
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 11(2), 141-146 (2005)

Shall we worry about Packet Reordering?

Michal Przybylski, Bartosz Belter, Artur Binczewski

Poznan Supercomputing and Networking Center
 ul. Noskowskiego 10, Poznan, Poland

{michalp|bart|artur}@man.poznan.pl

Abstract: The article describes the recent standardisation initiatives for packet reordering metrics in IP networks, the methods of
measuring it and also provides a discussion of the common factors affecting ordered packet delivery, based on real examples.
Key words: Packet Reordering, QoS, GEANT, testbed, results, applications

1. INTRODUCTION

 Packet reordering is yet another network Quality of
Service (QoS) parameter that has to be taken into account
in modern networking. This not clearly understood and
a common phenomenon is affecting leading-edge broad-
band solutions such as those implemented by many
National Research and Education Networks (NRENs) and
GÉANT. The general sources of packet reordering are
known, but not many realise this, and for many more,
reordering is still Terra Incognita.
 The question of whether packet reordering is pathologi-
cal network behaviour has been already considered in
related work. Following the IP protocol specification, we
have to admit that reordering, in the principle, is not a fault
of the IP protocol mechanism, but rather something that
may happen and we should prepare for it. In other words,
the IP protocol provides the delivery of packets, while does
not necessarily maintain the order of packets.
 In this paper, we show what reordering is, what are the
standardisation approaches to reordering metrics, how to
measure it and which applications are likely to suffer from
it. We also show some experimental results from pan-
European packet-reordering measurements.

2. THE DEFINITION OF PACKET REORDERING

 Packet reordering is one of the four metrics describing
QoS in packet networks: delay, loss, jitter and reordering.
Loss, delay and jitter have been well described,
their measurement standardised and the influence on
user applications quite thoroughly tested. Packet re-
ordering occurs when the order of packets at the de-
stination is different than the order of the same packets at
the source. In other words, in a non-reordered packet

stream, the packet sequence number of any arriving packet
will be lower than the sequence number of the consecutive
arriving packet. The following example shows a situation
with reordered packets; the reordered sequences are under-
lined.

source destination

1 2 3 4 5 6 7 8 9 10 -------------------> 1 2 4 5 6 3 7 10 9 8

Fig. 1. A sample of a reordered packet flow

 The measurements of packet reordering are currently
based on the “percentage of reordered packets”. However,
this definition, probably derived from the popular “ping-
type packet loss” metric, does not provide the precise and
adequate information that is required, especially for trou-
bleshooting. Taking the example from Fig. 1, and using
a simple “percentage definition” we may state that:
 a) there is 30% packet reordering (because packets 3, 9
and 8 are late);
 b) there is 50% packet reordering (because packets 4, 5, 6
and 10 and 9 are too early).
 Another example shows even worse disinformation
resulting from using a percentage definition:

source destiination

1 2 3 4 5 6 7 8 9 10 -------------------> 2 3 4 5 6 7 8 9 10 1

Fig. 2. A sample of a reordered packet flow

 In this case, one may consider the following results:
 a) there is 10% packet reordering (because packet 1 is
late);
 b) there is 90% packet reordering (as all packets except 1
are early).

user
Tekst maszynowy
CMST 11(2) 141-146 (2005)

