
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 13(2), 83-93 (2007) 

 
 
 

Computational Physics with Particles 
– Nonequilibrium Molecular Dynamics and Smooth Particle 

Applied Mechanics 
 

Wm. G. Hoover 
 

Ruby Valley Research Institute 
Highway Contract 60, Box 598, Ruby Valley 89833, NV USA 

 
(Rec. August 26, 2007) 

 
 
Abstract: Microscopic and macroscopic particle-simulation methods can both be applied to interesting nonequilibrium problems. Here I 
develop and discuss the ordinary differential equations underlying these two approaches and illustrate them with applications of interest 
to statistical mechanics and computational fluid mechanics. 
Key words: molecular dynamics, computational methods, smooth particles 
 
PACS numbers: 02.70.ns, 45.10.-b, 46.15.-x, 47.11.Mn 
 
 

 

I.  INTRODUCTION 
 

 Materials in motion can be understood from two quite 
different points of view. The microscopic particle view 
underlies statistical mechanics and kinetic theory [1, 2]. 
The macroscopic field-theory view underlies continuum 
mechanics and the finite-element and finite-difference 
approaches of computational fluid mechanics [3]. In 
the late 1950s I became fascinated with the possibilities of 
numerical simulation. At the National Laboratories Alder, 
Fermi, Vineyard, and Wood were pioneering computational 
approaches to numerical simulation. After I finished 
graduate school Berni Alder attracted me to the Lawrence 
Livermore National Laboratory and to the University of 
California’s nearby Department of Appied Science at 
UCDavis/Livermore. I had been fortunate to attend gradu-
ate school at the University of Michigan at a time when all 
the tools necessary to simulation were available – Andy De 
Rocco’s statistical mechanics course, George Uhlenbeck’s 
kinetic theory course, a fast computer, “MAD”, the Michi-
gan Algorithmic Decoder, and a crash course (two hours in 
the evening, total) in FORTRAN. With this background it 
was natural for me to find a job in the National 
Laboratories, where molecular dynamics and computa-
tional fluid mechanics were undergoing rapid development. 

In this introductory talk I concentrate on the underlying 
fundamentals and on the similarities linking the micro-
scopic and macroscopic particle approaches.  
 Two doctoral students at UCDavis’ Department of 
Applied Science made major contributions to this work 
(see Fig. 1). Bill Ashurst was interested in solving non-
equilibrium problems with molecular dynamics. We 
developed nonequilibrium molecular dynamics together in 
the early 1970s. Twenty years later Oyeon Kum came to 
Livermore from Korea. We worked together on macro-
scopic “smooth particle” methods for solving the field-
theory problems of continuum mechanics. The problems 
opened up through these two kinds of studies are the 
subject of this talk. I will say a bit about the underlying 
numerical methods and then illustrate both the microscopic 
and the macroscopic approaches applied to three problem 
types: expanding gases, collapsing liquids, and failing 
solids.  
 The basic ideas underlying the microscopic approach 
can be found in my book, Computational Statistical Mecha-
nics, available free at my website, http://williamhoover.info 
while those underlying the macroscopic smooth-particle 
approach can be found in my book, Smooth Particle 
Applied Mechanics – the State of the Art, vol. 25 in World 
Scientific Publishers’ Advanced Series in Nonlinear Dyna-
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mics (see Fig. 2). It is worth stating at the outset that many 
users of smooth-particle methods call the method “sph”, for 
Smooth Particle Hydrodynamics, a name which I have 
avoided because it suggests, wrongly, that the particle 
method is restricted to fluids. The method was discovered, 
simultaneously and independently, by two research groups 
working at Cambridge University [4, 5].  
 

 
II.  NUMERICAL  METHOD  FOR  ORDINARY  

DIFFERENTIAL  EQUATIONS 
 

 To follow the evolving state of a particulate system 
involves solving “motion equations”. In microscopic mole-
cular dynamics, these equations give the time derivatives 
{ , }.r v& &   of the coordinates and velocities in terms of the 
current system state { , }.r v  A macroscopic particulate 
representation of continuum mechanics requires also an 
evolution equation for the energy { }e&  along with a more 
complicated state description, including at least energy, and 
perhaps additional derived variables, such as “plastic strain” 
and “damage”.  

