
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 14(2), 69-75 (2008)

I. INTRODUCTION

 The SGI Altix 4700 at Leibniz Supercomputing Centre
(LRZ) is one of the most powerful computers in Germany.
It has 9728 cores, 39 TByte of main memory, and delivers
a peak performance of 62.3 Tflop/s. A prominent feature of
an Altix is its ccNUMA architecture. The machine at LRZ
has two other special features. It has two types of nodes
and a two-dimensional torus network connecting the nodes.
There are 13 so-called high-bandwidth nodes in which two
cores are connected to one memory channel and there are
six high-density nodes in which four cores are connected to
one memory channel, i.e. in the high-density nodes the
memory bandwidth per core is halved. Each node has 512
cores out of which two (or four) are reserved for the
operating system on the high-bandwidth (or high-density)
nodes.
 The torus network is sketched in Fig. 1. The network of
the machine has a hierarchical structure. Within a node the
bisection bandwidth per blade is 2 × 0.8 GByte/s (one
blade comprises eight cores in the high-bandwidth nodes
and 16 cores in the high-density nodes). Between two ’ver-
tical’ nodes it is 2 × 0.4 GByte/s (bisection indicated by cut
a in Fig. 1), between ’horizontal’ nodes it is 2 × 0.2 GByte/s

(bisection indicated by cut b in Fig. 1), and for the whole
system it is further reduced to 2 × 0.1 GByte/s.

Fig. 1. Two-dimensional torus network of the SGI Altix 4700
nodes at LRZ. Bisections of two nodes with different network

bandwidths are indicated by cut a and cut b (see text)

 In this paper we try to get some deeper understanding
of the machine. One aspect is to use different parallelisa-
tion strategies on the ccNUMA architecture. The second
aspect is the influence of the different types of nodes. In
addition, we compare the Altix 4700 with two other
supercomputers, an IBM p690 cluster and a Cray XT4. In
all cases we are interested in achieving high scalability. In
our study we use the Berlin Quantum Chromodynamics
Program (BQCD). BQCD has various communication

Performance of Quantum
Chromodynamics (QCD) Simulations

on the SGI Altix

Mohammed Allalen1*, Matthias Brehm1 and Hinnerk Stüben2

1Leibniz Supercomputing Centre (LRZ), Garching, Germany
*e-mail: allalen@lrz.de

2Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Berlin, Germany

(Received: 7 July 2008; accepted 31 October 2008; published online: 10 December 2008)

Abstract: We study performance and scaling of the Berlin Quantum Chromodynamics Program (BQCD) on the SGI Altix 4700 at Leibniz
Supercomputing Centre (LRZ). We employ different communication methods (MPI, MPI with two OpenMP threads per process, as well
as the shmem library) and run the MPI version on the two types of nodes of that machine. For comparison with other machines we made
performance measurements on an IBM p690 cluster and a Cray XT4.
Key words: SGI Altix 4700, IBM p690, Cray XT4, Quantum Chromodynamics

a

b

user
Tekst maszynowy
CMST 14(1) 69-75 (2008)

user
Tekst maszynowy
DOI:10.12921/cmst.2008.14.01.69-75

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

M. Allalen, M. Brehm and H. Stüben 70

methods implemented: MPI, OpenMP, a combination of
both, as well as shmem (single sided communication) in the
hopping matrix multiplication (see Sect. III).
 BQCD is used in benchmarks for supercomputer
procurements at our centres. The benchmark version im-
plicitly measures two important aspects of supercomputer
applications: effective network- and memory and band-
width. In addition, QCD is an application that scales very
well and reliable performance measurements on a large
number of cores can be obtained within minutes. Produc-
tion versions of BQCD and other QCD programs are highly
tuned including assembler parts in the kernel [1, 2]. Here
we employ the high level Fortran90 version as an example
of a typical supercomputer application.
 In the following paper we start by giving a short
overview of numerical simulations of QCD and a short
introduction to the computational aspects of QCD simula-
tions. Then we present and discuss our results.

II. OVERVIEW OF NUMERICAL SIMULATIONS

OF QCD

 QCD is the theory of strongly interacting elementary
particles. The theory describes particle properties like
masses and decay constants from first principles. The
starting point of QCD is an infinite-dimensional integral.
To deal with the theory on the computer space-time
continuum is replaced by a four-dimensional regular finite
lattice with (anti-) periodic boundary conditions. After this
discretisation, the integral is finite-dimensional but still
rather high-dimensional. The high-dimensional integral is
solved by Monte-Carlo methods. BQCD is a program that
simulates QCD with the Hybrid Monte-Carlo algorithm [3].
 The basic building blocks of QCD are called quarks
(matter particles) and gluons (particles mediating the
interaction of quarks). The quark fields cannot be
represented directly on a computer. In the computations
they appear as large sparse matrices which describe
systems of linear equations. QCD programs spend most of
their execution time in solving these systems of linear
equations. In the solver and an overall QCD program the
multiplication of the so-called hopping matrix with a vector
is the dominant operation. The hopping matrix multiplica-
tion is communication intensive.