user
Tekst maszynowy
DOI:10.12921/cmst.2005.11.02.141-146

user
Tekst maszynowy

user
Tekst maszynowy

M. Przybylski, B. Belter, A. Binczewski

142

 At the same time, having only a percentage measure-
ment, we do not know other specific facts about the
reordering, such as the extent (by how many positions was
the packet displaced, how often it happened, was it bursty
or flat rate?).
 The need for proper packet reordering measurement has
become so important due to popularity of TCP protocol and
instant measurement of other IP metrics. For example, the
TCP protocol can tolerate packet displacement by 1 or 2
positions, and its embedded mechanisms will be able to
sort these packets back in order. However, if this level is
reached, TCP will still receive the reordered packets (the
packet loss at IP level will be 0%) but will drop them,
assuming packet loss and adjusting the transmission
window (by default, reducing it by half). A similar situa-
tion may occur, for instance, when the fact of arrival of
a packet with higher sequence number may cause
the application to count displaced packets as lost. Similarly,
the measurement of reordering can be affected by packet
duplicates.
 The interaction between IP and higher level protocols
has been well described in several works, where we can
read that “real protocols and applications are optimised
around common case assumptions about how real Internet
infrastructures behave under normal conditions. Conse-
quently most protocols assume that corruption, packet loss
and reordering are infrequent events or occur primarily
under deterministic conditions.” It is clear that if these
assumptions are not met, the performance of these proto-
cols will suffer.
 The fact, that the proper packet reordering measurement
is important for particular applications and protocols, has
led the Internet Engineering Task Force (IETF) to initiate
a packet reordering standardisation track.
 The standardisation of metrics and the measurement of
packet reordering are currently within the scope IETF IPPM
working group, which recently released “draft-ietf-ippm-
-reordering-10.txt” and “draft-jayasumana-reorder-density-
-04.txt”. Both metrics propose slightly different approaches
to reordering.
 Reorder Density and Reorder Buffer-occupancy Den-
sity (draft-jayasumana-reorder-density04. txt) are a very
simple yet informative metrics for assessing the reordering
characteristics and the required reordering recovery
mechanisms (there are more metrics defined in the draft,
but here we focus only on a selection of them).
 Reorder Density shows the distribution of displace-
ments of packets from their original positions, including
lost and duplicated packets, within given threshold packet
sequence. This means that if the threshold is set to 10, any
packet displaced by more than 10 positions will be consid-
ered lost.
 Reorder Buffer-occupancy Density shows the histo-
gram of the occupancy of a hypothetical buffer, used as
a waiting room by early packets (re-ordering buffer).

The calculation of this metric is performed upon each
packet arrival at the receiver.

Fig. 3. Sample worst-case Reorder Density graph for
the PIONIER-GEANT-CESNET connection

 A sample Reorder Density graph is shown in Fig. 1.
The bars here correspond to the total percentage of packets
that were displaced by given number of positions. It is easy
to see that some 6% of the packets were late by one
position, 20% were early by one position and only 70% of
the packets arrived in order. Also some of the packets were
displaced by 10 positions.
 Other important information that can be derived from
the chart is the actual packet loss encountered by the TCP
application: in our case, assuming that the TCP protocol
can handle the maximum displacement by 2 positions, we
have to sum the bars from position 0, 1 and 2. This is
roughly 79%, which corresponds to the amount of packets
accepted by the TCP protocol. 21% of the packets will be
considered lost by TCP protocol, which will definitively
reduce the achievable transmission rate (even though all
three networks were highly over-provisioned at a time).
 Draft-ietf-ippm-reordering-10.txt defines reordering with
a slightly different purpose. Rather than drawing the histo-
gram of the displacement (Reorder Density), the draft
defines:
 • the Extent of Reordering (showing the displacement for
each packet – i.e., how much too early the packet has
arrived);

Fig. 4. The Extent of Reordering graph

Shall we worry about Packet Reordering?

143

 • the Byte Offset – the storage space in buffer required to
restore order;

Fig. 5. The Byte Offset graph

 • the Time Offset – the amount of time needed to hold the
reordered packet until all preceding packets arrive;

Fig. 6. The Time Offset graph

 For each of above metrics, the draft defines the maxi-
mum value (i.e. Maximum of Extent), which can be di-
rectly used for application tuning. Presented metrics can
also be very handy for network troubleshooting, as they
allow timely observation of changing network behaviour.