 Once the ordinary differential equations are formulated, 
solving them, even millions of them, is straightforward. 
A variety of numerical solution methods can be found in 
Numerical Recipes and other texts [6]. For simplicity, 
accuracy, and transparency I prefer the classic “fourth-order” 
Runge-Kutta method. Though this approach requires four 
evaluations of the righthandsides of the differential equa-
tions for each timestep ,tΔ  the increased computer time is 
compensated by simplicity in programming and in 
controlling program execution.  
 
 

 

Fig. 3. An eight-particle harmonic chain, with displacements 
corresponding to its lowest-frequency oscillation 

 

 

Fig. 4. Time dependence of the energy error in Runge-Kutta 
simulations of the chain shown in Fig. 3. The evolution of the 
error is shown for six timesteps, Δt = {0.01, 0.02, 0.04, 0.08, 
0.16, 0.32}. At a fixed time the error varies as the fifth power of
                                           the timestep Δt 
 
 
 To illustrate the Runge-Kutta method, consider the 
lowest-frequency oscillation of the eight-particle harmonic 
chain shown in Fig. 3. Figure 4 shows the time-dependence 
of the energy error for this chain problem. The Runge-
Kutta method was used to solve the sixteen ordinary 
differential equations for the particles’ coordinates and 
velocities:  

Fig. 1. William Ashurst and Oyeon Kum, pioneering research 
students in nonequilibrium molecular dynamics and smooth
                        particle applied mechanics  

 
 

Fig. 2. Computational Statistical Mechanics and Smooth 
Particle Applied Mechanics, two useful references for the
                                 work described here  
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{ }1 1; 2 .i i i i i ix v v x x x− += = − +& &  

 Appropriate modifications were imposed at the ends 
(i = 1 and i = 8), corresponding to imposing periodic 
(cyclic) boundary conditions on the chain. Figure 4 shows 
that the energy error at a fixed time t (corresponding to 

/t tΔ  timesteps) varies as the fifth power of the computa-
tional timestep Δt. Thus the smallest of the six timesteps 
used in constructing the Figure, Δt = 0.01, reproduces the 
dynamics to double-precision accuracy. This same “fourth- 
-order Runge-Kutta” algorithm is used in all of the exam-
ples I discuss here.  
 

 
III.  FREE  EXPANSION   

AND  THE  GIBBS-LIOUVILLE  PARADOX 
 
 The free expansion of a gas into a larger container is an 
interesting pedagogical problem. Because no work is done, 
and no heat is transferred, the energy is constant in such an 
expansion. Ideal gas thermodynamics gives an entropy in-
crease of ln( / )Final InitialNk V V  for this isoenergetic adiabatic 
process, where k is Boltzmann’s constant. Gibbs’ and 
Boltzmann’s statistical mechanics expresses entropy in 
terms of the averaged logarithm of the phase-space 
probability density f({q, p}). The {p} are the momenta 
conjugate to the generalized coordinates {q}:  

ln

ln .

Gibbs

i i
i

S k f

k dq dp f f

= − ≡

⎡ ⎤≡ − ⎣ ⎦∏ ∫ ∫
 

Liouville’s Theorem, 0,f ≡&  is obeyed by a system of 
particles obeying Hamilton’s motion equations,  

{ }/ ; / 0.q p p q f= +∂ ∂ = −∂ ∂ → ≡&& &H/ / H / /  

Liouville’s Theorem, that f (and hence also ln f) is un-
changed along the Hamiltonian trajectory, implies that 
Gibbs’ entropy is likewise a constant of the motion. This 
constancy of entropy is paradoxical in light of the entropy 
increase predicted by thermodynamics.  
 Simulation gives insight into how this apparent paradox 
can be resolved. We simulate the expansion of a quiescent 
compressed gas obeying the ideal-gas equation of state, 
PV = NkT = E. Such a gas can be modeled accurately by 
using Lucy’s normalized pair potential, shown in Fig. 5:  
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 The virial theorem for the pressure, along with an inte-
gration by parts, gives the desired dependence of the ideal-
gas pressure on the (mostly potential) energy:  
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 Now imagine, as an initial condition, a checkerboard 
array of squares, one fourth of which are occupied by the 
compressed quiescent ideal gas (at a density ρ  = 4) with 
the remaining three-fourths of the squares empty. To 
compensate for the small missing “surface energy” of 
particles near the edge of the compressed square, the 
particles were given a small initial kinetic energy, just 
sufficient to provide a total energy E = K + Φ  = 2N 
consistent with the bulk equation of state.  