III. COMPUTATIONAL ASPECTS

 To go more into detail, let us describe the structure of
the hopping matrix and the systems of linear equations.

 QCD is defined on a four-dimensional Cartesian lattice.
The lattice has three spatial and one time direction. Its size
is denoted by 3 .s tL L× On the links of the lattice, field U
which represents the gluons is defined. U is a function of
the four directions μ = 1, 2, 3, 4 and the lattice sites denoted
by i (see the right-hand side of Fig. 2). Uμ(i) is a 3 × 3
complex matrix. The U field is part of the hopping matrix.
It is constant in the solver. On the sites of the lattice, field
ϕ which represents the quarks is defined. ()iϕ is a 4 × 3
complex matrix. These kinds of fields are the vectors in our
systems of linear equations. In our Fortran program U and
ϕ have the following data structure:

 complex(8) u(3, 3, Ls, Ls, Ls, Lt)

 complex(8) psi(4, 3, Ls, Ls, Ls, Lt)

 In practice the four dimensions (Ls, Ls, Ls, Lt) are
collapsed to a single one and there is one array u for each
of the four dimensions. In a pseudo code notation the
matrix multiplication reads:

 psi_out := hopping_matrix[u] * psi_in

 The entries of the hopping matrix are given by a four-
dimensional nearest neighbour stencil as indicated in
Fig. 2, i.e. the hopping matrix has nine entries per row. The
entries are the Uμ(i) matrices.

Fig. 2. Nearest neighbour stencil underlying the hopping matrix.
The central point is i, where i is a short cut for a point given by
four coordinates (x, y, z, t). On the right-hand side the
corresponding Cartesian coordinate system and the variables
involved are indicated for one dimension. U is called the gauge
field which is defined on the links of the lattice. The field ϕ is
defined on the lattice sites. Index μ stands for a direction and μ̂ is
 a unit vector in μ-direction

 At the single CPU level QCD programs benefit from
the fact that the basic operations involve the small complex
matrices Uμ(i) and ().iϕ One can perform at the order of
ten floating point operations per memory access. As a rule
of thumb, the resulting performance is about 20-25% of
peak when programming in Fortran or C. The single CPU
performance can be considerably improved by employing

Performance of QCD Simulations on the SGI Altix 4700 71

low level programming techniques like assembler or multi-
media streaming functions.
 QCD programs are parallelised by domain decomposi-
tion. The nearest neighbour structure of the hopping matrix
implies that the boundary values (surfaces) of psi_in have to
be exchanged between neighbouring processes in every
iteration of the solver. In production runs where one aims
at sustained performance in the Tflop/s range the domains
become so small that their surface to volume ratio is at the
order of one or even larger. In Table 1 we give that ratio for
the lattices and numbers of processes we consider here. The
ratio depends on the actual decomposition. For example, if
the lattice is decomposed into sub-lattices of size 3 ,s tl l×
the surface to volume ratio 3 2 3(2 6) /().s s t s tl l l l l× + × × × In
general the four dimensions of the local lattice can have
different extension lx, ly, lz, and lt.

Table 1. Surface to volume ratios

Number
of processes 64 128 256 512 1024 2048 3072 4096

243 × 48
lattice 0.833 1.000 1.167 1.333

483 × 96
lattice 0.417 0.500 0.583 0.667 0.833 1.000 1.083 1.167

 Decomposing the lattice for a large number of proc-
esses has two effects. First, at some stage a domain might
completely fit into the data cache. Second, the data from
the relatively large surface of the small domains has to be
communicated to eight nearest neighbour processes. The
communication becomes dominant for large numbers of
processes. It requires an excellent network. For lattice sizes
that are used in actual simulations the network is the
challenge. In our examples we mainly use the 483 × 96
lattice which is relatively large for today’s supercomputers.
For the comparison with other machines we use the
243 × 48 lattice which is 16 times smaller but has a similar
surface to volume ratios as the 483 × 96 lattice and thus
similar communication requirements as that lattice but on
fewer processes (see Table 1).