3. THE SOURCES OF PACKET REORDERING

 There are many sources of packet reordering. The most
common are:
 • all kinds of parallelism in the network;
 • network faults;
 • improper configuration;
 • faulty software
 • special QoS/performance configuration.
 Probably the most important and common source of
packet reordering results from the need to increase the
performance of the routing and switching devices in the
networks by re-utilising existing solutions in a parallel
way, e.g., by adapting the existing equipment to new kinds
of interfaces. The reordering here may be introduced by:
Link bundling – in situations where single link capacity is
not sufficient between two network devices, link bundling
can be applied to increase the total link capacity; the

reordering can occur here if the routine scheduling packets
to individual physical links works with “packetbased”
regime, rather than with “flow-based” one;
Parallel processing within the network devices. The back-
plane and the packet processors of the network devices
have limited capacity. In order to increase the total device
capacity, multiple backplane queues and packet processors
to interface boards can be implemented in parallel. Here
again the extent of reordering depends on the queuing
regime. This is often visible in early releases of equipment
and less likely to exist in mature solutions, where the
processors become more powerful and the parallel
solutions are no longer needed.
 The root cause for reordering in the above cases is the
asynchronous work of the processors and queues of the
device. The packet is held in the queue as long as it is
necessary to process it, with the time dependent on the
packet size, type or additional packet checks resulting from
firewall configuration or QoS routines applied. As a conse-
quence, the packets with longer processing time can be
bypassed by packets with shorter processing time and
which arrived later to other queues.
 It is important to note here that the choice of the queu-
ing regime (if possible) cannot be done without penalties.
The use of a “flow-based” queuing regime reduces or
removes the reordering (all packets from the flow enter
the same queue) but this implies that all the packets from
a flow have to enter the same queue, usually with
the capacity of a fraction of the whole interface. This limits
the maximum flow size to the queue size or to be more
precise – to the available capacity in the queue selected by
the hashing function of the regime.
 We will show some practical observations in following
paragraphs.

3.1. Reordering in Juniper M160, OC-192 interfaces
 This is a typical example of packet reordering in-
troduced by the use of four parallel processors, each with
the capacity of 2,5 Gbit/s to serve a single 10Gbit/s
interface. The independent test results presented at Light-
Reading show that reordering here will not happen until the
card has 73% of load, or 56% of load in the worst case,
when customer traffic is composed only of 40byte IP
packets.
 Unfortunately none of the modern reordering measure-
ment definitions were present at the time of tests, so we are
able only to see the “percentage of reordered packets”
which is a somewhat imprecise metric.
 The charts, however, clearly show that the reordering
occurs when different sizes of packets are present, and is
rather rare for equal size packets.
 The document also states that reordering made by
individual routers along the path is not cumulative. This
has been confirmed experimentally by our tests in the

M. Przybylski, B. Belter, A. Binczewski

144

GÉANT network. We have found that the measured pa-
rameters between different GÉANT NRENs do not depend
on the number of hops traversed by the packet stream.

Fig. 7. Juniper reordering measurement results

 Another interesting observation of reordering phenome-
non in GÉANT is those resulting from LBE (Less than Best
Effort) transmission tests. The experiments here had to
investigate the behaviour of LBE traffic in the presence of
BE streams. A side observation shows that “the percentage
of out-of-order packets is proportional to the packet rate
injected; the larger the packet rate, the higher probability of
receiving some out of sequence packets”. It was further
found that reordering here was caused by the platform
architecture (M160) and the different weights assigned to
Best Effort (BE) and LBE queues. The stated results claim
that the proper configuration of weight for different classes
can assure no negative effect of reordering on TCP trans-
mission.

3.2. Reordering in 10GE cards of Black Diamond

 switches (BD 6808 and 6816)
 Similar to Juniper routers, Black Diamond also imple-
ments parallel processing in the 10GE line cards. The prob-
lem here lies in the outdated architecture of the switch,
which was initially designed to support maximum 1Gbit/s
interfaces. Original cards used in BD6806 were supporting
8x1GE interfaces; therefore the backplane connection was
also composed of 8x1GE queues. After 10GE standards
had been announced, the company released 10GE cards.
Unfortunately these cards had to be served by the same
8x1GE queues, already implemented in the backplane.
The switch offers two queuing regimes for the 10GE card:
packet-based and flow-based. The former schedules each
incoming packet to a different queue, introducing signifi-
cant reordering. The latter preserves packet order, but
limits the single flow capacity to the queue size. This is
very unfortunate, because in ideal conditions (empty net-
work) the size of a single flow cannot exceed 1 Gbit/s
(7 Gbit/s remains unused and unavailable for that flow).
The situation is even worse in the presence of Internet

traffic (multiple different flows), where each queue already
has some background traffic scheduled. As an example, if
the single link has 4Gbit/s of traffic load, it means that
average queue load is 500Mbit/s. Each new flow will
encounter congestion conditions when its size reaches
500Mbit/s, even if there is still 4 Gbit/s of free bandwidth
on the switch. There is no known reordering work-around
to solve this problem.