 

 
Fig. 5. Lucy’s (unnormalized) weight function for h = 1, 
w(r < 1) ∝  [1 − 6r2 + 8r3 − 3r4], is compared to the short-range
                         repulsive potential, φ (r < 1) ∝  [1 − r2]4 

 
 To begin, the constraints confining the gas-filled square 
were released. Simulations, solving the 2N motion equa-
tions,  
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Fig. 6. Snapshots from a 16 384-particle free expansion (top row) in which the density decreases fourfold, from 4 to 1. The average 
number of interacting neighbors varies from about 22 60hπ �  to 2 / 2 15hπ �  as the motion develops, where the range of the Lucy 
potential is h = 3 and the particle mass is unity. The boundary separating the black and white regions is the contour of average
     density/kinetic energy in the two sets of contour plots. The total time interval shown corresponds to two sound-traversal times 

 
 

N = 256 N = 1 024 N = 4 098

N = 65 536N = 16 384

ln 4 ln 4 ln 4

ln 4 ln 4
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Fig. 7. Time dependence of the increase of entropy as a function of the number N of smooth particles used in the free expansion 
problem. The entropy calculated here is based on the thermal energy fluctuation described above. The lower curve and the dots 
indicate particle-based and cell-based entropies. A third “entropy”, based on the total thermal energy K rather than its local 
fluctuation (the upper curves), wrongly indicates an entropy increase throughout the adiabatic expansion phase, even prior to
                                 the expanding fluid’s impact with its periodic image (considered in Section IVC below)  
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; ,i i i ij
j

r v mv F
⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

∑& &  

show that the subsequent relaxational motion equilibrates 
quickly, with the average density approaching (ρ  = 1) in 
all the squares. Apart from the small surface corrections in 
the initial conditions, the density and energy changes are as 
follows: 

: 4 1 ; / : 2 2 ;

/ : 0 3/ 2 ; : 2 1/ 2 .

E N

K N
N

ρ → →

Φ
→ →

 

We model this problem here with molecular dynamics, 
using a “unit cell” of 2 × 2 = 4 squares, one full and three 
empty, and with periodic boundary conditions. Snapshots 
from a 16 384-particle simulation of this free expansion [7] 
are shown in Fig. 6.  
 In order to describe this expansion process from a mac-
roscopic viewpoint it is useful to consider spatially- 
-averaged values of the three field variables: density, veloc-
ity, and energy. Lucy’s normalized potential is again useful 
for this averaging process, as it can play the role of 
a probability density (for a random distribution of parti-
cles). The average density at any point in space (such as the 
grid points on an interpolating mesh, for instance) can be 
defined as a sum of contributions from “nearby” (nearer 
than h) particles: 

( )( ) .i
i

r mw r r hρ = − <∑  

The “weight function” w describes the influence or contri-
bution of a particle to the field variables in its neigh-
borhood. In the same way, the spatially averaged velocity 
and kinetic energy K can be defined:  

( )

( )
2
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2
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ρ

ρ
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∑

∑
 

Figure 6 shows the division between those regions which 
have above-average and those which have below-average 
densities and kinetic energies. We see that two sound 
traversal times are enough for a nearly homogeneous 
distribution of mass, momentum, and energy to form 
throughout the system. Calculations of these field variables 
on a finely-meshed grid provide a precise description of the 
continuum evolution.  

