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I.  INTRODUCTION 
 

Using the Maxwell equations and Lorentz model of atoms 
we have derived the propagation of ultrashort pulses (of few 
fs) in the Kerr medium with anomalous dispersion, called 
Generalized Nonlinear Schrödinger Equation (GNLS) [5]:  
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where ( , )U ξ τ  is the complex envelope of the pulse. The 
parameters 3 ,δ  S and Rτ  govern, respectively, the effects 
of third-order dispersion (TOD), self-steepening and self-
shift frequency. Equation (1) reduces to the Nonlinear 

Schrödinger Equation (NLS) [1, 2, 4] in the case of pico-
second pulses, because then the characteristic parameters 
for the higher-order effects mentioned above are very small 
and can be neglected. NLS can be solved by the Inverse 
Scattering Method [2, 13, 18], but this Method cannot be 
applied to Eq. (1) any more. Generally it is very difficult to 
find analytic solutions of Eq. (1) and no such solution was 
known before. Only in several special cases solutions of 
soliton type have been obtained [17]. Nevertheless, we 
should note that Eq. (1) is the only one of many 
approximate forms for the pulse propagation equation [5, 
15]. When the higher-order effects of dispersion and non-
linearity are taken into account, the pulse propagation 
equation becomes very complicated [7, 15, 16] and the 
problem of finding a general analytic method for this equa-
tion is practically a “mission impossible”.  
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 For these reasons several methods of finding approxi-
mate solutions of the pulse propagation equation are used. 
For this purpose, the numerical method is especially 
effective. Many algorithms of numerical calculations have 
been introduced by several authors [1, 3, 6, 7, 10, 12, 14]. 
We can generally classify them into two types, namely the 
finite difference methods and the quasispectrum methods 
[1]. The quasispectrum method is based on Fourier Trans-
form for approximate calculations of time partial deriva-
tives. In this manner one can reduce the problem of solving 
partial differential equation to solve an ordinary differential 
equation. By using a so called Fast Fourier Transform [1], 
we can drastically reduce the numerical time, so this 
method is intensively used in literature [1, 3, 6-8, 14].  
 In this paper we consider two important algorithms of 
quasispectrum type for the approximate calculation of 
solutions of the pulse propagation equation, namely the 
Split-Step Method and the fourth order Runge-Kutta 
Method. The rest of our paper is organized as follows: 
Section II presents the discretization rule for the pulse propa-
gation problem in the framework of algorithms mentioned 
above. In Section III numerical calculations are made in 
some special cases for testing the accuracy of these methods. 
In Section IV we apply these methods to the problem of 
pulse compression. Section V contains conclusions.  
 
 

II.  NUMERICAL  METHODS 
 

II.1. Split-Step Algorithm of second order  

 In the first one we present the Split-Step Algorithm for 
finding approximate solutions of the pulse propagation 
equation. Equation (1) can be written in the following form  

  ( )ˆ ˆ ( ) ,U L N U U
ξ

∂ = +
∂

 (2) 

where L̂  and N̂  are the linear and nonlinear operator, 
respectively, acting on the envelope function:  
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 Integrating Eq. (2) over the variable ξ  in the interval 
ξ ξ ξ→ + Δ  , we obtain [3] 

  ( ) ( ), exp ( , )U A B Uξ ξ τ ξ τ+ Δ = +  (5) 

with  
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 When the step-size ξΔ  of the propagation distance is 
pretty small, using the Baker-Campbell-Hausdorff formula 
for the exponential operator involved in (5) we can present 
its approximate form as follows [2, 3, 14, 15]:  

  ( )exp exp exp( ) exp .
2 2
A AA B B⎛ ⎞ ⎛ ⎞+ ≈ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (8) 

 In this approximation we assume that operators A and B 
are commutative between themselves when ξΔ  is small. 
The error of the formula (8) is of the order ( )2 .ξΔ  
 Substituting the expressions given above into Eq. (5) 
we obtain the following formula describing Split-Step 
algorithm for the problem (2):  
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 This expression permits us to specify the approximate 
value of the envelope function in the location ξ ξ+ Δ  from 
its value in the ξ .  
 