4. REORDERING MEASUREMENT AND RESULTS

 Packet reordering measurement does not require any
sophisticated tools or significant investments. For the
purpose of testing the end- to-end reordering in GÉANT,
we have used the simple, open source software traffic
generator RUDE/CRUDE and some custom-built post-
processing scripts. A selection of metrics from both of the
mentioned IPPM standards have been implemented and the
measurement collected in a mesh scenario, between
CESNET, HUNGARNET, HEAnet, LITnet, PIONIER,
FCCN and NORDUnet. A special script has been also
made available for other users to measure packet reordering
in their own samples.

Fig. 8. The results of reordering for multimedia stream and worst

case reordering

 During our experiments we sent test streams with
the traffic patterns simulating a few selected applications,
including:

Mcast_ogg

x 100%

Worst case

x 100%

Shall we worry about Packet Reordering?

145

 • traffic flow designed especially to measure the maxi-
mum possible reordering where a burst of small packets
immediately follows a burst of large packets;
 • bursts of short packets of the same size;
 • bursts of long packets of the same size;
 • real trace of a JMStudio mpeg video stream (JMStudio
is a Java application using JMF 2.0 API to play, capture,
transcode, and write media data; JMStudio also uses the
JMF RTP APIs to receive and transmit media streams
across the network);
 • real trace of a VideoLAN Client;
 • real trace of MCast6 – our own application streaming in
OGG format
 • real trace of an IceCast application (OGG).
 The following conclusions could be drawn from the
above measurements:
 a) the streams of packets of the same size were not af-
fected by reordering;
 b) the specifics of multimedia streams make them very
sensitive to packet reordering;
 c) there was not much difference between the results of
the “worst case” scenario and multimedia streams;
 d) only VideoLAN client was immune to reordering (due
to the equal size of the packets).

4. IMPLICATION OF REORDERING
ON THE APPLICATIONS

 The tolerance of the application to reordering depends
on many factors, including packet transmission rate, packet
size, type of the transport protocol used, capacity of receive
buffers, application purpose, etc.
 The most vulnerable applications are those that generate
small packets followed closely large packets in a single
stream. This implies that slow-rate (in the microscopic
scale) applications are not likely to be affected by packet
reordering. It has to be noted (and we confirmed that
experimentally) that slow applications with large burstiness
could be affected, because even though the average transfer
rate is low, reordering may occur within packet bursts,
where the packets are closer to each other.
 Another important issue is the transport protocol. Two
transport protocols – TCP and UDP are the most common
in Internet. TCP uses a transmission window mechanism,
which adapts to current network conditions (packet loss) by
resizing itself. However, in many cases, TCP will not
distinguish packet reordering from packet loss, because it
will treat a packet reordered by three positions (or a packet
which came three packets later than expected) as lost
packet. The detection of false packet loss will cause the
transmission window to downsize, affecting overall trans-
mission throughput. Related work shows some approaches
to more reordering- resilient TCP implementations. During
our experiments, we have observed reordering greatly
exceeding the order of three packets over many European

links, which will definitely influence TCP throughput of
many high-bandwidth, demanding applications.
 The UDP protocol is mainly used for media streaming
over the Internet and for highly interactive services, such as
videoconferencing or Voice over IP. These services have
one important feature – if the data (such as digitised speech
during videoconference) is not delivered on time, it can be
as well discarded, because after certain time period, this
data is no longer needed. During our experiments we have
tested the traffic patterns of various applications, including
JMStudio, Video Lan Client and IceCast Ogg audio
streams to asses their vulnerability to packet reordering.
 One of the results of traffic analysis is that some
application modifications are necessary to deal better with
reordering-impaired networks. As an example, the trace
from IceCast Ogg shows the following packet pattern (for
two consecutive voice packets):

frame size time from the last frame

1024 0.349454

1024 0.000089

1024 0.000086 (1st voice packet)