 An understanding of the actual entropy increase of the 
expansion, shown in Fig. 7 for five different system sizes, 
despite Liouville’s Theorem, can be based on the thermal 
energy fluctuation,  

22 .v v−  

The simple ideal-gas thermodynamic formula S/Nk = ln(VT), 
where T is the thermal energy, proportional to the velocity 
fluctuation, accounts nicely for the irreversible entropy 
increase associated with the free expansion. Introducing the 
weight function w(r) provides both averages and fluctua-
tions about the average values.  
 The averaging using w(r) is a useful tool for a variety of 
problems. It can be applied to calculate the spatially-
averaged value of any field function from the correspond-
ing particle values:  

( ) ( )( ) /

/ .

j j j
j j

jr j jr
j j

F r w r r F w r r

w F w

= − − =

=

∑ ∑
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Because w has two continuous spatial derivatives, with 
both vanishing at the range h:  

( ) ( )2 2/ 0 ; / 0 ,h h
dw dr d w dr= =  

averages calculated in this way have two spatially-con-
tinuous derivatives everywhere. Such averages can be used 
to interpolate particle values onto a grid (for contour plots 
or Fourier transforms). They can also be used to create 
a particle representation, the “smooth particle” representa-
tion, of continuum mechanics, to which we turn in the next 
Section.  
 
 

IV.  SPAM:  SMOOTH  PARTICLE  APPLIED  
MECHANICS 

 
 The same averaging process used to describe the free 
expansion problem can be made the basis of a “smooth-
particle” scheme to solve the field equations of continuum 
mechanics: 

; ;

: .

v v P

e Q v P

ρ ρ ρ

ρ

= − ∇ ⋅ = −∇ ⋅

= −∇ ⋅ − ∇

& &

&
 

Here, the evolutions of the density, velocity, and internal 
energy {ρ (r, t), v(r, t), e(r, t)} depend upon both the 
pressure tensor P and the heat flux vector Q. These two 
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fluxes (of momentum and of energy) themselves depend 
upon past and present values of the field variables {ρ, v, e}. 
From the conceptual standpoint we imagine that particles, 
each of mass m, have their own individual values,  

( ) ( ){ },, , , , , , ,i i i i i i iv e P Q v Qρ ∇ ∇ ⋅ K  

from which the corresponding field variables are computed 
as smooth-particle averages. Although there are ambigui-
ties in choosing the basic definitions, these ambiguities 
provide opportunities, rather than drawbacks, in creating 
a useful numerical method for solving continuum prob-
lems. Here we next outline the smooth-particle representa-
tions of the continuity equation and the equation of motion.  

 
A. Smooth Particle Continuity Equation  

 The continuity equation expresses conservation of mass. 
Equating the summed-up flows of mass into a fixed control 
volume to the density change in that volume leads directly 
to the continuity equation:  

( )/ / .t v t v vρ ρ ρ ρ ρ ρ∂ ∂ = −∇ ⋅ ←→ ≡ ∂ ∂ + ⋅∇ = − ∇ ⋅&  

The chain-rule time derivative of the smooth-particle repre-
sentation of the density for Particle i, ( )/ ,ijd dt mw∑ gives 
a particle analog of the continuity equation:  

( )

( ) .

i i i ij j j ij

ij i ij i j i ij

i i i i i i i i i

m v w v w

mv w m v v w

v v v

ρ

ρ ρ ρ

⎡ ⎤= ⋅∇ + ⋅∇ =⎣ ⎦

= ⋅ ∇ = − ⋅ ∇ =
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∑

∑ ∑

&

 

The last equality follows from spatial differentiations of the 
two definitions: 

( ) ( )
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j ij i i j ij j i iji
j j j

mw v mv w
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B. Smooth Particle Motion Equation  
 
 A force-balance calculation, equating the momentum 
change in a fixed volume element to the difference of the 
forces due to the pressure tensor P gives the familiar 
continuum motion equation:  

( ) ( )2/ / .

pv P v

P Pρ ρ ρ

= −∇ ⋅ ←→ =

= − ∇ ⋅ − ⋅ ∇

& &
 

If we introduce smooth-particle definitions at Particle i for 
these last two gradients:  

( ) ( )2/ / ;

,

i ij jj

i ij i ij
j j

P p m w P

mw m w

ρ

ρ

∇ ⋅ → ∇
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∑ ∑
 

we see that the smooth-particle equation of motion can be 
written as a simple sum over pairs:  

2 2 .i i ij
j i j

P Pv m w
ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + ⋅ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑&  

This form of the motion equation, which follows from 
the two gradient definitions above, has the desirable feature 
that it conserves (linear) momentum exactly.  
 Whenever the pressure and density are slowly-varying 
in space the continuum equation of motion resembles 
molecular dynamics with a pair potential proportional to 
the weight function w(r). In the two-dimensional ideal-gas 
case, with P ∝ ρ 2, the resemblance becomes an isomor-
phism, with the molecular dynamics and SPAM particle 
trajectories identical.  
 