II.2. Discrete Fourier Transform  

 For calculating the value of the envelope function by 
(9) we should know how the action of the linear and 
nonlinear operators on the envelope function is calculated. 
Because these operators contain the time partial deriva-
tives, one can calculate them just by Fourier Transform.  
 We take the value of the time variable in the finite 
interval [a, b] which is so large that its borders do not have 
any influence on the final results of the calculations. We 
assume now the periodic condition on borders that 

( ) ( ), ,U a U bξ ξ=  for [ ]00,ξ ξ∈ . For convenience we 
change the variable in (9) in such a way that it normalizes 
the interval [a, b] into the interval [ ]0, 2π , and then we 
divide this interval into N points with distance between 
them 2 .Nτ πΔ =  We denote these points as 2 ,j j Nτ π=  
j = 0, 1, 2, ... N. Then we have the Discrete Fourier 
Transform of the series ( , )U jξ τ −  as follows:  
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 The Inverse Fourier Transform is defined as follows:  
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F here denotes Fourier Transform and F-1 means its inverse 
transform. Calculations in (10) and (11) are made effective 
by the fast algorithm FFT [11]. The time partial derivatives 
of the envelope function in both the linear and nonlinear 
operator (3) and (4) can be easily calculated by multiplying 
the Fourier coefficients ( , )kU ξ ω  by powers of kiω−  
corresponding to the order of derivative and then taking the 
Inverse Fourier Transform. For example, the  second-order 
derivative of the envelope function in the point ( , )jξ τ  can 
be calculated as 1 2[ [ ( , )]].j k k jF F Uω ξ τ− −  
 
II.3. The fourth order Runge-Kutta algorithm  

 Equation (1) can also be approximately solved by using 
the Runge-Kutta algorithm. In this method the time 
discretization and calculations of time partial derivatives 
are the same as in the previous subsection, but the spatial 
derivatives are calculated by Runge-Kutta algorithm. We 
apply here the fourth order Runge-Kutta algorithm, very 
popular for solving the differential equations [6, 7, 11, 12]. 
 After using Fourier Transform for calculating the time 
partial derivatives as above, equation (1) becomes  
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we can rewrite (1) in the form 
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 Using the fourth order Runge-Kutta algorithm for 
Eq. (14) we calculate the value of the function V in the 
location ξ ξ+ Δ  [11]  

  ( ) ( ) ( )1 2 3 4
1 2 ,
6

V V K K K Kξ ξ ξ ⎡ ⎤+ Δ = + + + +⎣ ⎦  (16) 

where the coefficients Ki are calculated as follows  
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  ( )( )4 3. , , .K f U Kξ ξ ξ ξ τ= Δ + Δ +  (20) 

 From (13) and (16) we obtain the value of the envelope 
function in the location :ξ ξ+ Δ  
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 Errors in applying (21) are of orders ( )5.ξΔ  In com-
parison to calculations performed by (9), formula (21) has a 
higher accuracy, although the computational time is longer 
because the number of calculation steps in (15) and (20) is 
very large.  
 In the simulations performed below we have used both 
algorithms presented above and compared the obtained 
results. They are almost the same when the interval ξΔ  is 
relatively small.    
 
 
III.  RESULTS  OF  NUMERICAL  CALCULATIONS 
 
III.1. Optical Solitons   

 We compare in the first the numerical simulations per-
formed by using algorithms introduced above with analyti-
cal results obtained in some spacial cases. We test in this 
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way the accuracy of these numerical algorithms. As until 
now we do not know any analytical solution of the GNLS 
equation in literature, we will compare our results with the 
results of the NLS equation for the case of picosecond 
pulses. We consider very important phenomenon: propaga-
tion of the solitons [1, 4].  
 According to the Inverse Scattering Transform Method, 
when the higher-order parameters 3 , Sδ  and Rτ  in Eq. (1) 
equal zero and the initial shape of the pulses is the function 
of secant hyperbolic form, the equation will have the 
soliton solutions [13, 18]. These solitons exhibit the 
periodic feature with a characteristic period during propa-
gation. Except the case of the first-order (temporal) soliton 
(called the fundamental soliton) when the amplitude of the 
envelope function remains unchanged during propagation, 
higher-order solitons change in shape and spectrum in 
a complicate manner, but their shape follows a periodic 
pattern so that the input shape is recovered at the 
propagation period 2.ξ π=  The order of soliton is 
determined by the parameter N in (1). When the value of N 
is larger (higher-order solitons), the envelope changes in a 
more complicated way over one soliton period.  
 We simulated the pulse evolution for the first-order and 
tenth-order (N = 10) solitons over one soliton period with 
the input pulse having an initial amplitude [1]:  