IV. RESULTS

 All the presented results are for the entire conjugate
gradient (cg) solver of BQCD. This is essentially the
overall performance of the program in practical simula-
tions. The performance measurement is based on an instru-
mented code and manually counted operations in the source
code. In all tables we give four results. First, we give the

overall performance including communication overhead in
Gflop/s. The overall performance is plotted in Figures 3, 4,

Fig. 3. Strong scaling of BQCD for the 483 × 96 lattice on SGI

Altix 4700 using different communication setups (see text)

Fig. 4. Performance comparison of three platforms

(24 × 48 lattice)

Fig. 5. Performance comparison of three platforms

(48 × 96 lattice)

M. Allalen, M. Brehm and H. Stüben 72

and 5. Second, we give the compute performance per core,
i.e. the performance that was measured in program regions
outside MPI (or shmem) functions. This quantity indicates
whether one is in a memory bound region, where the
quantity would be constant, or one can profit from data
caching, where the quantity would grow. Third, we give the
effective MPI (or shmem) bandwidth per process. In an
ideal network this quantity should be constant for any
number of processes. Fourth, we give the MPI overhead,
i.e. the fraction of time spent in communication routines.
Typically the overhead grows with increasing numbers of
processes because the surface to volume ratio increases.
 We study strong scaling of simulations on the 483 × 96
lattice. On the Altix we look into four setups, namely
running with
 1. MPI on high-bandwidth nodes,
 2. MPI on high-density nodes,
 3. MPI plus two OpenMP threads per process on high-

bandwidth nodes,
 4. shmem on high-bandwidth nodes,
followed by
 5. a comparison with the other platforms.

IV.1. MPI on high-bandwidth nodes

 Results for this setup are given in Table 2. The overall
performance scales very well up to 2048 cores and
becomes worse for higher numbers of cores.

Table 2. Performance on high band-width nodes

Number
of cores 64 128 256 512 1024 2048 3072 4096

Overall
performance
[Gflop/s]

52 100 194 406 758 1568 1707 2213

Compute perf.
per core
[Mflop/s]

954 947 977 1106 1171 1607 1450 1535

MPI perf.
per proc.
[MByte/s]

464 450 379 350 306 262 178 171

MPI overhead
[%] 14 17 22 28 37 52 62 65

 The main reason for the good scaling is the utilisation
of the data cache. The compute performance increases from
about 950 up to 1600 Mflop/s per core. At the same time
the MPI overhead stems not only from the increasing
surface to volume ratio but also from decreasing effective
MPI bandwidth. This effect is quite pronounced. Up to
2048 cores this can be compensated by data caching. In
that case the communication loss is already 52%.

IV.2. MPI on high-density nodes

 Results for this setup are given in Table 3. Again the
overall performance scales very well up to 2048 cores,
which in this case is the largest job possible in the system
configuration.

Table 3. Performance on high-density nodes

Number
of cores 64 128 256 512 1024 2048

Overall performance
[Gflop/s] 33 65 129 306 574 1136

Compute
performance per core
Mflop/s]

611 611 643 839 925 1130

MPI performance
per process
[MByte/s]

305 313 262 262 218 192

MPI overhead
[%] 14 16 22 29 39 51

 Up to 256 cores the compute performance per core is
roughly constant. This is the memory bound region. In
these cases the compute performance is about 65% of the
performance obtained on high-bandwidth nodes, which
shows a clear dependency on the memory bandwidth. For
higher numbers of cores the data caches come into play and
the compute performance grows up to 79% of the value
from high-bandwidth nodes. The overall performance
behaves similarly. In the high-density partition the MPI
bandwidth varies less than in the high-bandwidth partition.
On 2048 cores the MPI bandwidth is 63% of the bandwidth
measured on 64 cores. For the high-bandwidth partition the
corresponding value is 56%.

IV.3. MPI plus two OpenMP threads on high-band
 width nodes

 On a shared memory system or a system with shared
memory properties it is tempting to reduce the com-
munication overhead by working with more than one
thread per MPI process. By doing this the domains per MPI
process become larger and as a consequence less data has
to be communicated for a given problem size. Therefore we
tried to use two OpenMP threads per MPI process. The
idea is that the two threads work on the two cores of the
same (dual core) Itanium processor of the Altix. Results for
this setup are given in Table 4. In this setup we find good
scaling up to even 3072 cores.
 However, the absolute performance is slightly lower
than the performance in the high-density case. The MPI
bandwidth per core is higher than in the high-bandwidth

Performance of QCD Simulations on the SGI Altix 4700 73

Table 4. Performance on high band-width nodes for MPI plus 2
OpenMP threads

Number
of cores 64 128 256 512 1024 2048 3072

Overall
performance
[Gflop/s]