C. Fluid Interpenetration – Monaghan’s Trick  

 In continuum mechanics interfacial diffusion is ordinar-
ily ignored so that adjacent fluids do not interpenetrate one 
another. In the usual smooth-particle case, with  

2 2

;

,

i i

i i ij
j i j

r v

P Pv m w
ρ ρ

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + ⋅ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

&

&
 

the free-expansion example of the last Section leads to 
significant interpenetration. Monaghan introduced a clever 
variation of the evolution equations { }r v≡&  designed to 
minimize this effect while still conserving mass, momen-
tum, and energy:  

( ) / ,i i j i ij ij
j

r v m v v w ρ
⎧ ⎫⎪ ⎪≡ + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑&  

where ijρ  is a mean density (either arithmetic or geometric). 
This motion based on the mean local velocity not only 
satisfies the conservation laws. It also prevents interpenetra-
tion. Figure 8 compares a conventional SPAM simulation of 
the free expansion (identical to a molecular dynamics 
simulation) with the improved and quite-different version 
incorporating Monaghan’s modified equations of motion.  
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Fig. 8. Smooth-particle simulations of the expanding Lucy fluid. 
Particles initially located in the first and third quadrants are distin-
guished by shading. The conventional simulation (left) allows 
considerable interpenetration while that using Monaghan’s Trick 
                                         (right) does not  
 
 It would be useful to characterize how Monaghan’s 
trick modifies hydrodynamic behavior. Because particles 
move according to an averaged neighborhood velocity 
rather than according to their own, we might expect 
reduced diffusion and enhanced viscosity to result. The 
equilibrium equation of state is not affected by Monaghan’s 
trick. Homogeneous deformations do not activate the aver-
aging. On the other hand, analysis of the dispersion relation 

( )kω  for solid-phase soundwaves shows enhanced 
dispersion and reduced oscillation frequencies for short 
wavelength waves.  

 
D. Smooth Particle Energy Equation  

 In pairwise-additive molecular dynamics the natural 
definition of the single-particle energies is  

1 .
2 2

i i
i ij

j

mv v
e φ

⋅
= +∑  

The corresponding energy equation for molecular dy- 
namics, 
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∑

∑ ∑

∑
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turns out to be a simple identity, providing no new infor-
mation. In continuum mechanics the energy equation 
includes both conductive and compressive energy changes, 

so that ei is an additional state variable. The smooth-parti-
cle version of the energy equation,  
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2 2
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conserves energy exactly, for either fluids or solids.  
 
 
E. SPAM vis-à-vis Molecular Dynamics  

 We have emphasized the similarities between SPAM 
and molecular dynamics. In the general case the differences 
lie mainly in the accelerations. SPAM requires an a priori 
knowledge of the equation of state, including compressibil-
ity, heat capacity, transport coefficients, damage, and fail-
ure models. Molecular dynamics produces all these proper-
ties as functionals of the assumed interparticle force laws. 
SPAM, like real life, is ordinarily dissipative, with viscous 
forces tending to convert mechanical energy to heat. If it is 
desired to maintain thermal fluctuations, as in “Dissipative 
Particle Dynamics”, this can be done with the same 
feedback forces used to control temperature in non-
equilibrium molecular dynamics.  
 In addition to explicit viscosity and thermal feedback, 
the replacement of a continuum with a grid, such as the 
irregular grid formed by the SPAM particles, typically 
introduces a dissipative artificial viscosity. In the absence 
of any viscosity it is necessary to add in a von Neumann 
artificial viscosity to stabilize systems where shocks are 
formed. Molecular dynamics has none of these stability 
problems despite the characteristic Lyapunov instability of 
its motion equations.  
 The two techniques, though both involve particles, are 
best viewed as different descriptions of matter, macro-
scopic and microscopic respectively. Comparing the two 
descriptions for similar problems (Rayleigh-Bénard con-
vection, shockwave formation, tensile collapse, penetra-
tion, ...) is an excellent approach to innovative research. 
Though failure (fracture, flow, fragmentation ...) is a uni-
versal phenomenon with intrinsic and economic motives 
for its study, much remains to be done in correlating 
the microscopic and macroscopic descriptions of failure 
mechanisms. In the space remaining I consider two examp-
les of such problems, from both the macroscopic and 
the microscopic points of view.  
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V.  TENSILE  FAILURE  WITH  MOLECULAR 
DYNAMICS:  GRAVITATIONAL  EQUILIBRATION 