  ( )0, ( ).U Nsechτ τ=  (22) 

 Figure 1 shows these results by plotting the pulse 
intensity 2( , ) .U ξ τ   
 In Figure 1(a) the envelope function of the pulse has an 
unchanged shape in the propagation process conserving 
the initial form (22). In Figure 1(b) the envelope function 
has a complex evolution in propagation, but in the end of 
the period it comes back to the initial shape and this 

process repeats in the next periods. These results are in 
good agreement with analytical predictions about the 
periodic feature in the evolution of the envelope function. 
Analytical expressions for the higher-order solitons are 
very complicated and only in the case of the second- and 
third-order they are explicitly given in literature [4, 13, 18], 
but for the tenth-order soliton considered above it is usually 
presented only by numerical results.  
 
III.2. Soliton Collisions  

 In the further part of the present paper we consider the 
case of multiple soliton propagation. The input amplitude 
for a soliton pair entering the medium is expressed by  

   ( ) ( ) ( ) ( )1 20, exp ,U sech r sech r iτ τ τ τ τ θ⎡ ⎤= − + +⎣ ⎦    (23) 

where r is the relative amplitude of the two solitons, and θ  
is the relative phase between them [1, 4, 7, 8]. Analytical 
results [13, 18] show that neighboring solitons either come 
closer or move apart because of the nonlinear interaction 
between them. The time of soliton collisions strongly 
depends on both the relative phase θ  and the amplitude 
ratio r. Solitons collide periodically along the distance of 
propagation, the collision period usually is much greater 
than the soliton period. After the collision the shape of the 
wave amplitudes remain unchanged and stable. This effect 
is similar to the collision of the rigid particles, so the name 
“soliton” reflects the particle feature of the nonlinear waves 
[1, 4]. 
 The following calculations are performed for the colli-
sion between the fundamental solitons and the higher-order 
solitons. The parameters in (23) are chosen as r = 1, θ  = 0 
(equal-amplitude and in-phase case) and 1 2τ τ=  (initial 
spacing). Numerical results are displayed in Fig. 3.  

 

Fig. 1. Change of the pulse intensity in the propagation process for the case of fundamental (a) and tenth-order solitons  
(b) over one soliton period 2ξ π=  
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 Figure 2(a) displays the collision process between two 
fundamental solitons, where 1 2 3.5τ τ= =  and the propaga-
tion distance ξ  = 90. During the propagation, firstly the 
two solitons attract each other, then approach one another 
with the increasing intensity in a location where two soliton 
are nearest themselves, the intensity is four times greater 
than the initial value. After that, the solitons repel each 
other and their spacing increases with distance, and the 
intensity decreases to the initial value. This process of 
attracting and repelling is repeated periodically because of 
the dispersion and nonlinear effects, and after each such 
collision the shape of the envelope function remains 
unchanged. In Figure 2(b) we consider the collision of two 
second-order solitons. The values of the parameters are 
chosen as 1 2 2τ τ= =  and the propagation distance 10.ξ =  
Because the distance between two solitons is smaller than 
in the previous case, the time collision is much faster. The 
solitons attract and repel each other in the same periodical 

manner but the change of the envelope function is more 
complicated. We also perform similar numerical calcula-
tions for the higher-order solitons and obtained results 
show that the complexity of the envelope function change 
increases with the order of the solitons. These observations 
are in good agreement with the calculations in [4, 8].    
 

