase or decrease of blood pres-
sure leading to hypotension or hypertension, respectively. 
The haemodynamic fluctuations are visible both in the 
animation and Fig. 2. In our patient the cyclic nature of 
changes of heart rate (the IBI panel, which is the reverse of 
heart rate), blood pressure (the SBP panel), vascular 
resistance (the TPR panel) and the amount of blood ejected 
from the left ventricle of the heart (the SV panel) can be 
easily found every 14 to 21 minutes. During this time, 
patient presented with paroxysmal attacks of headache, 
strong epigastric pain, nausea, agitation and anxiety or 
weakening, sleepiness and blurred vision, her skin was wet, 
cold and pale or it was dry, warm and red. All of the 
symptoms might be explained by changes of vascular 
resistance and tissue blood perfusion which are secondary 
to alterations of TPR, SBP, IBI and SV.  
 The total variability of the analyzed data (SD) of each 
800-beat window is the highest for TPR and SBP, then SV 

and the smallest for IBI. Depending on the time of the 
recording, SD1 and SD2 change rapidly, but on the average 
their alterations are the biggest for TPR, then for SBP, SV 
and IBI. The analysis of the sequence of changes in the 
IBI-, SBP-, TPR- and SV-grams and their mini-Poincaré 
plots reveals that TPR alterations precede changes in IBI, 
then SBP with the most delayed response in SV. Under 
physiological conditions, changes in IBI, called heart rate 
variability, buffer the changes in blood pressure to secure 
a relatively constant blood perfusion to tissues and organs 
[13, 14]. This is why the relative changes of IBI are usually 
bigger than those of SBP. Although the TPR changes are 
the earliest in the patient discussed in the present paper, 
they do not buffer other haemodynamic changes leading to 
their increased variability and rapid oscillations in blood 
perfusion. It is probable that catecholamines released by 
the tumor cells in an oscillatory pattern are responsible for 
the dramatic and strong changes in vascular tone (repre-

 
 
Fig. 2. A frame from the dynamic decomposition of a 6-hour multivariate recording of interbeat interval (IbI), systolic blood pressure 
(SBP), stroke volume (SV) and total peripheral resistance (TPR). An 800-beat sliding window moves along the IbI-, SBP-, TPR- and 
SV-grams. The corresponding Poincaré plots (right side) show the variation in relative units (variables divided by their respective 
       means) and are accompanied by numerical descriptors. For details see main text. The animation can be downloaded from [11] 
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sented here by TPR) and autonomic activity leading to 
reflex alterations in SBP, IBI and SV. The observed epi-
sodes of vasoconstriction/vasodilation override the physio-
logical compensatory mechanisms and force a new se-
quence of haemodynamic changes. As can be seen, the 
method offers a wealth of physiological information which 
might otherwise be difficult to obtain. If one was to analyze 
the simultaneous recordings by the signal-analytic numeri-
cal methods, one would be forced to use complex multi-
variate methods and would have to be able to interpret the 
numerical results. In the described method it is the human 
eye that recognizes patterns and no expert knowledge of 
signal analysis is required. The more advanced numerical 
analysis might follow the visual inspection and initial 
interpretation. 
 
 

VI.  CONCLUSION 
 
 We have described a new visual method for simultane-
ous analysis of multivariate physiological time series: the 
decomposition of Poincaré plots. The method has been 
carefully described mathematically so that it can be repro-
duced without any ambiguities. 
 The decomposition has been applied to the analysis of 
the multivariate signal of heart rate, blood pressure, stroke 
volume and total peripheral resistance recorded from 
a patient with pheochromocytoma accompanied by repeti-
tive rises and falls of systolic blood pressure. It has been 
found that in this patient the TPR changes were the earliest 
and their range was the biggest.  
 As shown in the paper, the method can be applied to 
any cardiovascular time series recorded simultaneously and 
representing different haemodynamic parameters. The 
decomposition of Poincaré plots summarizes the whole set 
of component time series of a multivariate time series by 
showing how local variability changes in time. Some other 
areas of potential application include sports medicine, 
analysis of recordings acquired during patient monitoring, 
analysis of data from the monitoring of persons working in 
extreme or unusual conditions like aircraft pilots, divers or 
even astronauts and soldiers on a battlefield and to study 
and better understand mutual relationship between various 
signals like blood pressure and heart rate as well as 
visualize the magnitude of changes of the analyzed signals. 
In general, the method could be useful in any analysis 
where global variability may be understood as a net effect 
of well-defined local changes.  
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