AND  COLLAPSE  OF  A  FLUID  COLUMN 
 
 Tensile failure can be initiated through expansion, 
either homogeneous or longitudinal, through the reflection 
of compressive waves from free boundaries (“spall”), or by 
the expansion of a compressed material. Quenching a “hot” 
compressed state to make a “cold” tensile state is yet 
another approach. One can hope that universal features of 
failure can be determined by comparing these processes 
with one another, all for the same material.  
 To illustrate tensile failure consider an equilibrated 
fluid column in a gravitational field g, constrained by 
a mirror boundary at its base and by lateral periodic 
boundaries. For simplicity we use a powerlaw mirror 
potential to support the column,  

450 ; 0 .mirror i i
i

y y yδ δΦ = = <∑  

We choose a short-ranged repulsive-attractive pair potential,  

( ) ( ) ( ) ( )
8 42 22 2 2 2 0 224;

(1) 1.

r r rφ φ

φ

⎡ ⎤< = − − − → =⎢ ⎥⎣ ⎦

= −

 

and constrain the kinetic energy per particle during the 
equilibration process, so as to avoid freezing:  

2 2 1.mv kT= =  

During the equilibration phase, this kinetic-energy con-
straint can be imposed by rescaling the particle velocities at 
the end of each Runge-Kutta timestep. A time of order 
several sound traversal times is ample for the finite-
temperature equilibration used here, after which the lateral 
periodic boundary is released so that the column can 
expand laterally and collapse.  
 Figure 9 shows snapshots from a 5000-particle simu-
lation, where the equilibrated height of the column 
(initially 100) is about 80 for a column width of 50. 
The subsequent collapse generates a lateral expansion, 
which occurs at a speed somewhat less than the speed of 
sound. We can estimate the sound speed c for a triangular 
lattice with the interparticle spacing and the particle mass 
both equal to unity and with a stress-free density of 4 / 3.  

( ) 4/3/ 9.c P ρρ
=

= ∂ ∂ �  

After the vertical boundary constraints are released, tensile 
“rarefaction waves” move inward from the newly-formed 
edges of the expanding column, eventually leading to 
sufficiently negative pressure to cause the formation of 
internal voids. The kinetics and morphology of the void 
formation is an interesting and challenging hydrodynamic 
subject area. Particular solution details depend on the type 
and the range of the interparticle forces. One could, 
for instance, explore the consequences of van der Waals’ 

 

 

Fig. 9. Gravitational collapse of a pair-potential column. The equilibrated width is 50 and the total number of particles is 5000. 
The strength of the gravitational field g is 0.50, as is also the thermal energy kT. A viscous relaxation time τ = 10 was applied for 
a time interval of 190 using a fourth-order Runge-Kutta timestep Δt = 0.01. The time interval over which the collapse is illustrated
           here is for the subsequent time interval of 10. Note the presence of tensile voids as well as some surface evaporation 
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model by using a hard-core repulsive potential plus 
a longer-ranged attraction. A fundamental continuum treat-
ment of the collapse process is also feasible. Such a treat-
ment would involve formulating the dependence of the 
surface tension and viscosity on the local state variables, 
and the specification of a failure model leading to void 
formation. The irregular nature of the atomistic shape, for 
the system width shown here, of 50 atoms, certainly 
motivates the study of this same problem using continuum 
mechanics. We carry out such a simulation, with smooth 
continuum SPAM particles rather than atomistic ones, next.  
 
