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 Starting from Maxwell’s equations we obtain the wave 
equation for propagating electric field ( )txE ,  
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where z is the direction of propagation, 2
⊥∇  is the 

transverse part of the laplacian, while PL and PNL are linear 
and nonlinear polarization vectors, respectively. In litera-
ture there is no systematic way of deriving the propagation 
equation for arbitrary orders of dispersion, diffraction and 
nonlinearities in an arbitrary medium. In [1] we have 
presented a method for derivation of this propagation 
equation in the nonlinear differential form. In a special case 
we introduced this equation systematically in [2]. 
 It is well known that a great number of physical 
processes involved in a given nonlinear problem can be 
understood in terms of the formation of spatial, temporal or 
spatiotemporal localized structures or solitons. In our 
recent paper we concentrate on these subjects and review 
some of our latest results. The study of these localized 
waves is strongly complicated by the fact that the nonlinear 
partial differential equations (PDEs) of the given system 

are usually not integrable. By investigating integrability of 
a nonlinear PDE, one gains an important insight into the 
structure of the equation and the nature of its solutions. 
With the exception of some analytical solutions obtained 
by well-known methods (inverse scattering method, Hiro-
ta's method) [5] the solitary wave solutions have to be 
determined numerically [6]. One of the most effective 
methods is the Fourier Split-Step method which is used in 
studying dynamics of short-pulse splitting in dispersive 
nonlinear media [3, 4]. In some cases we should use an 
analytical and numerical methods simultaneously [7]. 
 As is has been recognized before [8, 9] the search for 
spatiotemporal solitons in optical media, alias “light 
bullets” (LBs) [10], is a challenge to fundamental and ap-
plied research in nonlinear optics (see [11-13]). Stationary 
solutions for LBs can be found from the cubic ( χ(3)) multi-
dimensional nonlinear Schrödinger (NLS) equation [10] 
which is a well-known asymptotic model governing the 
slow evolution of the local amplitude of the electro-
magnetic field [5]. However, they are unstable against 
spatiotemporal collapse [14]. The problem may be avoided 
by introducing milder nonlinearities, such as saturable [15], 
cubic-quintic [16], or quadratic (χ(2)) [11, 12, 17]. 
 Despite considerable progress in theoretical studies, 
three-dimensional (3D) LBs in a bulk medium have not 
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been observed in an experiment yet. The only successful 
experimental finding reported thus far was a stable quasi-
2D spatiotemporal soliton in χ(2) crystals [12]. The tilted-
wavefront technique [18] has been used in that paper to 
introduce strong artificial group-velocity dispersion (GVD). 
This precluded achieving self-confinement in one trans-
verse direction. On the other hand, it was  predicted [17] 
that a spatial cylindrical soliton might be stabilized in 
a bulk medium composed of layers with alternating signs 
of the Kerr coefficient. 
 In the 2D case, we proposed a scheme for stabilizing 
spatiotemporal (STS) solitons in Kerr media with a layered 
structure. We consider an experimentally realistic possibil-
ity, viz., periodic reversal of the GVD sign, which resem-
bles known dispersion-management (DM) schemes in fiber 
optics. First, we have developed the variational approxima-
tion (VA) based on the Gaussian ansatz for 2D STS. In the 
2D case, simulations of the resulting systems of coupled 
variational equations reveal well-defined stability regions 
in the relevant parameter space. In [9] we verified these 
results by direct simulations by Split-Step Fourier Method 
mentioned above using the MATLAP program. We again 
obtained a new stable object in the form of a periodically 
oscillating bound state of two subpulses. As a byproduct 
we concluded that the program in MATLAP was twice 
faster than the program used before in FORTRAN. 
 In our further work [19], we proposed a possibility to 
stabilize spatiotemporal solitons (“light bullets”) in three-
dimensional self-focusing Kerr media by means of dis-
persion management (DM), which means that the local 
group-velocity dispersion coefficient alternates between 
positive and negative values along the propagation 
direction, z. The model is based on a scalar equation of the 
NLS type, which can be derived in the paraxial approxima-
tion for the slowly varying amplitude of a linearly 
polarized electromagnetic wave. We showed previously 
that the DM alone could stabilize solitons in 2D (planar) 
waveguides, but in the bulk (3D) DM medium the “bullets” 
were unstable. In [19] we demonstrated that complete 
stabilization could be provided if the longitudinal DM was 
combined with periodic modulation of the refractive index 
in one transverse direction (y), with a period much larger 
than the carrier wavelength. A stability area for the light 
bullets was identified in the model parameter space. Its 
salient features are a necessary minimum strength of the 
transverse modulation of the refractive index, and mini-
mum and maximum values Emin,max of the soliton energy. 
The former feature can be accurately predicted in an 
analytical form from the evolution equation for the width 
of the soliton in the y-direction. Also, similar to the case of 
DM soliton in fibers, we find that the stability area extends 

into a region of normal average dispersion [20]. On the 
other hand, the existence of Emax can be understood 
similarly to the way it was done in the 2D counterpart of 
the present model (the strong transverse lattice can squeeze 
the system to a nearly 2D shape). 
 The model opens a way to address further issues, such 
as collisions between the LBs, and the existence and 
stability of solitons with different symmetries (for instance, 
LBs which are odd in the longitudinal and (or) transverse 
directions). 
 As recognized in our previous paper [21], by analogy 
between the propagation equation in the Kerr medium and 
the Gross-Pitajevski equation for Bose Einstien conden-
sates (BECs), we could transfer the results from nonlinear 
optics to atom optics and vice versa [7, 22]. A similar 
stabilization mechanism was then predicted for 2D solitons 
in Bose-Einstein condensates (BECs), with the coefficient 
in front of the cubic nonlinear term subjected to a periodic 
modulation in time via the Feshbach resonance in an 
external ac magnetic field [23-25]. However, no stable 3D 
soliton could be predicted in either realization of this 
setting (optical or BEC). 
 In [26] we investigated the stability properties of 
breather soliton in a three-dimensional Bose-Einstein Con-
densate with “Feshbach Resonance Management” of the 
scattering length and confined only by a one-dimensional 
optical lattice. We compared the region of stability in 
parameter space obtained from a fully 3D analysis with 
those from a quasi two-dimensional treatment. For moder-
ate confinement we discovered a new island of stability in 
the 3D case, not present in the quasi 2D treatment. Stable 
solutions from this region have nontrivial dynamics in the 
lattice direction, hence they describe fully 3D breather 
solitons. We demonstrated these solutions in direct numeri-
cal simulations and more importantly, suggest a way of 
creating robust 3D solitons in experiments in a Bose-
Einstein Condensate in a one-dimensional lattice.         
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