1024 0.000097

 88 0.000004

1024 0.319239

1024 0.000087

1024 0.000087 (2nd voice packet)

1024 0.000087

118 0.000015

Fig. 9. A sample frame pattern of IceCast Ogg stream

 We can see from this pattern that when the application
sends the traffic in a bursty way, one voice packet is
packed into 5 frames, with the last smaller one, carrying
the remaining part of data. The frames carrying one packet
are sent almost simultaneously, and then the application
waits to assemble another voice packet. This application
has been found to be vulnerable to reordering, as the last
small packet usually bypassed one preceding packet during
all transmissions. However, the application uses the TCP
protocol for transmission, allowing compensation for such
a level of reordering.

5. SHALL WE WORRY ABOUT PACKET
REORDERING?

 The answer to that question is not straightforward.
Reordering is quite common in Internet now and will stay
common in the future. The only way to harness reordering
is to learn what it is, what are its implications for ap-
plications and how to protect them from this phenomenon.
However, the biggest problem is that the most common
protocols, invented in the time of kilobit/s transmissions,

M. Przybylski, B. Belter, A. Binczewski

146

are still the main transport protocols of modern gigabit
networks. They cannot cope well with reordering, so one
option would be to look towards limiting the reordering in
the network devices. The practice shows that even the largest
and strongest market players cannot avoid troubles with
reordering in their devices. It is very important, then, to
recognise all the pitfalls related to reordering in network
equipment and to properly evaluate any device to be imple-
mented in specialised broadband networks. This is especially
important for the research community, requesting undis-
turbed transmission of high-bandwidth streams. At the same
time, more work is required to assess the influence of
reordering on various transport protocols and to develop new
kinds of reordering-resilient transport protocols.

Acknowledgements
The authors would like to thank our European partners who
kindly granted us the access to the test machines – CESNET,
FCCN, HEAnet, HUNGARNET, LITNET and NORDUnet.

References
 [1] http://www.ietf.org/internet-drafts/draftjayasumana-

reorder-density-04.txt
 [2] http://www.ietf.org/internet-drafts/draft-ietfippm- reordering-10.txt
 [3] J. Bennett, C. Partridge, N. Shectman. Packet reordering is

not pathological network behavior. IEEE/ACM Transac-
tions Networking, 7(6):789-798, Dec. 1999.

 [4] B. Chen and R. Morris. Flexible control of parallelism in a
multiprocessor PC router. Proceedings of the 2001 USENIX
Annual Technical Conference, pages 333-346, June 2001.

 [5] http://rude.sourceforge.net/
 [6] M. Zhang, B. Karp, S. Floyd, L. Peterson, RR-TCP: A Re-

ordering-Robust TCP with DSACK.
 [7] http://java.sun.com/products/javamedia/ jmf/2.1.1/jmstudio/

jmstudio.html
 [8] http://www.videolan.org/vlc/
 [9] http://www.icecast.org/
 [10] http://www.cnaf.infn.it/~ferrari/tfngn/lbe/ results/lbe-geant/
 [11] http://herodes.redes.upv.es/rap/Routers

%20Altas%20Prestaciones/core_router_test. pdf
 [12] John Bellardo, Stefan Savage, Measuring Packet Reordering

.
1

MICHAŁ PRZYBYLSKI received his M.Sc. degree in Computing Science from Poznan University of Technology
in 2002. He has been working in Poznan Supercomputing and Networking Center since 1999, he currently
leads Network Research and Development Group. His research interests include broadband, optical networking
and new network services.

BARTOSZ BELTER received the M.Sc. degree in Computing Science from Poznan University of Technology in
2002. He works in Poznan Supercomputing and Networking Center in Network Research and Development
Department as a Network Application Developer. His main IT research interests are software engineering, Java
language and network technologies.

ARTUR BINCZEWSKI received the M.Sc. degree in Computing Science from Poznan University of Technology
in 1993. His research interests concern computer networks, routing, multicasting and management. He is the
Manager of Network Department at Poznan Supercomputing and Networking Center.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 11(2), 141-146 (2005)