 

VI.  TENSILE  FLUID  FAILURE  WITH  SPAM: 
GRAVITATIONAL  COLLAPSE 
OF  A  CONTINUUM  COLUMN 

 
 Now consider the continuum analog of the collapse 
problem, using SPAM. We choose a simple polynomial 
equation of state: 

( ) ( )3 2 3 2/ / ,P ρ ρ ρ ρ ρ ρ= − = −  

where 1ρ =  is the stress-free equilibrium density. For 
simplicity, we set both the particle mass and the stress-free 
density equal to unity here. The SPAM particle densities 
are calculated here as usual, using Lucy’s form of the 
weighting function,  

( )

( ) ( ) ( )2 3 4
2

5 1 6 / 8 / 3 / .

w r h

r h r h r h
hπ

< =

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

 

 A more-nearly-correct simulation would include also 
a “failure model”, which would describe the evolution of 
stress in the unstable regions of the equation of state. 
Though fluids can support tensile stresses of hundreds of 
atmospheres for long times, tension is thermodynamically 
unstable. Our equation of state is certainly mechanically 
unstable for densities less than 2 / 3ρ  where the compressi-
bility becomes negative. A complete equation of state 
would have to include the possibility of a low-density 
vapor phase.  
 The smooth-particle equations of motion for our as-
sumed equation of state take the form,  

 

 
 
Fig. 10. Two successive stages of collapse of the initially-square equilibrated columns shown in the top row, as modeled by SPAM. 
Simulations with 640 and 2 560 and 10 240 particles are compared at corresponding times. The bottom row indicates the regions
                                                             of positive pressure. These results are taken from Reference 3  
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∑
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Just as in molecular dynamics a Runge-Kutta solution of 
these motion equations conserves energy apart from a small 
single-step error, of order 6.tΔ  These SPAM motion 
equations are in fact equivalent to those computed in 
molecular dynamics from a manybody potential function 
designed to minimize density fluctuations: 

( )21
( ) .

2
i

i
i i

ρ
φ ρ

−
Φ = =∑ ∑  

 Although these SPAM motion equations do induce 
a density near unity for each particle, the model contains no 
intrinsic surface tension. Without surface tension the model 
tends to produce “strings” of particles. Though each 
particle has a density, ,mw∑  close to the target density, 
the resulting “string-fluid” morphology is highly unrealis-
tic. Surface tension can be added by including a phenome-
nological surface-energy potential designed to minimize 
density gradients,  

( )2

1
.surface

N

i
i

ρ
=

Φ ∝ ∇∑  

Here we choose to use a surface potential with a pro-
portionality constant of 1/10.  
 Consider now the equilibration and collapse of a co-
lumn of particles in a gravitational field g induced by the 
gravitational potential .grav ii mg yΦ = ∑  Figure 10 shows 
the tensile regions formed in the collapse of square 
equilibrated columns, as described by the smooth-particle 
motion equations. The good convergence, as indicated by 
the relative independence of the tensile-region shape to 
system size, indicates that a variety of failure models could 
be implemented so as to induce correspondence between 
the macroscopic SPAM and microscopic molecular dy-
namics simulations.  
 
 

VII.  PENETRATION 
 
 Solids are intrinsically more complicated than fluids. At 
a minimum the elastic constants, yield strength, and a ten-
sile failure model must be included for realistic studies. 
Figure 11 shows the progress of a round ball fired at an 
elastic-plastic plate. Atomistic simulations of such a prob-
lem are of relatively limited interest, because the defects 

(grain boundaries, dislocations, voids, impurities) res-
ponsible for the flow and failure properties require so many 
particles. Nevertheless, the multimillion atom simulations 
now underway can certainly suggest constitutive properties 
for inclusion in macroscopic models, such as SPAM, for 
such failure.  

 

 
Fig. 11. Penetration of a plate by a ball using smooth particles. 
The interaction between the (rigid) ball and the particles making 
up the plate was modeled by a purely-repulsive short-ranged pair
           potential. These results are taken from Reference 3  
 
 
 In treating such problems not only failure models, but 
also boundary conditions at material interfaces, are in need 
of developmental effort. The problem areas and solution 
techniques are mainly limited by imagination, now that the 
cost of highspeed computation is affordable.  
 
 

VIII.  DISCUSSION 
 

 I hope that this introduction to particle methods will 
motivate more research into nonequilibrium molecular 
dynamics and smooth particle applied mechanics. These 
complementary techniques offer detailed understanding of 
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the mechanisms underlying constitutive behavior and pro-
vide a convenient means for modelling. Much remains to 
be done in discovering algorithms suitable to continuum 
boundary conditions, and models suited to describing failure. 
See, for example, Reference 8. These areas are particularly 
suited to graduate-level computational research.  
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