32 59 119 254 529 1054 1586

Compute
performance per
core [Mflop/s]

543 540 559 685 704 893 1121

MPI performance
per process
[MByte/s]

905 520 516 387 544 373 315

MPI overhead
[%] 7 14 17 28 27 47 54

case but the compute performance per core is significantly
lower. This effect can already be observed in small test
cases where we put an 83 × 16 lattice on two cores using
two MPI processes or two OpenMP threads. Using threads
the performance was only 78% of the MPI case. To get that
reasonable OpenMP performance it is important to pin
threads to processor cores and control page allocation. On
the Altix this can be accomplished by employing the
omplace command. In our tests the OpenMP performance
is roughly halved when omplace is not employed.

IV.4. shmem on high-bandwidth nodes

 The last setup we have tried on the Altix is replacing
the MPI_sendrecv in the hopping matrix multiplication by
single sided communication functions from the shmem
library (we used shmem_put). Results for this setup are
given in Table 5.

Table 5. Performance on high band-width nodes using shmem

Number
of cores 64 128 256 512 1024 2048

Overall
performance
[Gflop/s]

51 93 161 225 409 706

Compute
performance per
core [Mflop/s]

988 1062 1094 1122 1141 1247

Shmem
performance per
process [MByte/s]

301 187 131 67 76 63

Shmem overhead
[%] 20 31 42 61 65 72

 Up to 256 cores the overall performance is comparable
to the MPI setup. For higher numbers of cores the scaling
becomes worse. While the first three setups scale practi-
cally linearly up to 2048 cores, the parallel efficiency on

2048 cores with shmem is only 0.43 (related to 64 cores).
The striking observation for this setup is that the effective
MPI bandwidth is much lower than in the other cases. We
think that this effect is due to the latencies of the shmem
communication that add up in many function calls. In
contrast to MPI, the shmem library does not contain
a function for transferring block-strided data. There are
only functions for contiguous blocks or strided data with
block size one. In Fortran90 notation the array sections cor-
responding to surfaces are:

psi(:, :, :, :, :, 1) psi(:, :, :, :, :, l_t)

psi(:, :, :, :, 1, :) psi(:, :, :, :, l_z, :)

psi(:, :, :, 1, :, :) psi(:, :, :, l_y, :, :)

psi(:, :, 1, :, :, :) psi(:, :, l_x, :, :, :)

 Only the array sections defined in the first line consist
of one contiguous block each while all other array sections
are block-strided. Hence shmem has to be called much
more often than MPI and latencies add up.

IV.5. Comparison with other platforms

 For comparison we repeated some measurements using
pure MPI communication on an IBM p690 cluster and
a Cray XT4. On those platforms resource usage was limited
to 512 cores. To challenge MPI communication we
measured on a 243 × 48 lattice in addition to the 483 × 96
lattice (cf. Table 1). Simulating on the large lattice requires
approximately 160 GByte of main memory. On the XT4
this was not available on 64 and 128 cores. Results are
compiled in Table 6. The overall performance is plotted in
Figures 4 and 5.
 On both lattices the Altix delivers the best overall
performance except for the large lattice on 128 cores where
the p690 performs slightly better.
 On the Altix the performance figures from the small
lattice behave similar to the ones from the large lattice (see
Sect. IV.1). The role of the data cache is even more
pronounced on the small lattice where the compute
performance reaches up to 2.6 Gflop/s per core. On both
lattices the MPI bandwidth decreases in a similar way
when the number of cores is increased.
 From Figures 4 and 5 one can see directly that scaling
to 512 cores is not good on the p690. On the p690 we find
a sweet spot for both lattices where the MPI performance is
much better than in the other cases. On the small lattice the
compute performance is significantly increased at the same
time. The effect is super-linear scaling from 64 to 256
cores. In order to try to explain the drop in performance on
512 cores we have to come back to network latencies. We

M. Allalen, M. Brehm and H. Stüben 74

explained the poor shmem performance by latencies that
add up. On the p690 we also see the effect that the MPI
performance decreases when using the maximal number of
cores. In addition we see that the compute performance
decreases, too. This effect can be explained by latencies as
well because the global sum is not excluded in the
measurement of the compute performance. Large network
latencies lead to relatively slow global reduction functions,
which introduces additional communication overhead. The
effect can also be noticed for the small lattice on the Altix.
But there it is quite small.

Table 6. Comparison of performance results from three platforms.
The columns contain the same kind of information as the rows in

the other performance tables

Lattice Platform Number
of cores

Overall
perf.