 
IV.  APPLICATION  OF  THE  NONLINEAR  

EFFECT  OF  STIMULATED   RAMAN 
SCATTERING   TO  THE  PULSE  COMPRESSION 

 
 In this part of our paper we present a very important 
method for creating the femtosecond pulses from the pico-
second pulses of great power by stimulated Raman scat-
tering (called the self-frequency shift) [1, 5].  
 It is clear from Fig. 1(b) that in one period the tenth-
order soliton changes in a complicate manner. In some 

 
Fig. 2. Collision between two fundamental solitons over the propagation distance ξ  = 90 (a) and between two second-order 

solitons over the propagation distance ξ  = 10 (b) 
 
 

 
Fig. 3. Propagation of the hyperbolic secant pulse with the parameter N = 10 over the distance ξ  = 0.1 when the stimulated 

Raman scattering is taken into account 

2 
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locations the envelope function splits to several parts with 
the time widths much smaller than the width of the input 
pulse. For this reason the propagation process is described 
by the NLS equation only for the pulses of great power 
with the width of tens or hundreds of picoseconds. When 
the pulse widths 1 ps or shorter, in some locations the pulse 
splits to the subpulses with the widths of tens or hundreds 
of femtoseconds during propagation. Then the higher-order 
dispersion and nonlinearity effects can not be neglected [5], 
the pulse changes in a more complicated way and the pulse 
propagation process should be described by the GNLS 
equation (1) instead of the NLS equation.  
 It has been recognized in [5] that for the SiO2 as a me-
dium, in the propagation of the pulses with the widths 1 ps 
or shorter, the self-frequency shift dominates over the TOD 
and the self-steepening. For example, if the input pulse has 
the width of 1 ps and the carrier wave has the wavelength 

0 1.55 μm,λ ≈  we have the following values of the higher-
order parameters [9] 3 0.0015,δ ≈  S = 0.0026 and 0.01,Rτ ≈  
so the self-shift frequency dominates evidently. Under the 
influence of this effect the pulse is time compressed and its 
width decreases to a lower value. This phenomenon is used 
in practice in creating the ultrashort pulses. It is possible to 
choose an appropriate propagation distance for obtaining 
an ultrashort pulse with a given width. We illustrate the 
fact discussed above by numerical calculations for the 
propagation of the hyperbolic secant input pulse with the 
width of 1 ps, the power is characterized by the value of the 
parameter N = 10, the TOD and the self-steepening pa-
rameters are neglected and 0.01.Rτ ≈  The propagation 
distance is 0.1.ξ =  The results are shown in Fig. 3.  
 Figure 3(a) displays the intensity change of the pulse. 
A important difference in the comparison with Fig. 1(b) is 
that the pulse change is more complicated here. Because of 
the delayed Raman response of the medium [5] the enve-
lope function of the pulse loses its symmetrical feature and 
continuously shifts to the later times. In the Figure we can 
see that beginning from the location ξ ≈  0.06 the pulse 
splits to small pulses, its energy concentrates in the main 
peak and this peak is compressed further during the 
propagation. In the location ξ ≈  0.09 this part is mostly 
compressed and becomes a very narrow pulse with the 
width which is 90 times smaller than the width of the initial 
pulse [9] i.e. in the domain of femtoseconds. During the 
compression the pulse spectrum becomes much broader in 
comparison with the initial pulse. This fact is illustrated in 
Fig. 3(b). In the location ξ  = 0.08 the spectrum shifts 
down to the low-frequency domain. This effect is explained 
by the fact that Stokes processes have higher probability than 
anti-Stokes one, as we have considered in detail in [5].  

 Thus one can create the ultrashort pulses from the short 
pulses by pulse compression. We can construct the pulse 
with an arbitrary width by choosing an appropriate 
propagation distance. The quantity ξ  is normalized so that 
it is undimensional. In practice with the silica medium, 
when the carrier wave has the wavelength 0 1.55 μm,λ ≈  
the second-order dispersion coefficient has the value 

2
0''( ) 20ps km,β λ ≈ −  if the input pulse has 0 1 ps,τ ≈  

from the calculations in [5] we can predict that the appro-
priate length of the medium should be chosen as 1.8 m.    
 
 

V.  CONCLUSIONS 
 
 In this paper we considered the Split-Step and four 
order Runge-Kutta algorithms for solving the pulse propa-
gation equation. Calculations performed in some special 
cases showed good accuracy of these methods. In the next 
paper [19] we will apply these algorithms to investigate the 
propagation of the femtosecond pulses. 
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