[Gflop/s]

Comp. perf.
per core
[Mflop/s]

MPI perf.
per proc.
[MByte/s]

MPI
overhead

[%]
64 34 621 631 14

256 132 666 517 22 Cray XT4
512 291 721 693 21

64 23 737 115 51
256 197 1279 441 40 IBM p690
512 246 955 247 50

64 57 1202 541 26
128 124 1687 424 43
256 245 2641 321 64

243 × 48

SGI
Altix 4700

512 445 2443 330 64
256 141 639 455 14 Cray XT4
512 282 627 601 12

64 46 911 281 21
128 104 971 503 16 IBM p690
512 189 530 177 30

64 52 954 464 14
128 100 947 450 17
256 194 977 379 22

483 × 96

SGI
Altix 4700

512 406 1106 350 28

 The behaviour of the XT4 is much more constant in
comparison to the other platforms. Both the compute
performance per core and the MPI bandwidth vary much
less. The machine has the smallest MPI overhead which
also is quite constant. From this one would expect very
high scalability what would have been interesting to check.

V. CONCLUSION

 In this article we have used the BQCD simulation
program to compare three communication modes and two

node types on the SGI Altix at LRZ. In all cases we
observed very good scaling up to 2048 cores except for
shmem communication which scaled well up to 256 cores.
According to our measurements, pure MPI communication is
the method of choice. Combining MPI with OpenMP or
replacing it by shmem gave a substantially lower perfor-
mance. On high-density nodes 65-79% of the high-band-
width performance was achieved. In a strictly memory-
bound situation one would expect this value to be about
50%.
 We were surprised to discover that data caches play
such an important role on the Altix. The cache size is 9
MByte per dual core chip. In our measurements better
cache utilisation compensates decreasing network band-
width when increasing the number of cores. The discussion
of shmem as one communication method available on the
Altix and the comparison with other machines led us to
consider the effect of network latencies. Although network
latencies were not measured directly, we could in some
cases indirectly see their effect on the effective network
bandwidth and the duration of global reduction operations.
 It is interesting to see the interplay of network band-
width, network latency, and the memory hierarchy when
studying strong scaling of a real world application on the
Altix 4700 and other machines.

Acknowledgements

The computations were performed on the IBM p690 cluster
at Jülich Supercomputer Centre (JSC), Jülich, Germany, on
the Cray XT4 at Scientific Computing Ltd (CSC), Espoo,
Finland, and on the SGI Altix 4700 at Leibniz Super-
computing Centre (LRZ), Garching, Germany. Computer
time at JSC and CSC was provided by the DEISA
Consortium.

References

 [1] G. Schierholz and H. Stüben, Optimizing the Hybrid Monte
Carlo Algorithm on the Hitachi SR8000, in: S. Wagner,
W. Hanke, A. Bode and F. Durst (Eds.), High Performance
Computing in Science and Engineering, Munich 2004,
Springer-Verlag, pp 385-393.

 [2] T. Streuer and H. Stüben, Simulations of QCD in the Era of
Sustained Tflop/s Computing, in: C. Bischof, M. Brückner,
P. Gibbon, G. Goubert, T. Lippert, B. Mohr, F. Peters
(Eds.), Parallel Computing: Architectures, Algorithms and
Applications, NIC Series 38, 535-542 (2007)

 [3] S. Duane, A. Kennedy, B. Pendleton and D. Roweth, Phys.
Lett. B195, 216 (1987).

Performance of QCD Simulations on the SGI Altix 4700 75

MOHAMMED ALLALEN received his Ph.D in Theoretical Physics from the University of Osnabrück in 2006.
He is currently working in the High Performance Computing group at LRZ Garching. His tasks include user
support, software tools and application enabling of parallel scientific application codes. His research interests
include molecular magnetics through modelling techniques, performance optimization and scaling of HPC
codes, benchmarking for characterizing supercomputers. He is also involved in important European co-
operations, DEISA2 and PRACE.

MATTHIAS BREHM received his Ph.D in meteorology from the University of Munich. He joined Leibniz
Computing Centre (LRZ) in 1986 to build up the supercomputing services. Currently he is head of the High
Performance Computing Group. LRZ is one of three top computing facilities in Germany. His research
interests include program optimization, user education & training, benchmarking, and automatic performance
analysis and monitoring.

HINNERK STÜBEN is a computational physics consultant at Konrad-Zuse-Zentrum für Informationstechnik
Berlin (ZIB). He holds a Dr. rer. nat. degree in theoretical physics from Freie Universität Berlin. His research
interests are in lattice gauge theory and parallel computing. He is the author of the BQCD program used in this
study.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 14(2), 69-75 (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

